
Online Appendix for:

“Belief Distortions, Asset Prices, and Unemployment

Fluctuations*”

Do Lee

November 9, 2025

Contents

OA Online Appendix: Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . 1

OA.1 Stylized Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

OA.2 Variance Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

OA.3 On-the-Job Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

OA.4 Decreasing Returns to Scale and Composition Effects . . . . . . . . . . . . . 17

OA.5 Gradual Adjustment of Expectations . . . . . . . . . . . . . . . . . . . . . . . 19

OA.6 Subjective User Cost of Labor . . . . . . . . . . . . . . . . . . . . . . . . . . 20

OB Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

OB.1 Representative Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

OB.2 Cross-Sectional Decomposition of Hiring Rate . . . . . . . . . . . . . . . . . . 28

OB.3 Model of Constant-Gain Learning from Cash Flows . . . . . . . . . . . . . . 30

OB.4 Model of Constant-Gain Learning from Prices and Cash Flows . . . . . . . . 38

OC Data Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

OD Method of Simulated Moments Estimation . . . . . . . . . . . . . . . . . . . . . . 55

OE Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

OE.1 Machine Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

OE.2 Data Inputs for Machine Learning Algorithm . . . . . . . . . . . . . . . . . . 62

OE.3 Cross-Sectional Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

*New York University, 19 West 4th Street, 6th Floor, New York, NY 10012, dql204@nyu.edu. I am grateful
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OA Online Appendix: Additional Results

OA.1 Stylized Facts
Summary Statistics Appendix Table OA.1 summarizes the distributions of survey-based and machine learning fore-
casts for the key components of the variance decomposition. The most notable pattern is the contrast in time-series
volatility and cross-sectional dispersion between the two sources of expectations. In the time series, 5-year survey-based
discount rate expectations Ft[rt,t+5] are substantially less volatile than machine forecasts, with standard deviations of 0.037
and 0.118, respectively. In contrast, 5-year survey-based cash flow expectations Ft[et,t+5] exhibit much higher volatility
than machine forecasts, with standard deviations of 0.299 and 0.058, respectively.

Table OA.1: Summary statistics

Obs Mean St. Dev. Min p25 Median p75 Max

rt,t+5 72 0.284 0.283 -0.279 0.131 0.330 0.464 0.789
Ft[rt,t+5] 72 0.226 0.037 0.147 0.195 0.229 0.251 0.327
Et[rt,t+5] 72 0.287 0.118 0.036 0.209 0.284 0.362 0.572
et,t+5 72 3.739 0.300 2.353 3.741 3.777 3.905 4.288
Ft[et,t+5] 72 3.908 0.299 3.264 3.768 3.892 4.101 4.423
Et[et,t+5] 72 3.801 0.058 3.704 3.763 3.793 3.823 3.936
pet+5 72 3.553 0.294 3.084 3.332 3.527 3.642 4.594
Ft[pet,t+5] 72 3.654 0.146 3.321 3.537 3.686 3.761 3.925
Et[pet,t+5] 72 3.603 0.284 2.864 3.408 3.590 3.803 4.208
qt 72 0.596 0.236 0.211 0.408 0.587 0.731 1.202
Ut 72 0.061 0.021 0.036 0.046 0.054 0.078 0.130
θt 72 0.598 0.315 0.160 0.339 0.558 0.747 1.438
δt 72 0.350 0.058 0.265 0.316 0.354 0.370 0.689

Notes: This table reports summary statistics for ex-post realized outcomes (Actual), subjective expectations (Survey), and machine
expectations (Machine) of key variables used in the variance decomposition. The forecasted variables are h = 5 year present discounted
values of discount rates rt,t+h, cash flows et,t+h, and price-earnings ratios pet,t+h, as defined in equation (16). Aggregate labor market
variables include the vacancy filling rate qt, unemployment rate Ut, vacancy-to-unemployment ratio θt, and job separation rate δt.
Portfolio-level variables are constructed by aggregating employment and forecast data across firms within each book-to-market group,
holding portfolio assignment fixed at the time of portfolio formation. Subjective expectations at the aggregate level Ft are based on
survey forecasts from the CFO survey for stock returns and from IBES for earnings growth. Subjective expectations at the portfolio
level Ft are based on survey forecasts from the IBES survey for both stock returns and earnings growth. Machine expectations Et

are based on forecasts from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), where parameters βh,t are estimated in
real time using Xt, a large-scale dataset of macroeconomic, financial, and textual data. The sample is quarterly and spans 2005Q1
to 2023Q4.
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OA.2 Variance Decompositions

OA.2.1 Baseline Specification

Table OA.2 reports a variance decomposition of the aggregate vacancy filling rate based on equation (21). Under objective
expectations, discount rate fluctuations explain the largest share of variation, accounting for 69.1% at the five-year horizon.
Under subjective expectations, cash flow beliefs dominate at all horizons, accounting for 96.7% in the five-year horizon.

Table OA.2: Time-Series Decomposition of the Vacancy Filling Rate

Horizon h (Years) 1 2 3 4 5

(a) Objective Expectations: log qt = cq + Et[rt,t+h]− Et[et,t+h]− Et[pet,t+h]

Discount Rate 0.187∗∗∗ 0.309∗∗∗ 0.585∗∗∗ 0.653∗∗∗ 0.691∗∗∗

t-stat (3.310) (4.708) (5.977) (6.974) (6.659)

(-) Cash Flow 0.027 0.026 0.051 0.055 0.066
t-stat (0.090) (0.181) (0.364) (0.459) (0.472)

(-) Price-Earnings 0.799∗∗∗ 0.720∗∗∗ 0.415∗∗∗ 0.331∗∗∗ 0.201∗∗

t-stat (5.620) (4.322) (3.332) (2.845) (1.716)

Residual −0.013 −0.054 −0.051 −0.039 0.042
t-stat (−0.030) (−0.141) (−0.076) (−0.046) (0.049)

N 76 76 76 76 76

(b) Subjective Expectations: log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

Discount Rate −0.007 −0.005 −0.019 −0.014 −0.010
t-stat (−0.457) (−0.130) (−0.400) (−0.157) (−0.091)

(-) Cash Flow 0.325∗∗∗ 0.641∗∗∗ 0.717∗∗∗ 0.892∗∗∗ 0.967∗∗∗

t-stat (3.939) (4.500) (4.661) (5.572) (7.097)

(-) Price-Earnings 0.629∗∗∗ 0.366∗∗∗ 0.206∗∗∗ 0.068 0.028
t-stat (8.383) (4.231) (2.896) (0.701) (0.313)

Residual 0.052 −0.002 0.096 0.054 0.015
t-stat (0.186) (−0.008) (0.292) (0.126) (0.039)

N 76 76 76 76 76

Notes: This table reports variance decompositions of the aggregate vacancy filling rate under objective expectations (panel (a)) or
subjective expectations (panel (b)). Each row reports the share of the variation in vacancy filling rates that can be explained by
h-year expected present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios
pet,t+h, as defined in equation (16). Residual term represents the variation in vacancy filling rates that are not captured by the
other components. Positive numbers in the Cash Flow and Price-Earnings rows represent the negative of the regression coefficients,
ensuring that all variance shares are positive and sum to unity. Subjective expectations Ft are based on survey forecasts of CFOs and
IBES financial analysts. Objective expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM)
neural networks. The sample is quarterly from 2005Q1 to 2023Q4. Newey-West corrected t-statistics with lags = 4 are reported in
parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.

OA.2.2 Role of Model Misspecification and Approximation Errors

This section extends the variance decompositions by allowing for two residual sources: (i) approximation errors
arising from the Campbell and Shiller (1988) log-linearization, and (ii) misspecification errors that stem from simplifying
assumptions in the search model, such as ignoring firing costs or endogenous separations.

Campbell-Shiller residual For any horizon h ≥ 1,

pet =

h∑
j=1

ρj−1(cpe + Ft[∆et+j ]− Ft[rt+j ]
)
+ ρhFt[pet+h] + υCS

t,h , (OA.1)

where ρ ∈ (0, 1) is the log-linearization constant. υCS
t,h captures any approximation errors from the log-linearization and

allows for the possibility that the Campbell-Shiller present value identity may be misspecified under subjective beliefs.
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Search-model residual To allow for model misspecification in the hiring condition, such as layoff frictions or devia-
tions from constant returns in production and matching, I add a separate residual υM

t,h:

log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]− υCS
t,h − υM

t,h, (OA.2)

where υM
t,h captures deviations between the observed vacancy-filling rate and the theoretical expression implied by the

baseline search model. For instance, if firing frictions create an option value of waiting to hire, firms may be more
reluctant to fill vacancies than the baseline model suggests, an effect that would be captured by υM

t,h.

Variance decomposition with residuals With both residuals included, the variance decomposition becomes

1 =
Cov(Ft[rt,t+h], log qt)

Var(log qt)︸ ︷︷ ︸
Discount Rate News

− Cov(Ft[et,t+h], log qt)

Var(log qt)︸ ︷︷ ︸
Cash Flow News

− Cov(Ft[pet,t+h], log qt)

Var(log qt)︸ ︷︷ ︸
Future Price–Earnings News

−
Cov

(
υCS
t,h , log qt

)
Var(log qt)︸ ︷︷ ︸

Campbell–Shiller Residual

−
Cov

(
υM
t,h, log qt

)
Var(log qt)︸ ︷︷ ︸

Search Model Residual

.

The cross-sectional decomposition for h̃li,t from equation (7) includes analogous residuals υ̃CS
i,t,h and υ̃M

i,t,h. In all figures
and tables, we report the two residual components separately: the Campbell-Shiller residual reflects approximation noise
from the log-linearization, while the model residual captures specification errors in the underlying search model.

Table OA.3 shows that both residual components are approximately orthogonal to the main decomposition terms,
indicating that neither materially distorts the attribution. Time-series and cross-sectional correlations remain small,
confirming that approximation and misspecification errors do not drive the main results.

Table OA.3: Correlation with Residual Terms from Regression Coefficients

Component Campbell–Shiller Residual Search Model Residual

Objective Subjective Objective Subjective

(a) Time-Series

Current Price–Earnings pet 0.001 0.007 0.010 0.170
Vacancy Filling Rate log qt -0.003 0.010 -0.018 0.051
Discount Rate Ft[rt,t+5] -0.002 0.009 -0.074 -0.155
Cash Flow Ft[et,t+5] -0.013 -0.002 0.046 0.048
Future Price–Earnings Ft[pet,t+5] -0.002 0.031 -0.024 -0.127

(b) Cross-Section

Current Price–Earnings pei,t -0.001 -0.000 0.005 0.001
Vacancy Filling Rate log qi,t 0.000 -0.002 -0.036 -0.128
Discount Rate Ft[ri,t,t+5] -0.002 0.014 -0.079 -0.112
Cash Flow Ft[ei,t,t+5] -0.022 -0.002 -0.033 0.034
Future Price–Earnings Ft[pei,t,t+5] 0.002 0.053 0.014 0.130

Notes: This table reports correlations between residuals and decomposition components under both objective and subjective beliefs.
The Campbell–Shiller residual (υCS

t,h ) captures log-linearization and measurement errors in the price–earnings decomposition. The

search-model residual (υM
t,h) captures deviations from the baseline search model, such as omitted firing costs or endogenous separations.

Time-series correlations use aggregate data; cross-sectional correlations use firm-level deviations from time-t means.
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OA.2.3 Belief Distortions and Vacancy Filling Rate

To directly quantify the importance of belief distortions in subjective beliefs, I consider predictive regressions of belief
distortions in subjective expectations of discount rates, cash flows, and price-earnings ratios on the vacancy filling rate. I
define the belief distortion as the difference between subjective and machine expectations. Table OA.4 reports estimates
β1,B from regressing belief distortions in subjective discount rate, cash flow, and log price-earnings expectations on the
vacancy filling rate:

Ft[yt+h]− Et[yt+h] = β0,B + β1,B log qt + εt,B , y = r, e, pe

The results indicate that distortions in survey forecasts are important contributors to fluctuations in vacancy filling rates,
especially at longer horizons. At the five-year horizon, distortions in cash flow expectations lead survey respondents to
over-weight 90.1% of the variation in vacancy filling rates to the cash flow component. This mis-perception is counteracted
by distortions in subjective discount rate expectations, which leads survey respondents to under-weight 70.1% of the
variation in the vacancy filling rate. These findings emphasize the importance of belief distortions in driving labor market
fluctuations. The profile of the response across forecast horizons is broadly consistent with the profile of the MSE ratios
across horizons in Figure 2. For discount rate and cash flow expectations, the machine outperformed the survey by a wider
margin over longer horizons, suggesting that the belief distortions in survey responses likely play a bigger role over these
longer horizons.

Table OA.4: Belief Distortions in Subjective Beliefs and the Vacancy Filling Rate

Horizon h (Years) 1 2 3 4 5

Belief Distortions: Ft[yt+h]− Et[yt+h] = β0,B + β1,B log qt + εt,B , y = r, e, pe

Discount Rate −0.194 −0.313∗∗ −0.604∗∗∗ −0.667∗∗∗ −0.701∗∗∗

t-stat (−1.574) (−2.167) (−2.896) (−2.918) (−2.740)

(-) Cash Flow 0.299 0.615∗∗∗ 0.666∗∗∗ 0.837∗∗∗ 0.901∗∗∗

t-stat (1.421) (5.476) (5.703) (7.365) (6.665)

(-) Price-Earnings −0.170 −0.354∗∗ −0.209 −0.262 −0.174
t-stat (−0.464) (−2.373) (−0.503) (−0.479) (−0.292)

Residual −0.065 −0.052 −0.147 −0.093 0.026
t-stat (−0.148) (−0.219) (−0.306) (−0.154) (0.040)

N 76 76 76 76 76

Notes: This table reports estimates β1,B from regressing the survey belief distortion Ft[yt+h]−Et[yt+h] on the vacancy filling rate qt.
yt+h denotes the dependent variable of type j to be predicted h years ahead of time t. The components of the decomposition are h-
year present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h. The
residual term captures variation in the vacancy filling rate that cannot be explained by the three components. Subjective expectations
Ft are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are
based on machine learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose parameters βh,t
are estimated in real time using Xt, a large scale dataset of macroeconomic, financial, and textual data. The belief distortion is
defined as the difference between subjective and machine expectations: Ft − Et. The sample is quarterly from 2005Q1 to 2023Q4.
Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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OA.2.4 First Differences

The decomposition in equation (21) may be more accurate in first differences than in levels, as low-frequency variation
in the vacancy filling rate or subjective expectations can introduce measurement error. This concern is similar to the
argument in Cochrane (1991), who points to low-frequency changes in fundamentals as a potential source of measurement
error in the context of the q-theory of investment. Figure OA.1 estimates the variance decomposition of the vacancy filling
rate from equation (21) in first differences:

∆ log qt = ∆Et[rt,t+h]−∆Et[et,t+h]−∆Et[pet,t+h]

∆ log qt = ∆Ft[rt,t+h]−∆Ft[et,t+h]−∆Ft[pet,t+h]

Under objective expectations, discount rate fluctuations explain the largest share of variation, accounting for 58.7% at the
five-year horizon. Under subjective expectations, cash flow beliefs dominate, accounting for 90.6% at the five-year horizon.

Figure OA.1: Variance Decomposition of Vacancy Filling Rate: First Differences
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate in first differences. Each panel reports the share
of the variation in vacancy filling rates that can be explained by h-year expected present discounted values of discount rates rt,t+h,
(negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation (16). Light (dark) bars show the
contribution under objective (subjective) expectations. Subjective expectations Ft are based on survey forecasts of CFOs and IBES
financial analysts. Objective expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural
networks. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4
quarters.
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OA.2.5 VAR Estimates

To validate the robustness of the variance decompositions, I estimate a Vector Autoregression (VAR) for the log
vacancy filling rate log qt and its forward-looking components under subjective or objective expectations. For the case of
subjective beliefs, the VAR is estimated using survey expectations for future returns, earnings growth, and price-earnings
ratios:

Xt+1 = AXt + εt+1, Xt = [Ft[rt,t+1] Ft[et,t+1] Ft[pet,t+1] log qt]
′
.

From the theoretical framework in Section 4, the log vacancy filling rate can be decomposed as:

log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− ρhFt[pet+h]

where the expected present values Ft[rt,t+h] and Ft[et,t+h] are constructed recursively using the VAR forecast. As h → ∞,
the terminal value ρhFt[pet+h] converges to zero under a transversality condition, yielding the long-run decomposition:

log qt = cq + Ft[rt,t+∞]− Ft[et,t+∞].

The same procedure is repeated using machine learning forecasts Et[·] to obtain the decomposition under objective expec-
tations. Figure OA.2 reports variance shares across horizons h = 1 to h = 5, as well as the full-horizon case h = ∞. Under
objective expectations, discount rate fluctuations explain an increasing share of variation, rising to 78.1% at long horizons.
Under subjective expectations, cash flow beliefs dominate at all horizons, accounting for 102.0% in the long run.

Figure OA.2: Variance Decomposition of Vacancy Filling Rate: VAR Estimates
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate based on a Vector Autoregression (VAR). Each
panel reports the share of the variation in vacancy filling rates that can be explained by h-year expected present discounted values
of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation (16). Light
(dark) bars show the contribution under objective (subjective) expectations. Subjective expectations Ft are based on survey forecasts
of CFOs and IBES financial analysts. Objective expectations Et are based on machine learning forecasts from Long Short-Term
Memory (LSTM) neural networks. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows bootstrapped 95% confidence
intervals.
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OA.2.6 Alternative Survey Measures of Subjective Discount Rates

The small role played by subjective discount rate expectations in explaining the vacancy filling rate holds more
generally across alternative survey forecasts of stock returns. Table OA.5 reports estimates from regressing 1 year ahead
survey expectations of stock returns Ft[rt,t+h] on the log vacancy filling rate qt under alternative survey forecasts of stock
returns. In all survey measures, the estimates suggest a weak relationship between subjective stock return expectations
Fs
t [rt,t+h] and the vacancy filling rate qt.

rt,t+h denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from time t to t+ h, depending
on the concept that survey respondents are asked to predict: log stock returns for CB, SOC, Gallup/UBS, and CFO; log
price growth for Livingston. Fs

t [rt,t+h] denotes subjective expectations of stock returns or price growth from survey s. CoC
and Hurdle denotes corporate cost of capital and hurdle rates constructed in Gormsen and Huber (2025). The forecast
horizon has been limited to 1 year ahead due to limited data availability in the alternative surveys. The sample is quarterly
over 2005Q1 to 2023Q4 when considering the NX, CB, SOC, and CFO surveys, 2005Q1 to 2008Q4 for Gallup/UBS, and
semi-annual over 2005Q1 to 2023Q4 from Q2 and Q4 of each calendar year for Livingston.

To summarize the alternative survey measures into a single series, the Filtered Invesotr (FI) series extracts the
common component of subjective discount rates using a Kalman filter. The state variable is a latent h-month ahead
expected stock return capturing investors’ subjective beliefs St ≡ Ft[rt+h], which evolves according to an AR(1) state
equation St = C(Θ)+T (Θ)St−1 +R(Θ)εt, where C, T,R are matrices of the model’s primitive parameters Θ = (α, ρ, σε)

′.
εt is an innovation to the latent expectation that was unpredictable from the point of view of the forecaster. α is the
intercept, ρ is the persistence, and σε is the standard deviation of the latent innovation error. The Observation equation
takes the form Xt = D+ZSt +Uvt, where h = 12 months is a fixed forecast horizon. The observation vector Xt contains
measures of survey expected returns listed above over the next h periods. vt is a vector of observation errors with standard
deviations in the diagonal matrix U . Z and D are parameters that have been set to 1s and 0s, respectively. I use the
Kalman filter to estimate the remaining parameters α, ρ, σε, U . Since some of our observable series are not available at all
frequencies and/or over the full sample, the state-space estimation fills in missing values using the Kalman filter.

Table OA.5: Variance Decomposition of Vacancy Filling Rate: Alternative Discount Rates

Horizon h (Years) 1 1 1 1 1 1 1 1

Subjective Expectations: log qt = cq + Fs
t [rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

Survey s FI NX CB SOC Gallup Liv CoC Hurdle

Discount Rate 0.013 −0.011 0.026 0.002 −0.065 0.067 0.024 0.013
t-stat (0.614) (−0.249) (0.504) (0.103) (−0.922) (0.181) (0.734) (0.522)

Adj. R2 0.070 0.012 0.069 0.009 0.216 0.045 0.232 0.154
N 76 76 76 76 16 40 76 76

Notes: Table reports slope (β1) estimates from regressing h = 1 year ahead survey expectations of stock returns Ft[rt,t+h] on the
log vacancy filling rate qt. rt,t+h denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from time t to
t + h, depending on the concept that survey respondents are asked to predict: log stock returns for CB, SOC, Gallup/UBS, and
CFO; log price growth for Livingston. Fs

t [rt,t+h] denotes subjective expectations of stock returns or price growth from survey s.
CoC and Hurdle denotes corporate cost of capital and hurdle rates constructed in Gormsen and Huber (2025). Filtered Investor
(FI) expectations summarize the alternative survey measures into a single series using a Kalman filter. The sample is quarterly over
2005Q1 to 2023Q4 when considering the NX, CB, SOC, and CFO surveys, 2005Q1 to 2008Q4 for Gallup/UBS, and semi-annual over
2005Q1 to 2023Q4 from Q2 and Q4 of each calendar year for Livingston. Newey-West corrected t-statistics with lags = 4 are reported
in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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OA.2.7 Extended Historical Sample

Figure OA.3 reports the variance decomposition of the vacancy filling rate from equation (21) using an extended
quarterly sample from 1983Q4 to 2023Q4. Subjective cash flow expectations are measured using IBES survey forecasts of
earnings growth, available from 1983Q4. Subjective discount rate expectations are extended by extracting a common latent
component from multiple historical survey sources from Table OA.5 using a state-space model estimated via the Kalman
filter. The latent state St is interpreted as the one-year-ahead expected stock return, Ft[rt+1]. To construct the five annual
forecasts needed for the present-value sum rt,t+h, I impose a flat term-structure assumption and set Ft[rt+j ] = St for
j = 1, . . . , 5. This approach ensures that all horizons are anchored by the common latent factor while remaining consistent
with the information set of the historical surveys. The extended sample results are consistent with the baseline. Under
objective expectations, discount rate fluctuations explain 66.9% of vacancy filling rate variation at the five-year horizon.
Under subjective expectations, distorted cash flow beliefs dominate, accounting for 89.6%.

Figure OA.3: Variance Decomposition of Vacancy Filling Rate: Extended Sample 1983Q4–2023Q4
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate using an extended sample from 1983Q4 to 2023Q4.
Each panel reports the share of the variation in vacancy filling rates that can be explained by h-year expected present discounted
values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation
(16). Light (dark) bars show the contribution under objective (subjective) expectations. Subjective expectations Ft are based on
survey forecasts of CFOs and IBES financial analysts. Objective expectations Et are based on machine learning forecasts from Long
Short-Term Memory (LSTM) neural networks. Each bar shows Newey-West 95% confidence intervals with lags = 4 quarters.
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OA.2.8 Ex-post Decomposition

Since the log-linear decomposition of the vacancy filling rate holds both ex-ante and ex-post, a variance decomposition
of the vacancy filling rate can also be estimated using ex-post realized data, under the assumption of the firm’s perfect
foresight:

1 ≈ Cov [rt,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate news

− Cov [et,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [pet,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

Table OA.4 reports the estimates. For the main sample covering 2005Q1 to 2023Q4, at the 5 year horizon, 79.4% of the
variation in the vacancy filling rate is driven by discount rate news. In contrast, cash flow news has a smaller effect,
contributing only 10.3% over the same period. For the full sample covering 1965Q1 to 2023Q4, at the 5 year horizon,
78.6% of the variation in the vacancy filling rate is driven by discount rate news. In contrast, cash flow news has a smaller
effect, contributing only 9.5% over the same period.

Figure OA.4: Variance Decomposition of Vacancy Filling Rate: Ex-Post Measure 1965Q1–2023Q4
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Notes: Figure reports variance decompositions of the vacancy filling rate from equation using ex-post realized outcomes. Each
panel reports the share of the variation in vacancy filling rates that can be explained by h-year expected present discounted values of
discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation (16). Light bars
show the contribution under objective expectations. The sample is quarterly from 1965Q1 to 2023Q4. Each bar shows Newey-West
95% confidence intervals with lags = 4 quarters.
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OA.2.9 Risk Premia vs. Risk-Free Rate

Risk-free rates play only a small role in explaining fluctuations in vacancy filling rates. Figure OA.5 plots estimates
from regressing subjective expectations implied by forecasts from the Survey of Professional Forecasters (SPF), and machine
expectations of h year ahead annualized log 3-month Treasury bill rates on the vacancy filling rate. Under all measures of
beliefs and all horizons considered, the contribution from risk-free rates explain less than 5% of the variation in vacancy
filling rates. The result suggests that the significant contribution of objective discount rates in Table OA.2 is driven by
fluctuations in risk premia instead of risk-free rates.

Figure OA.5: Variance Decomposition of Vacancy Filling Rate: Risk Premia vs. Risk-Free Rate

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e 
of

 Jo
b 

Fi
lli

ng
 R

at
e 

V
ar

ia
nc

e

1 2 3 4 5
Horizon (Years)

Risk Premium

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
Horizon (Years)

Risk-Free Rate

Subjective Expectations Objective Expectations

Notes: Figure plots estimates from regressing h year present discounted value of annualized log 3-month Treasury bill rates∑h
j=1 ρ

j−1rft+j on the vacancy filling rate under alternative assumptions about the firm’s beliefs. Subjective expectations Ft of
risk-free rates are based on survey forecasts from the Survey of Professional Forecasters. Subjective expectations of the equity risk
premium is defined as the difference between CFO survey S&P 500 stock return forecast and the SPF risk-free rate forecast. Machine
expectations are based on machine learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose
parameters βh,t are estimated in real time using Xt, a large scale dataset of macroeconomic, financial, and textual data. The sample
is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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OA.2.10 Additional Controls

The large contribution from subjective long-term cash flow expectations in explaining the vacancy filling rate is robust to
conditioning on additional variables that could distort the relationship. Table OA.6 re-estimates the subjective variance
decomposition at the 5 year horizon with additional control variables on the right-hand side of the regression: 1 year
lag of the log vacancy filling rate and the dependent variable, and the 1 year ahead survey forecast of the same variable.
Controlling for the short-term expectation Ft[yt+1] accounts for the possibility that survey respondents’ long-term forecasts
could be influenced by the short-term component of cash flows (Nagel and Xu, 2021).

Table OA.6: Variance Decomposition of Vacancy Filling Rate: Additional Controls

Dep. Var. Discount Rate (-) Cash Flow (-) Price-Earnings
Horizon h (Years) 5 5 5

Subjective Expectations: Ft[yt+h] = β0,F + β1,F log qt + β2,F log qt−1 + β3,FFt−1[yt+h−1] + β4,FFt[yt+1] + εt,F

Share of job filling rate variation −0.007 0.855∗∗∗ 0.049
t-stat (−0.108) (4.865) (0.455)

Adj. R2 0.456 0.514 0.533
N 76 76 76
Controls Yes Yes Yes

Notes: Table reports variance decompositions of the vacancy filling rate under subjective expectations Ft implied by survey forecasts.
yt+h denotes the dependent variable of type j to be predicted h = 5 years ahead of time t: h year present discounted values of discount

rates (rt,t+h =
∑h

j=1 ρ
j−1rt+j), cash flows (et,t+h = elt +

∑h
j=1 ρ

j−1∆et+j), and log price-earnings ratios (pet,t+h = ρhpet+h).
Subjective expectations Ft are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. The
sample is quarterly over 2005Q1 to 2023Q4. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at
10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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OA.2.11 All Listed Firms

Figure OA.6 reports the variance decomposition of the vacancy filling rate from equation (21) using an expanded defi-
nition of subjective expectations that includes all publicly listed firms with IBES analyst coverage, rather than restricting
to the S&P 500. Subjective cash flow expectations are computed as value-weighted aggregates of IBES median forecasts
of long-horizon earnings growth across all covered firms. Subjective discount rate expectations are constructed analo-
gously, using the same survey-based measures as in the baseline but applying the expanded firm universe for consistency
in coverage.

The results are similar to the baseline. Under rational expectations, discount rate fluctuations explain 63.0% of the
variation in vacancy filling rates at the five-year horizon, while under subjective expectations, distorted cash flow beliefs
remain dominant, accounting for 96.3%. The similarity in results suggests that the dominance of cash flow distortions
under subjective beliefs is not specific to large-cap firms in the S&P 500 but holds more broadly across publicly listed firms
with analyst coverage.

While this paper focuses on publicly listed firms due to data limitations, preliminary evidence suggest that similar
patterns likely emerge among smaller private businesses. A 2010 report from the National Federation of Independent Busi-
ness (NFIB) on small business credit during the recession shows that hiring decisions were primarily driven by pessimism
about future sales rather than financing constraints. At the time, 51% of small employers cited weak sales expectations
as their top concern, compared to just 8% who cited access to credit (Dennis, 2010). To the extent that access to credit
capture financial frictions that would show up in discount rates, this survey suggests that subjective beliefs about future
cash flows also shape employment decisions in the small business sector.

Figure OA.6: Variance Decomposition of Vacancy Filling Rate: All Listed Firms
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate using forecasts aggregated over all publicly listed
firms with IBES analyst coverage. Each panel reports the share of the variation in vacancy filling rates that can be explained by
h-year expected present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios
pet,t+h, as defined in equation (16). Light (dark) bars show the contribution under rational (subjective) expectations. Subjective
expectations Ft are based on IBES survey forecasts of financial analysts aggregated over all covered firms. Rational expectations
Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4 quarters.
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OA.2.12 Time-Varying Parameters

Figure OA.7 estimates time-series variance decompositions of the vacancy filling rate over rolling samples of trailing
15-year windows. The estimated rational discount rate component is large and the rational cash flow component is small
throughout the rolling samples. In contrast, the subjective discount rate component is small and the subjective cash
flow component is large throughout the rolling samples. The persistent dominance of subjective cash flow expectations
across all time periods confirms that belief distortions are not episodic phenomena but represent and enduring features of
expectation formation.

Nevertheless, there is notable variation in the estimated components over time, as the subjective cash flow component
shows large increases during recessions. The sharp increases in the subjective cash flow component during recession
periods indicate that firms respond to economic downturns by becoming excessively pessimistic about future cash flows.
The rational discount rate component exhibits a gradual decline over the sample period, potentially reflecting structural
changes in risk premia or monetary policy regimes.

Figure OA.7: Time-Series Decomposition of Vacancy Filling Rate: Time-Varying Parameters

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sh
ar

e 
of

 Jo
b 

Fi
lli

ng
 R

at
e 

V
ar

ia
nc

e

1990 2000 2010 2020

Discount Rates

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1990 2000 2010 2020

Cash Flows

Subjective Expectations Rational Expectations

Notes: Figure estimates time-series decomposition of the vacancy filling rate over rolling samples of trailing 15-year windows. Grey
line show the contribution under rational expectations. Dark line show the contribution under subjective expectations. Each dashed
line shows Newey-West 95% confidence intervals with lags = 4. NBER recessions are shown with light gray shaded bars.
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OA.2.13 Time-Series Decomposition of Hiring Rate by Book-to-Market and Size Port-
folios

Figure OA.8 shows that belief distortions play a significant role in explaining the cross-sectional variation in hiring
across book-to-market portfolios (panel (a)) and size portfolios (panel (b)). I run the time-series decomposition of the
hiring rate separately for each of the portfolios. The decomposition reveals that under subjective expectations, distorted
beliefs about future cash flows account for a larger share of hiring rate variation, particularly among low book-to-market
(growth) firms and small firms. This pattern is consistent with the idea that growth firms and small firms are more sensitive
to subjective beliefs about long-term fundamentals, amplifying the role of distorted expectations in their hiring decisions.
In contrast, for high book-to-market (value) firms and large firms, the contribution of cash flow expectations remains
relatively stable across subjective and objective benchmarks, suggesting their hiring is less exposed to belief distortions.

Figure OA.8: Time-Series Decomposition of Hiring Rate by Portfolio

(a) By Book-to-Market Portfolio
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(b) By Size Portfolio

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e 
of

 H
iri

ng
 R

at
e 

V
ar

ia
nc

e

1 2 3 4 5
Size Quintile

Discount Rates

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
Size Quintile

Cash Flows

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
Size Quintile

Future Price-Earnings

Subjective Expectations (5-Year Horizon) Objective Expectations (5-Year Horizon)

Notes: Figure estimates time-series decomposition of hiring rate separately for each of the five book-to-market (panel (a)) and size
(panel (b)) portfolios. Firms have been sorted into five value-weighted portfolios by book-to-market ratio or size (market capitaliza-
tion). Light bars show contributions under objective expectations; dark bars show contributions under subjective expectations. The
sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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OA.2.14 Cross-Sectional Decomposition of Hiring Rate: By Industry

Figure OA.9 shows that belief distortions play a significant role in explaining the cross-sectional variation in hiring
across Fama-French 49 industry portfolios.

Figure OA.9: Cross-Sectional Decomposition of Hiring Rate: By Industry
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Notes: Figure estimates a cross-sectional decomposition of the hiring rate across Fama-French 49 industry portfolios. Light bars show
contributions under objective expectations; dark bars show contributions under subjective expectations. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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OA.3 On-the-Job Search
The baseline model assumes that all hires come from the pool of unemployed workers. However, measured earnings

and hiring flows reflect contributions from both unemployed-to-employed (UE) and job-to-job (J2J) transitions. To better
capture the sources of observed hiring, this section extends the baseline model to allow for on-the-job search. This
modification draws on recent work modeling labor market flows with job-to-job transitions (Kuhn et al., 2021; Faberman
et al., 2022). Let a fraction ϕ of employed workers search for jobs each period, in addition to the unemployed. The total
number of searchers is:

St = Ut + ϕLt = Ut + ϕ(1− Ut), (OA.3)

where Ut is the unemployment rate and Lt = 1−Ut is the employment rate. Vacant firms post Vt vacancies, and matches
form via a constant returns to scale matching function M(St, Vt). Not all on-the-job searchers who receive an offer accept
it. Let χ ∈ (0, 1) denote the fraction of employed searchers who accept a job offer. The effective hiring efficiency from the
firm’s perspective is:

φt =
Ut + χϕ(1− Ut)

Ut + ϕ(1− Ut)
. (OA.4)

The law of motion for employment becomes:

Lt+1 = (1− δt)Lt + qtφtVt, (OA.5)

where δt is the separation rate and qt =
M(St,Vt)

Vt
is the vacancy filling rate. The Bellman equation for the firm’s value is

updated to reflect turnover due to J2J transitions:

V(At, Lt) = max
Vt,Lt+1

{Et + (1− ϕχft)Ft [Mt+1V(At+1, Lt+1)]} , (OA.6)

subject to the employment accumulation equation above. The term 1 − ϕχft reflects the retention rate, accounting for
voluntary separations from employed workers who successfully switch jobs. Under constant returns to scale, the firm’s
optimal vacancy posting condition implies:

κ

qtφt
= (1− ϕχft) ·

Pt

Lt+1
, (OA.7)

where Pt = Ft [Mt+1V(At+1, Lt+1)] is the ex-dividend firm value and κ is the flow cost of posting a vacancy. Taking logs
and rearranging, the log vacancy filling rate can be written as:

log qt = cq − log(1− ϕχft) + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h], (OA.8)

where cq = log κ− logφt − cpe(1−ρh)

1−ρ
is a constant, rt,t+h is the present value of expected discount rates, et,t+h is expected

cumulative earnings growth, and pet,t+h is the expected terminal price-earnings ratio. This decomposition extends the
Campbell and Shiller (1988) present value identity to account for hiring frictions due to job-to-job transitions. The vacancy
filling rate qt is computed as the ratio of total hires to vacancies qt = Ht

Vt
using JOLTS data for hires and job openings.

The total search pool St includes both unemployed and a fraction ϕ = 0.12 of employed workers, based on estimates
from Kuhn et al. (2021) and Faberman et al. (2022). The job finding rate is then inferred from the matching function as
ft = qt · θt, where labor market tightness is defined as θt = Vt

St
= Vt

Ut+ϕ(1−Ut)
. I assume that χ = 0.75 of employed job

seekers accept offers. These parameter values imply an endogenous efficiency term φt and a retention rate 1−ϕχft, which
are used to adjust the firm’s hiring incentives and derive the decomposition. Subjective expectations of earnings growth
are from IBES, which aggregates analyst forecasts of total firm earnings and therefore reflect both UE and J2J hires.

Figure OA.10 presents the decomposition of the vacancy filling rate under this extended model with on-the-job search.
Consistent with the baseline analysis, the cash flow component remains the dominant driver of variation in the vacancy
filling rate under subjective expectations. However, accounting for job-to-job transitions modestly shifts the decomposition:
the log retention rate term log(1 − ϕχft) explains 8.9% of the variation in log qt. This adjustment reflects the influence
of selective separations on firms’ incentives to post vacancies. Overall, the results reinforce the finding that distorted
cash flow expectations are the primary driver of hiring fluctuations. The extension confirms that even when allowing
for endogenous separations due to on-the-job search, subjective belief distortions about firm-level earnings continue to
dominate the variation in hiring behavior.
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Figure OA.10: Time-Series Decomposition of the Vacancy Filling Rate: On-the-Job Search
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of
the aggregate vacancy filling rate. Light bars show contributions under objective expectations; dark bars show contributions under
subjective expectations. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with
lags = 4.

OA.4 Decreasing Returns to Scale and Composition Effects
Stock market valuations reflect average profits, while hiring decisions depend on marginal profits (Borovickova and

Borovička, 2017). Decreasing returns to scale can amplify unemployment fluctuations even under a rational framework
by making the marginal value of hiring more sensitive to productivity shocks, prompting firms to adjust vacancies more
aggressively in response (Elsby and Michaels, 2013; Kaas and Kircher, 2015). Allowing for decreasing returns to scale
introduces the notion of firm size. Changes in the equilibrium firm size distribution can thus introduce a composition effect
that also contributes to fluctuations in the vacancy filling rate (Solon et al. (1994)).

This section relaxes the constant returns to scale (CRS) assumption by allowing for decreasing returns to scale (DRS)
in the production function. Assume that firm i’s output is Yi,t = F (Li,t) = Ai,tL

α
i,t, where Ai,t is an exogenous productivity

process and 0 < α < 1. This introduces a “DRS wedge” between marginal and average profits:

πi,tLi,t − κVi,t = αAi,tL
α
i,t −Wi,tLi,t − κVi,t = Ei,t − (1− α)Yi,t

where Ei,t ≡ Πi,t − κVi,t is the firm’s earnings, Πi,t ≡ Yi,t −Wi,tLi,t = Ai,tL
α
i,t −Wi,tLi,t is the total profit before wages

Wi,tLi,t and vacancy posting costs κVi,t, and πi,t =
∂Πi,t

∂Li,t
is the marginal profit from hiring. The second term (1− α)Yi,t

is a “DRS wedge” that captures the gap between the average profit and marginal profit. Under DRS, the firm’s hiring
condition becomes:

κ

qt
= Ft

[
∞∑
j=1

1

Ri,t,t+j

(
Ei,t+j

Li,t+1
− (1− α)

Yi,t+j

Li,t+1

)]

where firm i takes the aggregate vacancy filling rate qt as given. Express aggregate earning-employment and output-
employment ratios as the employment-weighted average of firm-level ratios:

κ

qt
= Ft

[ ∑
i

∞∑
j=1

1

Ri,t,t+j

( Ei,t+j

Li,t+1
− (1− α)

Yi,t+j

Li,t+1

) Li,t+1

Lt+1

]

Define Si,t+1 ≡ Li,t+1

Lt+1
as the employment share, ELi,t+j ≡ Ei,t+j/Li,t+1 the earnings-employment ratio, and Y Li,t+j ≡

Yi,t+j/Li,t+1 the output-employment ratio of firm i. Log linearize the expression around the steady state:

log qt =

∞∑
j=1

∑
i

[
Ft [wr,i,jri,t,t+j ]︸ ︷︷ ︸

Discount Rate

− Ft [wel,i,jeli,t+j ]︸ ︷︷ ︸
Cash Flow

(Earnings-Employment)

+ Ft [wyl,i,jyli,t+j ]︸ ︷︷ ︸
Cash Flow

(Output-Employment)

− Ft [ws,i,jsi,t+1]︸ ︷︷ ︸
Employment Share

]
(OA.9)
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where ri,t,t+j , eli,t+j , yli,t+j , and si,t+1 denote log deviations of Ri,t,t+j , ELi,t+j , Y Li,t+j , and Si,t+1 from the steady state

state, respectively. The coefficients wr,i,j = ws,i,j ≡ q
κ

(ELi+(1−α)Y Li)·Si

R
j
i

, wel,i,j ≡ q
κ

ELi·Si

R
j
i

, and wyl,i,j ≡ (1− α) q
κ

Y Li·Si

R
j
i

are functions of steady-state values and linearization constants. Note that si,t+1 is constant in j and that the effective
weight is the sum of the ws,i,j ’s. α = 0.72 comes from the labor share, κ = 0.133 comes from the flow vacancy cost (Elsby
and Michaels, 2013). q = 0.631, Ri = 1.04, EL = 0.014, Y L = 0.074 are long-run sample averages. Finally, approximate
the infinite sum by truncating up to h periods.

The expected output-employment ratio Ft[yli,t+j ] captures the DRS wedge, and the employment share si,t+1 captures
composition effects of changes in the firm size distribution. I measure the expected output-employment ratio Ft[yli,t+j ] by
using IBES sales forecasts. Figure OA.11 shows that under subjective expectations, the output-employment term accounts
for roughly 30% of the variation in the vacancy filling rate, while the earnings-employment term explains slightly less than
60%. The compositional term is small. These results confirm that even under DRS, subjective cash flow expectations,
whether expressed in average or marginal terms, remain the dominant driver of hiring fluctuations.

Figure OA.11: Time-Series Decomposition of the Vacancy Filling Rate: Decreasing Returns to Scale
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Notes: This figure illustrates the components of the time-series decomposition of aggregate vacancy filling rate under decreasing
returns to scale, based on equation (OA.9). The components of the decomposition are expected present discounted values of discount
rate, earnings-employment ratio, output-employment ratio, and the employment share. The light bars show the contributions to the
vacancy filling rate obtained under objective expectations. The dark bars show the contributions to the time-series variation in the
vacancy filling rate obtained in subjective expectations. Subjective expectations Ft are based on survey forecasts of CFOs and IBES
financial analysts. Objective expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural
networks. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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OA.5 Gradual Adjustment of Expectations
To provide evidence on the dynamics of belief formation, this section examines how survey respondents revise their
expectations about future earnings following an earnings surprise. The following regression estimates the responsiveness
of long-horizon forecasts to short-term earnings news:

Ft+j [x̃i,t+h]− Ft+j−1[x̃i,t+h] = αh,j + γh,j(x̃i,t+1 − Ft[x̃i,t+1]) + ηh,t+j ,

where Ft+j [x̃i,t+h] denotes the expectation formed at time t+ j for earnings-related variable x̃ at horizon h, and x̃i,t+1 −
Ft[x̃i,t+1] captures the earnings surprise. The coefficient γh,j measures how much of the surprise is incorporated into
expectations for long-run outcomes.

Table OA.7 reports estimates for two forward-looking variables: (a) long-run earnings growth, and (b) the long-run
ratio of earnings to employment. The target horizon is fixed at h = 5 years, while the revision horizon j ranges from 1 to 4
years. The estimated γh,j coefficients are uniformly small and often statistically insignificant, indicating that respondents
only partially incorporate short-term earnings news into their long-run expectations. This pattern is consistent with
models of belief formation under constant-gain learning, in which agents update expectations gradually and exhibit fading
memory. In such models, a fixed updating gain leads to persistent deviations from rational expectations and a breakdown
of the law of iterated expectations.

Table OA.7: Gradual adjustment of expectations

Target Horizon h (Years) 5 5 5 5
Revision Horizon j (Years) 1 2 3 4

Survey Forecast Revisions: Ft+j [x̃i,t+h]− Ft+j−1[x̃i,t+h] = αh,j + γh,j(x̃i,t+1 − Ft[x̃i,t+1]) + ηh,t+j

(a) Earnings Growth 0.0929 0.0934 0.1121 0.1245
(0.0734) (0.0455) (0.0776) (0.0743)

(b) Earnings to Employment 0.0600 0.0508 0.0697 0.0745
(0.1281) (0.0725) (0.0321) (0.0419)

Notes: Table shows the gradual adjustment of expectations about future earnings x̃i,t+h after an earnings surprise at t+ 1. Sample:
2005Q1 to 2023Q4. Newey-West t-statistics with lags = 4 reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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OA.6 Subjective User Cost of Labor
Overview The previous sections show that firms’ hiring decisions are heavily influenced by subjective cash flow expec-
tations. This section examines whether expectations about the user cost of labor also contribute to hiring behavior, since
it is a key component of the firm’s cash flows. Using survey data, I show that subjective wage expectations are significantly
less cyclical than realized wages, implying that firms perceive labor costs as more rigid than they actually are. To account
for the possibility that wages depend on the economic conditions at the start of the job, I use survey expectations from
the SCE to measure the user cost of labor under subjective expectations.

In the search and matching model, the user cost of labor is the difference in the expected present value of wages
between two firm-worker matches that are formed in two consecutive periods. Existing work assumes full information
rational expectations and show that this user cost is more cyclical than flow wages, as workers hired in recessions earn
lower wages both when hired and over time (Kudlyak, 2014; Bils et al., 2023). This section relaxes that assumption by using
survey-based measures of subjective wage expectations. If firms and workers perceive the future path of wages as rigid,
the subjective user cost of labor may remain high even during recessions, dampening hiring and amplifying unemployment
fluctuations.

Wages To assess the cyclicality of subjective wage expectations, I use publicly available survey and macroeconomic
data to construct measures of actual real wage growth, subjective wage expectations, and unemployment rate changes.
The Livingston Survey (semi-annual, 1961S1-2022S2), the CFO Survey (quarterly, 2001Q4-2023Q4), and the Survey of
Consumer Expectations (SCE) (monthly, 2015M5-2022M12) provide the necessary data. I derive subjective wage growth
expectations from median consensus forecasts of nominal wage growth in these surveys. The Livingston Survey forecasts
are deflated using its own median CPI inflation forecast, while the CFO and SCE survey forecasts are deflated using CPI
inflation expectations from the Survey of Professional Forecasters (SPF).

To account for the possibility that wages depend on the economic conditions at the start of the job, I use survey
expectations from the SCE to measure the user cost of labor UCW

t under subjective expectations. In the search and
matching model, the user cost of labor is the difference in the present value of wages between two firm-worker matches
that are formed in two consecutive periods. Existing work measures the user cost of labor under full information rational
expectations and finds that the user cost is more cyclical than the flow wage, suggesting that workers hired in recessions
earn lower wages not only when hired but also in subsequent periods (Kudlyak, 2014; Bils et al., 2023). The survey-based
measure in this paper relaxes the rational expectations assumption maintained in existing work. Consider the free-entry
condition in the search and matching model:

κ

qt
= Jt,t

where a firm must pay a per vacancy cost of κ and vacancies are filled with probability qt. Jt,τ is the value of a firm with
a worker at time τ such that the productive match started at time t:

Jt,τ ≡ zt − wt,t +

∞∑
τ=t+1

(β(1− δ))τ−tFt[zτ − wt,τ ]

where Ft[·] denotes subjective expectations based on survey data. β = 0.9569 is a discount factor and δ = 0.295 is the
probability that an employment relationship is terminated, both from Kudlyak (2014). Each period τ , a firm-worker match
produces a per period output of zτ and an employed worker received wage wt,τ where t is the period when the worker is
hired. wt,t is the new-hire wage. Note that the free entry condition is only required to hold for newly created matches for
τ = t. The expected difference between the firm’s value of a newly created match in time t and the discounted value of a
newly created match in period t+ 1 is

Jt,t − β(1− δ)Ft[Jt+1,t+1] = zt − wt,t +

∞∑
τ=t+1

(β(1− δ))τ−tFt[zτ − wt,τ ]

− β(1− δ)Ft

[
zt+1 − wt+1,t+1 +

∞∑
τ=t+2

(β(1− δ))τ−(t+1)Ft+1[zτ − wt+1,τ ]

]

Apply the Law of Iterated Expectations and collect terms

Jt,t − β(1− δ)Ft[Jt+1,t+1] = zt − wt,t −
∞∑

τ=t+1

(β(1− δ))τ−tFt[wt,τ − wt+1,τ ]
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Substitute the free-entry condition to the left-hand side

κ

qt
− β(1− δ)Ft

[
κ

qt+1

]
︸ ︷︷ ︸

Non-wage component of user cost UCV
t

= zt︸︷︷︸
Benefit

−

[
wt,t +

∞∑
τ=t+1

(β(1− δ))τ−tFt[wt,τ − wt+1,τ ]

]
︸ ︷︷ ︸

Wage component of user cost UCW
t

The equation shows that the firm faces two sources of costs from a match: wage payments to a worker UCW
t and vacancy

opening costs UCV
t . The firm creates jobs as long as the marginal benefit from adding a worker exceeds the user cost of

labor. Note that the wage component of the user cost of labor UCW
t , not the wage wt,t, is the allocative price of labor.

I use worker-level data from the Survey of Consumer Expectations (SCE) to construct the user cost of labor UCW
t

under the survey respondents’ subjective expectations. The SCE asks respondents about: the month and year on which
their current employment relationship started (i.e., t in wt,τ ); “annual earnings, before taxes and other deductions, on your
[current/main] job” (wt,τ ); short-term expectations on what their “annual earnings will be in 4 months” (Ft[wt,t+ 4

12
]) and

long-term expectations on “annual earnings to be at your current job in 10 years” (Ft[wt,t+10]). I obtain survey expectations
about medium-term earnings between 4 months to 10 years by linearly interpolating between the two horizons:

Ft[wt,t+h] =
10− h

10− 4
12

Ft[wt,t+ 4
12
] +

h− 4
12

10− 4
12

Ft[wt,t+10], h = 1, 2, . . . , 10

The user cost of labor formulation assumes infinitely lived firms and workers, while empirical data are inherently finite.
I truncate the horizon at 10 years given the availability of the survey data. Longer horizons reduce the weight of future
terms due to discounting and job separations. In addition, if unemployment follows a mean-reverting process, wages in
long-term employment relationships will eventually converge to the long-term mean, which after discounting would limit
the size of very long-term influences (Kudlyak, 2014).

I measure actual real wage growth using two BLS wage series. The Livingston Survey forecasts target annual
log real wage growth based on average weekly earnings of production and nonsupervisory employees in manufacturing
(CES3000000030). The CFO and SCE surveys target annual log real wage growth based on average hourly earnings of
private-sector employees (CEU0500000008). I deflate nominal wages using the Consumer Price Index (CPIAUCSL) to
adjust for purchasing power.

For unemployment rates used to assess the cyclicality of wages, I use both actual data and subjective forecasts.
Actual seasonally adjusted U.S. unemployment rate (UNRATE) comes from the BLS Current Population Survey (CPS).
Subjective unemployment expectations are derived from median consensus SPF forecasts of future unemployment rates.

Time-series evidence Figure OA.12 compares realized real wage growth with 1-year-ahead subjective wage growth
forecasts from three sources: the Livingston Survey, the CFO Survey, and the Survey of Consumer Expectations (SCE).
Actual wage growth is clearly cyclical, with declines during downturns and strong rebounds during recoveries. In contrast,
subjective wage forecasts are far more stable over time. Even during major shocks, such as the 2008 financial crisis and the
COVID-19 recession, survey respondents anticipated only modest wage adjustments. Forecast errors are persistent and
systematically biased: wage growth forecasts are excessively high during downturns and excessively low during expansions.

To formally assess the cyclicality of real wage growth, Table OA.8 panel (a) compares the relationship between changes
in the unemployment rate and real wage growth across rational and subjective expectations. As a rational expectations
benchmark, I use historical data on actual real wage growth to estimate the following regression, replicating existing
estimates in the literature (e.g., Bils, 1985; Solon et al., 1994; Gertler et al., 2020):

∆ logwt = β0 + β1∆ut + εt

where ∆ logwt represents the actual annual log growth rate of real wages, ∆ut is the annual change in the unemployment
rate, and εt is the error term. β1 is the coefficient of interest and captures the cyclicality of real wage growth.

Under subjective expectations, I use survey data on expected real wage growth to estimate:

Ft−1[∆ logwt] = β0 + β1Ft−1[∆ut] + εt

where Ft−1[∆ logwt] is the median survey forecast for the annual log growth rate of real wages, where the surveys are
either from Livingston, CFO, or SCE. Ft−1[∆ut] is the median survey forecast of the annual change in the unemployment
rate from the Survey of Professional Forecasters (SPF). The coefficient of interest β1 measures the cyclicality of expected
real wage growth as perceived by survey respondents.

Table OA.8 panel (a) reports the estimates. Under rational expectations, actual real wage growth is clearly cyclical
since it is significantly negatively related to changes in unemployment rates. The magnitude of the estimate is also
consistent with prior estimates in the literature, with elasticities ranging from -3.05 to -3.46 depending on the sample
period (Solon et al., 1994). In contrast, subjective wage growth expectations are acyclical, with small and statistically
insignificant coefficients across all survey sources and sample periods. Notably, the magnitude of the estimated elasticity
is an order of magnitude smaller, ranging from -0.20 to -0.97 depending on the survey measure and sample period.
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Figure OA.12: Real Wage Growth: Actual vs. Subjective Expectations

Notes: This figure plots ex-post realized outcomes (Actual) and 1-year ahead subjective expectations (Survey) of real wage growth.
x axis denotes the date on which actual values were realized and the period on which the survey forecast is made, making the vertical
distance between the actual and survey lines the forecast error. Subjective expectations Ft are based on survey forecasts. Left panel
compares actual values of annual log real wage growth against the median consensus forecasts from the Livingston survey, where
wages are measured using average weekly earnings of production and nonsupervisory employees, manufacturing (CES3000000030).
Right panel compares annual log real wage growth against median consensus forecasts from the CFO survey and the subjective user
cost of labor measured from the Survey of Consumer Expectations (SCE), where wages are measured using average hourly earnings
of production and nonsupervisory employees, total private (CEU0500000008). Actual values are deflated using the Consumer Price
Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of nominal wage growth are deflated using median consensus
forecasts of CPI inflation from the Livingston, SPF, and SCE surveys, respectively. The sample period for Livingston is semi-annual
spanning 1961S1 to 2022S2, CFO survey is quarterly spanning 2001Q4 to 2023Q4, SCE is monthly spanning 2015M5 to 2022M12.
NBER recessions are shown with gray shaded bars.

Cross-Sectional evidence To explore these patterns at the individual level, I use microdata from the SCE to estimate
subjective wage cyclicality separately for new hires and incumbents. The regression specification relaxes the rational
expectations assumption from Gertler et al. (2020) and includes an interaction between expected unemployment growth
and the probability of being a new hire:

Ft−1[∆ logwi,t] = β0 + β1Ft−1[∆ut] + Ft−1[I{Ni,t = 1}] · [β2 + β3Ft−1[∆ut]] + εi,t

where Ft−1[∆ logwi,t] represents the time t− 1 subjective expectation of wage growth for worker i at time t. Ft−1[∆ut] is
the survey expectation of aggregate unemployment growth. The indicator variable I{Ni,t = 1} equals one if the worker is
newly hired and zero otherwise. Its expectation Ft−1[I{Ni,t = 1}] is thus the subjective probability that the worker will be
newly hired next period. The interaction term Ft−1[I{Ni,t = 1}] ·Ft−1[∆ut] captures the differential sensitivity of expected
wage growth to unemployment changes for new hires relative to incumbents. The error term εi,t accounts for individual-
level deviations in expectations. The coefficient β1 captures the overall cyclicality of subjective wage expectations for
workers whose new-hire probability is zero (incumbents), reflecting how much workers expect wages to change in response
to shifts in aggregate unemployment. The coefficient β2 measures the baseline difference in expected wage growth between
new hires and existing workers when expected unemployment growth is zero. The interaction term β3 determines whether
new hires expect wages to be more sensitive to unemployment fluctuations than incumbents do.

The results in Table OA.8 panel (b) column (1) show that, even after controlling for differences between job stayers
and new hires, subjective wage expectations are highly rigid and exhibit weak cyclicality. The coefficient β1 is negative but
small, confirming the aggregate result in panel (a) that workers that are not new hires expect only mild wage adjustments
in response to unemployment fluctuations. The estimate for β2 is positive, suggesting that, on average, new hires expect
higher wage growth than job stayers. The interaction term β3 is negative but small in magnitude, implying that new
hires do not expect substantially greater cyclicality in wages compared to incumbents. Column (2) extends column (1)
by including worker fixed effects to find similar results. These findings extend the results from aggregate regressions by
showing that subjective wage expectations are highly rigid even at the individual level, regardless of job transitions. Both
new hires and incumbents perceive only weak cyclical variation in wages.

Implications for macroeconomic models These findings could have important implications for macroeconomic
models of unemployment fluctuations. If firms do not expect wages to fall during downturns, then the subjective user
cost of labor remains high even as demand declines, suppressing job creation. This mechanism is consistent with models
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Table OA.8: Cyclicality of Real Wage Growth: Actual vs. Subjective Expectations

(a) Aggregate Time-Series
Actual: ∆ logwt = β0 + β1∆ut + εt

Subjective: Ft−1[∆ logwt] = β0 + β1Ft−1[∆ut] + εt

1961S1-2022S2 2001Q4-2023Q4 2015M5-2022M12

Actual

Survey
Median
(Liv) Actual

Survey
Median
(CFO) Actual

Survey
User Cost
(SCE)

(1) (2) (3) (4) (5) (6)

Unemployment Rate −0.0340∗∗∗ −0.0020 −0.0305∗∗∗ 0.0006 −0.0346∗∗∗ −0.0086
t-stat (−3.8684) (−0.1568) (−4.2477) (0.0800) (−6.6994) (−1.6332)

Adj. R2 0.1021 0.0003 0.2557 0.0001 0.4719 0.0498
N 124 124 85 85 92 92
Frequency SA SA Q Q M M
Sector Mfg Mfg Pvt Pvt Pvt Pvt

(b) Worker-Level New Hire Effect
Subjective: Ft−1[∆ logwi,t] = β0 + β1Ft−1[∆ut] + Ft−1[I{Ni,t = 1}] · [β2 + β3Ft−1[∆ut]] + εi,t

2015M5-2022M12

Survey
(SCE)

Survey
(SCE)

(1) (2)

First
Difference

Fixed
Effects

Unemployment Rate -0.0048 -0.0028
(0.0029) (0.0026)

New Hire 0.0036∗∗∗ 0.0003
(0.0009) (0.0013)

Unemployment Rate × New Hire -0.0026 -0.0059
(0.0020) (0.0035)

Adj. R2 0.0011 0.0036
N 39,832 39,832
Frequency M M
Sector Pvt Pvt

Notes: Table reports estimates from time-series and worker-level regressions of annual log real wage growth on unemployment
growth. Subjective expectations Ft are based on survey forecasts. Panel (a) reports estimates from time-series regressions using
the aggregate series. Panel (a) Columns (1)-(2) compare actual values of annual log real wage growth against the median consensus
forecasts from the Livingston survey, where wages are measured using average weekly earnings of production and nonsupervisory
employees, manufacturing (CES3000000030). Panel (a) Columns (3)-(6) compare compares annual log real wage growth against
median consensus forecasts from the CFO survey and the subjective user cost of labor measured from the Survey of Consumer
Expectations (SCE), where wages are measured using average hourly earnings of production and nonsupervisory employees, total
private (CEU0500000008). Panel (b) reports worker-level estimates from regressions of SCE survey expectations of wage growth on
survey expectations of unemployment growth, an indicator of whether the worker is a new hire, and the interaction between the two.
Actual wage growth is deflated using the Consumer Price Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of
nominal wage growth are deflated using median consensus forecasts of CPI inflation from the Livingston, SPF, and SCE surveys,
respectively. Subjective expectations of unemployment rates are from 1-year ahead consensus median forecasts from the SPF. The
sample period for Livingston is semi-annual spanning 1961S1 to 2022S2, CFO survey is quarterly spanning 2001Q4 to 2023Q4, SCE
is monthly spanning 2015M5 to 2022M12. Panel (a): Newey-West corrected t-statistics with lags 2 (semi-annual), 4 (quarterly), 12
(monthly) are reported in parentheses; Panel (b): Standard errors clustered by worker are reported in parentheses. ∗sig. at 10%.
∗∗sig. at 5%. ∗∗∗sig. at 1%.
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that rely on wage rigidity to explain labor market volatility (Shimer, 2005; Hall, 2005; Christiano et al., 2016). These
results suggest that it could be reasonable for macroeconomists to introduce rigid wages under subjective expectations
to explain the volatility of business cycle fluctuations (e.g., Menzio (2023)). Moreover, the persistence of subjective
wage expectations may reflect underlying frictions in information processing. Survey data on wage expectations can help
distinguish between alternative theories of wage formation. Unlike rational models where the timing of wage payments
is irrelevant (Barro, 1977), models with sticky or inattentive expectations, such as those in Mankiw and Reis (2002) or
Coibion and Gorodnichenko (2015), can be better suited to capture the persistent behavior of expected wages. Finally,
the finding that subjective cost of labor is rigid suggests that volatile subjective cash flow expectations are unlikely to be
driven by fluctuations in the user cost of labor. Instead, firms may be overreacting to other components of profitability,
such as revenue expectations or perceived demand conditions, rather than expected changes in labor costs.
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OB Model Details

OB.1 Representative Agent Model
In this section, I present a search and matching model based on Diamond (1982), Mortensen (1982), and Pissarides

(2009). The model introduces subjective beliefs that may depart from rational expectations, thereby capturing the impact
of belief distortions on labor market dynamics. See Petrosky-Nadeau et al. (2018) for a standard search and matching model
formulated under rational expectations. I begin with a representative firm setup to develop intuition for the aggregate
dynamics, then extend the model in Section OB.2 to include firm heterogeneity to support the cross-sectional analysis.
Consider a discrete time economy populated by a representative household and a representative firm that uses labor as a
single input to production.

Representative Household The household has a continuum of mass 1 members who are either employed Lt or
unemployed Ut at any point in time. The population is normalized to 1, i.e., Lt + Ut = 1, meaning that Lt and Ut are
also the rates of employment and unemployment, respectively. The household’s consumption decision implies a stochastic
discount factor Mt+1. The household pools the income of all members before making its consumption decision. Assume
that the household has perfect consumption insurance and its members have access to complete contingent claims against
aggregate risk. Risk sharing implies each member consumes the same amount regardless of idiosyncratic shocks.

Search and Matching At the start of period t, the employment stock Lt reflects the total number of workers carried
over from the previous period before any separations or new hires in period t. A fraction δt of these workers separate during
the period, so the number of continuing employees becomes (1− δt)Lt. The representative firm posts job vacancies Vt and
engages in search over the course of the period to attract unemployed workers Ut. Matches are formed at the end of period
t according to a matching function m(Ut, Vt), where qt ≡ m(Ut, Vt)/Vt is the vacancy filling rate, and ft ≡ m(Ut, Vt)/Ut

is the job finding rate. These new matches become part of the workforce starting in period t + 1, so employment evolves
according to the employment accumulation equation:

Lt+1 = (1− δt)Lt + qtVt (OA.10)

The vacancy filling rate qt maps vacancy posting decisions made during period t into employment outcomes observed at
the beginning of period t + 1. The variance decomposition does not require us to fully specify the matching function m.
Posting a vacancy costs the firm κ > 0 per period, reflecting fixed hiring costs such as training and administrative setup.
Jobs are destroyed at a time-varying job separation rate δt. Unemployment Ut = 1− Lt evolves according to:

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (OA.11)

where θt = Vt/Ut denotes labor market tightness, defined as the vacancy-to-unemployment ratio.

Representative Firm The firm has access to a production function F which uses labor Lt as an input to produce
output Yt = F (Lt). Dividends to the firm’s shareholders Et are defined as Et ≡ Πt − κVt, where Πt ≡ Yt −WtLt is the
total profit before vacancy posting costs κVt and Wt is the wage rate. As in Petrosky-Nadeau et al. (2018), I assume that
the representative household owns the equity of the firm, and that the firm pays out all of its earnings as dividends. I also
assume that firms have the same unconstrained access to financing as investors in the financial market. The firm posts the
optimal number of vacancies to maximize the cum-dividend market value of equity St:

St = max
{Vt+j ,Lt+j}∞j=0

Ft

[
∞∑
j=0

Mt,t+jEt+j

]
(OA.12)

subject to the employment accumulation equation (OA.10). The firm takes the wage rate Wt, household’s stochastic
discount factor Mt,t+j =

∏j
s=1 Mt+s, and vacancy filling rate qt as given. Ft[·] denotes expectations conditional on

information available at period t, computed based on the firm’s possibly distorted beliefs. These beliefs may depart from
objective expectations Et[·], with the nature and magnitude of the deviation disciplined using survey data.

Hiring Equation The firm’s optimal hiring decision equates the expected discounted value of hiring a marginal worker
with its marginal cost. Rewrite the firm’s problem in equation (OA.12) from infinite-horizon to recursive form:

St = max
Vt,Lt+1

Πt − κVt + Ft [Mt+1St+1] (OA.13)

s.t. Lt+1 = (1− δt)Lt + qtVt (OA.14)
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The first-order condition with respect to Vt is:

∂St

∂Vt
= −κ+ Ft

[
Mt+1

∂St+1

∂Lt+1

∂Lt+1

∂Vt

]
= 0 (OA.15)

Substitute
∂Lt+1

∂Vt
= qt and

∂Lt+1

∂Lt
= (1− δt) from the employment accumulation equation (OA.14), and rearrange (OA.15)

in terms of the marginal cost of hiring κ/qt:

κ

qt
= Ft

[
Mt+1

∂St+1

∂Lt+1

]
(OA.16)

Next, differentiate St with respect to Lt:

∂St

∂Lt
=

∂Πt

∂Lt
+ Ft

[
Mt+1

∂St+1

∂Lt+1

∂Lt+1

∂Lt

]
(OA.17)

Substitute
∂Lt+1

∂Lt
= (1− δt) from the employment accumulation equation (OA.14):

∂St

∂Lt
=

∂Πt

∂Lt
+ (1− δt)Ft

[
Mt+1

∂St+1

∂Lt+1

]
(OA.18)

Substitute equation (OA.18) for period t+ 1 into equation (OA.16):

κ

qt
= Ft

[
Mt+1

(
∂Πt+1

∂Lt+1
+ (1− δt+1)Ft+1

[
Mt+2

∂St+2

∂Lt+2

])]
(OA.19)

Finally, substitute in (OA.16) for period t+ 1 to arrive at the hiring equation:

κ

qt︸︷︷︸
Cost of hiring

= Ft

[
Mt+1

(
πt+1 + (1− δt+1)

κ

qt+1

)]
︸ ︷︷ ︸

Expected discounted value of hiring

(OA.20)

where πt ≡ ∂Πt
∂Lt

is the profit flow from the marginal hired worker. The hiring equation relates the marginal cost of hiring
κ
qt

with the expected marginal value of hiring to the firm, which equals the future expected marginal benefits of hiring
discounted to present value with the stochastic discount factor Mt+1. The future marginal benefits of hiring include πt+1,
the future marginal product of labor net of the wage rate, plus the future marginal value of hiring, which equals the
future marginal cost of hiring κ

qt+1
net of separation (1− δt+1). During recessions, vacancy filling rates qt are high, which

makes the cost of hiring κ/qt low. The low cost of hiring must be rationalized by either low expected discounted profit
flows Ft[Mt+1πt+1] or low future value of hiring (1 − δt+1)

κ
qt+1

. The hiring equation is the labor market analogue of the

optimality condition for physical capital in the q theory of investment (Hayashi, 1982), where κ/qt is the upfront cost of
investment analogous to Tobin’s marginal q and δt+1 is the depreciation rate.

Constant Returns to Scale (CRS) Next, I derive the firm’s stock price implied by the optimal hiring decision.
Assume a constant returns to scale (CRS) production function so that marginal profits equal average profits:

πt+1Lt+1 =
∂Πt+1

∂Lt+1
Lt+1 = Πt+1 (OA.21)

Multiply both sides of the hiring equation by the number of employees Lt+1:

κ

qt
Lt+1 = Ft

[
Mt+1

(
πt+1Lt+1 + (1− δt+1)

κ

qt+1
Lt+1

)]
(OA.22)

Substitute in the employment accumulation equation (OA.14) and rearrange terms:

κ

qt
Lt+1 = Ft

[
Mt+1

(
πt+1Lt+1 +

κ

qt+1
(Lt+2 − qt+1Vt+1)

)]
(OA.23)

= Ft

[
Mt+1

(
πt+1Lt+1 − κVt+1 +

κ

qt+1
Lt+2

)]
(OA.24)
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Use the constant returns to scale assumption to simplify πt+1Lt+1 − κVt+1 = Πt+1 − κVt+1 = Et+1:

κ

qt
Lt+1 = Ft

[
Mt+1

(
Et+1 +

κ

qt+1
Lt+2

)]
(OA.25)

Substitute the equation recursively:

κ

qt
Lt+1 = Ft

[
∞∑
j=1

Mt,t+jEt+j

]
+ lim

T→∞
Ft

[
Mt,t+T

κ

qt+T
Lt+T+1

]
(OA.26)

The first term on the right-hand side is the firm’s stock price Pt ≡ St − Et, which is the firm’s ex-dividend equity value.
Take the second term to zero by applying a transversality condition to arrive at an equation that relates the total cost of
hiring with the firm’s stock price:

κ

qt
Lt+1 = Pt (OA.27)

where employment Lt+1 is determined at the end of date t under the timing convention from equation (OA.10). Take
logarithms of both sides of the firm’s stock price equation (OA.27) and rearrange terms:

log κ− log qt = log
Pt

Lt+1
= log

Pt

Et
− log

Et

Lt+1
≡ pet − elt (OA.28)

where I define pet ≡ log Pt
Et

and elt ≡ log Et
Lt+1

for notational convenience.

Log-linear Approximation of Price-Earnings Ratio To express the price-earnings ratio pet in terms of forward-
looking variables, start by log-linearizing the price-dividend ratio pdt = log(Pt/Dt) around its long-term average pd
(Campbell and Shiller, 1988):

pdt = cpd +∆dt+1 − rt+1 + ρpdt+1 (OA.29)

where cpd is a linearization constant, rt+1 ≡ log(
Pt+1+Dt+1

Pt
) is the log stock return (with dividends), and ρ ≡ exp(pd)/(1+

exp(pd)) = 0.98 is a persistence parameter that arises from the log linearization. Rewrite the equation in terms of log
price-earnings instead of log price-dividends by using the identity pet = pdt + det, where det log payout ratio:

pet = cpd +∆et+1 − rt+1 + ρpet+1 + (1− ρ)det+1 (OA.30)

Since 1 − ρ ≈ 0 and the payout ratio det is bounded, (1 − ρ)det+1 can be approximated as a constant, i.e., cpe ≈
cpd + (1− ρ)det+1 (De La O et al., 2024):

pet ≈ cpe +∆et+1 − rt+1 + ρpet+1 (OA.31)

Recursively substitute for the next h periods

pet =

h∑
j=1

ρj−1(cpe +∆et+j − rt+j) + ρhpet+h (OA.32)

Decomposition of Vacancy Filling Rate Substitute the log-linearized price-earnings ratio in equation (OA.32)
into the hiring equation in equation (OA.28):

log qt = log κ− pet − elt = log κ−

[
h∑

j=1

ρj−1(cpe +∆et+j − rt+j) + ρhpet+h

]
− elt (OA.33)

Rearrange and collect terms to obtain an ex-post decomposition of the vacancy filling rate:

log qt = cq +

h∑
j=1

ρj−1rt+j︸ ︷︷ ︸
rt,t+h

−

[
elt +

h∑
j=1

ρj−1∆et+j

]
︸ ︷︷ ︸

et,t+h

− ρhpet+h︸ ︷︷ ︸
pet,t+h

(OA.34)
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where cq ≡ log κ − cpe(1−ρh)

1−ρ
is a constant. The equation decomposes the vacancy filling rate into future discount rates

rt,t+h ≡
∑h

j=1 ρ
j−1rt+j , cash flows et,t+h ≡ elt +

∑h
j=1 ρ

j−1∆et+j , and price-earnings pet,t+h ≡ ρhpet+h. The cash
flow component consists of one period ahead log earnings-employment elt, which captures news about current cash flow
fluctuations, and j = 1, . . . , h period ahead log earnings growth ∆et+j , which captures news about future cash flows. The
earnings-employment ratio can be interpreted as a measure of the marginal product of labor under constant returns to scale
(David et al., 2022). pet,t+h is a terminal value that captures other long-term influences beyond h periods into the future
not already captured in discount rates and cash flows. Since equation (OA.34) holds both ex-ante and ex-post, it can be
evaluated under either subjective or objective expectations. The subjective decomposition replaces ex-post realizations of
future outcomes with their subjective expectations:

log qt = cq +

h∑
j=1

ρj−1Ft[rt+j ]︸ ︷︷ ︸
Ft[rt,t+h]

−

[
elt +

h∑
j=1

ρj−1Ft[∆et+j ]

]
︸ ︷︷ ︸

Ft[et,t+h]

− ρhFt[pet+h]︸ ︷︷ ︸
Ft[pet,t+h]

(OA.35)

Alternatively, the objective decomposition replaces ex-post realizations of future outcomes with their objective expectations:

log qt = cq +

h∑
j=1

ρj−1Et[rt+j ]︸ ︷︷ ︸
Et[rt,t+h]

−

[
elt +

h∑
j=1

ρj−1Et[∆et+j ]

]
︸ ︷︷ ︸

Et[et,t+h]

− ρhEt[pet+h]︸ ︷︷ ︸
Et[pet,t+h]

(OA.36)

Comparing these decompositions can quantify how belief distortions affect the vacancy filling rate.

Estimation The econometrician can estimate the variance decomposition using predictive regressions of each expected
outcome on the current vacancy filling rate. For the subjective decomposition, demean each variable in equation (OA.35),
multiply both sides by the current log vacancy filling rate log qt, and take the sample average:

V ar [log qt] = Cov [Ft[rt,t+h], log qt]− Cov [Ft[et,t+h], log qt]− Cov [Ft[pet,t+h], log qt] (OA.37)

where V ar[·] and Cov[·] are sample variances and covariances based on data observed over a historical sample. Finally,
divide both sides by V ar [log qt] to decompose its variance:

1 =
Cov [Ft[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Ft[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Ft[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(OA.38)

The left-hand side represents the full variability in vacancy filling rates, hence is equal to one. Each term on the right reflects
the share explained by subjective expectations of discount rates, cash flows, or price-earnings ratios. Under stationarity,
the econometrician can estimate these shares using the OLS coefficients from regressing Ft[rt,t+h], Ft[et,t+h], and Ft[pet,t+h]
on the current log vacancy filling rate log qt, respectively. Finally, the decomposition under objective expectations can be
estimated similarly based on equation (OA.36) by replacing the subjective expectation Ft[·] with its objective counterpart
Et[·]:

1 =
Cov [Et[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Et[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Et[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(OA.39)

Under stationarity, the econometrician can estimate these shares using the OLS coefficients from regressing Et[rt,t+h],
Et[et,t+h], and Et[pet,t+h] on the current log vacancy filling rate log qt, respectively.

OB.2 Cross-Sectional Decomposition of Hiring Rate
The cross-sectional analysis employs a firm-level hiring framework that is the direct analogue of the aggregate repre-

sentative firm search model. Both approaches derive from the same fundamental principle: firms hire until the marginal
cost of hiring equals the marginal value of an additional worker. The key difference lies in the level of aggregation and the
specific frictions that generate hiring costs. In the aggregate search model, linear vacancy posting costs (κ per vacancy)
combined with constant returns to scale imply that marginal value equals average value, leading to the simplified hiring
condition κ

qt
= Pt

Lt+1
. For cross-sectional analysis, I retain firm-level heterogeneity and introduce convex adjustment costs

that generate dispersion in hiring rates while preserving the core economic mechanism linking firm valuations to hiring
decisions.
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Consider firm i with production function:
Yi,t = Ai,tL

α
i,t (OA.40)

where Ai,t represents productivity and Li,t is labor input. The firm’s earnings, net of hiring costs and wages, are:

Ei,t = Yi,t − ϕ

(
Hi,t

Li,t

)
Li,t −Wi,tLi,t (OA.41)

where ϕ(·) captures convex adjustment costs for hiring at rate Hi,t/Li,t, and Wi,t is the equilibrium wage. The adjustment
cost function ϕ(·) represents the firm-level analogue of the aggregate matching friction. While the search model features
linear vacancy costs that aggregate to determine the market-wide vacancy filling rate, individual firms face convex costs
when rapidly adjusting their workforce due to capacity constraints in recruitment, training bottlenecks, and organizational
frictions. Firm value satisfies the Bellman equation:

V (Ai,t, Li,t) = max
Hi,t

{
Ei,t + Ft

[
Mt+1

Mt
V (Ai,t+1, Li,t+1)

]}
(OA.42)

subject to the employment accumulation equation:

Li,t+1 = (1− δi,t)Li,t +Hi,t (OA.43)

where Mt is the stochastic discount factor and δi,t is the job separation rate. The first-order condition with respect to
hiring equates marginal cost to marginal benefit:

ϕ′
(
Hi,t

Li,t

)
= Ft

[
Mt+1

Mt

∂V (Ai,t+1, Li,t+1)

∂Li,t+1

]
(OA.44)

Under constant returns to scale, the envelope theorem yields ∂V
∂L

= V
L
, allowing us to express the marginal value in terms

of observable quantities:

ϕ′
(
Hi,t

Li,t

)
= Ft

[
Mt+1

Mt

V (Ai,t+1, Li,t+1)

Li,t+1

]
=

Pi,t

Li,t+1
(OA.45)

where Pi,t is the ex-dividend firm value (stock price). This hiring condition is the firm-level equivalent of the aggregate
search model’s condition κ

qt
= Pt

Lt+1
. Both express the fundamental insight that hiring depends on the ratio of firm value to

employment, but the cross-sectional version allows for firm-specific variation in both the adjustment cost parameters and

the value-to-employment ratios. Assuming quadratic adjustment costs ϕ
(

Hi,t

Li,t

)
= cl

2

(
Hi,t

Li,t

)2
, the marginal cost becomes

ϕ′
(

Hi,t

Li,t

)
= cl

Hi,t

Li,t
, yielding:

cl
Hi,t

Li,t
=

Pi,t

Li,t+1
(OA.46)

Taking logs and decomposing the price-to-employment ratio:

ln(cl) + ln

(
Hi,t

Li,t

)
= ln

(
Pi,t

Ei,t

)
− ln

(
Ei,t+1

Ei,t

)
+ ln

(
Ei,t+1

Li,t+1

)
(OA.47)

Using lowercase letters to denote log variables, this becomes:

ln(cl) + hli,t = pei,t −∆ei,t+1 + eli,t+1 (OA.48)

Substituting the Campbell-Shiller decomposition of the log price-earnings ratio:

pei,t ≈ c+
h∑

j=1

ρj−1∆ei,t+j −
h∑

j=1

ρj−1ri,t+j + ρhpei,t+h (OA.49)

Taking subjective expectations and cross-sectionally demeaning to eliminate common terms yields the final decomposition:

h̃li,t ≈ Ft[ẽli,t+1] +

h∑
j=2

ρj−1Ft[∆ẽi,t+j ]︸ ︷︷ ︸
Cash Flow

−
h∑

j=1

ρj−1Ft[r̃i,t+j ]︸ ︷︷ ︸
Discount Rate

+ρhFt[p̃ei,t+h]︸ ︷︷ ︸
Future Price-Earnings

(OA.50)
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where x̃i,t denotes the cross-sectionally demeaned variable. The variance decomposition follows directly from the hiring
rate decomposition:

1 ≈ Cov(Ft[ẽli,t,t+h], h̃li,t)

Var(h̃li,t)︸ ︷︷ ︸
CFh

+
Cov(−Ft[r̃i,t,t+h], h̃li,t)

Var(h̃li,t)︸ ︷︷ ︸
DRh

+
Cov(Ft[p̃ei,t,t+h], h̃li,t)

Var(h̃li,t)︸ ︷︷ ︸
PEh

(OA.51)

where ẽli,t,t+h ≡ eli,t+1 +
∑h

j=2 ρ
j−1∆ẽi,t+j , r̃i,t,t+h ≡

∑h
j=1 ρ

j−1r̃i,t+j , and p̃ei,t,t+h ≡ ρhp̃ei,t+h. These covariance terms
are estimated as coefficients from univariate regressions with time fixed effects, allowing us to isolate the cross-sectional
variation attributable to each component while controlling for aggregate time-series effects.

The data uses Compustat annual employment data (Li,t, variable EMP) from 2000 to 2023. The firm-level hiring rate
is constructed from the employment accumulation equation:

Hi,t

Li,t
=

Li,t+1

Li,t
− (1− δi,t) (OA.52)

where the job separation rate δi,t uses industry-level data from JOLTS.

OB.3 Model of Constant-Gain Learning from Cash Flows
In this appendix, I provide the full technical details and derivations for the constant-gain learning model presented

in Section 7. The model embeds belief distortions in a search-and-matching framework, showing how firms’ subjective
expectations about cash flows shape their vacancy posting decisions and drive variation in hiring and vacancy filling rates.

OB.3.1 Environment and Firm Problem

The model features a frictional labor market in which unemployed workers are matched with job vacancies using a
Cobb-Douglas matching function:

M(Ut, Vt) = BUη
t V

1−η
t (OA.53)

where M(Ut, Vt) denotes the total number of matches in period t and is a function of aggregate unemployment Ut and
job vacancies Vt. B is the matching efficiency parameter, and η ∈ (0, 1) governs the elasticity of matches with respect to
unemployment. The probability that a firm fills a posted vacancy, the vacancy filling rate, is then given by:

qt =
M(Ut, Vt)

Vt
= B

(
Ut

Vt

)η

= Bθ−η
t (OA.54)

where θt ≡ Vt/Ut denotes labor market tightness. A firm that posts a vacancy incurs a cost κ > 0 per period. Matches
dissolve at an exogenous separation rate δ, and each firm hires new workers by posting vacancies in anticipation of future
returns. Each firm i uses labor to produce output via a constant returns to scale (CRS) production function:

Yi,t = Ai,tLi,t (OA.55)

where Ai,t is firm-level productivity and Li,t is the level of employment. The firm pays wages Wi,t, incurs hiring costs
κVi,t, and generates earnings:

Ei,t = Yi,t −Wi,tLi,t − κVi,t (OA.56)

Earnings represent the net flow profits from operating the firm: output net of the wage bill and the costs associated with
posting vacancies. Firms maximize the expected present discounted value of earnings. Let V(Ai,t, Li,t) denote the value of
the firm as a function of current productivity and employment. The Bellman equation for the firm’s dynamic problem is:

V(Ai,t, Li,t) = max
Vi,t,Li,t+1

{Ei,t + Ft [Mt+1V(Ai,t+1, Li,t+1)]} (OA.57)

The firm chooses the number of vacancies Vi,t to post and the resulting employment Li,t+1 to maximize the sum of current
earnings and the discounted continuation value, formed under subjective expectations Ft[·] and a stochastic discount factor
Mt+1. Employment evolves according to the accumulation equation:

Li,t+1 = (1− δ)Li,t + qtVi,t (OA.58)
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which states that next period’s employment depends on retained workers (1 − δ)Li,t and new hires qtVi,t from current
vacancies. Under constant returns to scale, the firm’s marginal value of labor equals average value, and the first-order
condition with respect to Vi,t simplifies to:

κ

qt
= Ft

[
Mt+1

∂V(Ai,t+1, Li,t+1)

∂Li,t+1

]
=

Ft [Mt+1V(Ai,t+1, Li,t+1)]

Li,t+1
≡ Pi,t

Li,t+1
(OA.59)

This condition equates the marginal cost of hiring a worker today, κ/qt, to the expected marginal benefit of that hire,
defined as the expected continuation value per worker. The term Pi,t ≡ Ft [Mt+1V(Ai,t+1, Li,t+1)] denotes the firm’s
ex-dividend market value. Rewriting in logs:

log qt = log κ− log

(
Pi,t

Li,t+1

)
= log κ− log

(
Pi,t

Ei,t

)
︸ ︷︷ ︸

≡pei,t

− log

(
Ei,t

Li,t+1

)
︸ ︷︷ ︸

≡eli,t

(OA.60)

where pei,t ≡ log(Pi,t/Ei,t) is the log price-earnings ratio and eli,t ≡ log(Ei,t/Li,t+1) is the log earnings per worker.

OB.3.2 Cash Flow Process

Firms do not have full knowledge of the stochastic processes governing their cash flows. Instead, they form beliefs about
their long-run mean using constant-gain learning. Assume that the firm’s cash flow process consists of aggregate and
idiosyncratic components. Firm i’s earnings at time t are given by:

Ei,t = Et · Ẽi,t = exp(et + ẽi,t) (OA.61)

The aggregate component follows an AR(1) process:

et = µ+ ϕet−1 + ut, ut ∼ N (0, σ2
u) (OA.62)

where µ is the unknown long-run mean, ϕ < 1 is the known persistence parameter, and ut is an i.i.d. Gaussian innovation.
The idiosyncratic component also follows an AR(1) process:

ẽi,t = µ̃i + ϕ̃ẽi,t−1 + vi,t, vi,t ∼ N (0, σ2
v) (OA.63)

where µ̃i is a firm-specific long-run mean in earnings (unknown to the firm), ϕ̃ < 1 is a known persistence parameter, and
vi,t is an i.i.d. idiosyncratic shock.

OB.3.3 Subjective Expectations Under Constant-Gain Learning

Objectively, mean growth is identical across firms: µ = µ̃i = 0. Under subjective beliefs, however, agents do not observe
the true long-run mean µ and µ̃i. They employ constant-gain learning with updating rules:

Ft[µ] = Ft−1[µ] + ν (∆et − Ft−1[∆et]) (OA.64)

Ft[µ̃i] = Ft−1[µ̃i] + ν (∆ẽi,t − Ft−1[∆ẽi,t]) (OA.65)

where ν is the constant gain parameter governing the speed of learning. Starting with equation (OA.64), substitute in the
assumed true cash flow growth ∆et = et − et−1 = µ+ ϕet−1 + ut − et−1 = µ+ (ϕ− 1)et−1 + ut to the learning rule:

Ft[µ] = Ft−1[µ] + ν (∆et − Ft−1[∆et])

= Ft−1[µ] + ν ((µ+ (ϕ− 1)et−1 + ut)− (Ft−1[µ] + (ϕ− 1)et−1))

= (1− ν)Ft−1[µ] + ν(µ+ ut) (OA.66)

Similarly, for the idiosyncratic component, substitute ∆ẽi,t = µ̃i + (ϕ̃− 1)ẽi,t−1 + vi,t to the learning rule:

Ft[µ̃i] = Ft−1[µ̃i] + ν (∆ẽi,t − Ft−1[∆ẽi,t])

= Ft−1[µ̃i] + ν
(
(µ̃i + (ϕ̃− 1)ẽi,t−1 + vi,t)− (Ft−1[µ̃i] + (ϕ̃− 1)ẽi,t−1)

)
= (1− ν)Ft−1[µ̃i] + ν(µ̃i + vi,t) (OA.67)

These updating rules show that beliefs evolve as a weighted average of the previous belief and the true parameter plus the
current shock, with weight ν on the new information.

In this simplified framework, I abstract from wage determination and workers’ beliefs to isolate the role of firms’
expectations. Wages and worker-side beliefs are thus treated as residual objects consistent with the assumed cash flow
process. The cash flow dynamics themselves are disciplined using data on firms’ realized and expected earnings, allowing
the model to capture belief-driven fluctuations in hiring without imposing additional structure on wage setting or worker
expectations. This simplification highlights that firms’ belief distortions alone can generate large fluctuations in vacancy
creation and employment. In a richer model, if workers’ beliefs differ from firms’ beliefs, such disagreement could introduce
further frictions in wage bargaining and amplify the effects of belief distortions on labor market dynamics.
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OB.3.4 Cash Flow Growth Expectations

Aggregate Earnings Growth Given the learning rule, firms forecast future earnings. For one period ahead:

Ft[et+1] = Ft[µ+ ϕet + ut+1] = Ft[µ] + ϕet (OA.68)

For arbitrary horizon h, iterate forward:

Ft[et+h] = Ft[µ+ ϕet+h−1 + ut+h]

= Ft[µ] + ϕ(Ft[µ] + ϕFt[et+h−2])

= Ft[µ] ·
1− ϕh

1− ϕ
+ ϕhet (OA.69)

Therefore, expected earnings growth h periods ahead is:

Ft[∆et+h] = Ft[et+h]− Ft[et+h−1]

= Ft[µ] ·
ϕh−1 − ϕh

1− ϕ
+ et(ϕ

h − ϕh−1)

= ϕh−1 (Ft[µ] + (ϕ− 1)et) (OA.70)

Idiosyncratic Earnings Growth By analogous reasoning, for the idiosyncratic component:

Ft[ẽi,t+h] =

h−1∑
j=0

ϕ̃jFt[µ̃i] + ϕ̃hẽi,t

= Ft[µ̃i] ·
1− ϕ̃h

1− ϕ̃
+ ϕ̃hẽi,t (OA.71)

And therefore:

Ft[∆ẽi,t+h] = Ft[ẽi,t+h]− Ft[ẽi,t+h−1]

= ϕ̃h−1
(
Ft[µ̃i] + (ϕ̃− 1)ẽi,t

)
(OA.72)

The forecast of firm-level earnings growth is:

Ft[∆ei,t+h] = Ft[∆et+h] + Ft[∆ẽi,t+h] (OA.73)

OB.3.5 Aggregate Strip Prices: Full Derivation

The log stochastic discount factor is:

mt+1 = −rf − 1

2
γ2σ2

u − γut+1 (OA.74)

where rf is the risk-free rate, γ is the coefficient of relative risk aversion, and ut+1 is the aggregate shock. In levels:

Mt+1 = exp{mt+1} = exp

{
−rf − 1

2
γ2σ2

u − γut+1

}
(OA.75)

Let P
(h)
t denote the time t price for an aggregate strip with a one-dollar payoff received h periods in the future. I conjecture

a log-linear solution:

P
(h)
t = exp

{
A(h) +B(h)Ft[µ] + ϕhet

}
(OA.76)
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Verification by Backward Recursion The strip price must satisfy the recursive pricing equation:

P
(h)
t = Ft[Mt+1P

(h−1)
t+1 ]

= Ft

[
exp

{
−rf − 1

2
γ2σ2

u − γut+1 +A(h−1) +B(h−1)Ft+1[µ] + ϕh−1et+1

}]
(OA.77)

Substitute the learning rule Ft+1[µ] = (1− ν)Ft[µ] + ν(µ+ ut+1) and the AR(1) process et+1 = µ+ ϕet + ut+1:

P
(h)
t = Ft

[
exp

{
− rf − 1

2
γ2σ2

u − γut+1 +A(h−1) +B(h−1)((1− ν)Ft[µ] + ν(µ+ ut+1)) + ϕh−1(µ+ ϕet + ut+1)

}]

Collect terms not involving ut+1 outside the expectation, and use Ft[exp{cut+1}] = exp{ 1
2
c2σ2

u} for constant c:

P
(h)
t = exp

{
− rf − 1

2
γ2σ2

u +A(h−1) +B(h−1)(1− ν)Ft[µ]

+ (νB(h−1) + ϕh−1)µ+ ϕhet +
1

2
(νB(h−1) + ϕh−1 − γ)2σ2

u

}
× Ft[exp{(νB(h−1) + ϕh−1)µ}] (OA.78)

Since agents do not know µ, they form expectations over it. Under the belief that µ follows the updating rule, the expected
value of exp{(νB(h−1) + ϕh−1)µ} involves the variance of the belief error. For small learning gains ν, the variance of
µ− Ft[µ] is approximately ν2σ2

u/(2ν − ν2) ≈ νσ2
u:

Ft[exp{(νB(h−1) + ϕh−1)µ}] ≈ exp{(νB(h−1) + ϕh−1)Ft[µ] +
1

2
(νB(h−1) + ϕh−1)2ν2σ2

u} (OA.79)

Combining all terms:

P
(h)
t = exp

{
− rf +A(h−1) + (B(h−1)(1− ν) + νB(h−1) + ϕh−1)Ft[µ] + ϕhet

− 1

2
γ2σ2

u +
1

2
(νB(h−1) + ϕh−1 − γ)2σ2

u +
1

2
(νB(h−1) + ϕh−1)2ν2σ2

u

}
(OA.80)

Simplify the coefficient on Ft[µ]:

B(h−1)(1− ν) + νB(h−1) + ϕh−1 = B(h−1) + ϕh−1 (OA.81)

For the variance terms, expand and simplify:

− 1

2
γ2σ2

u +
1

2
(νB(h−1) + ϕh−1)2σ2

u − γ(νB(h−1) + ϕh−1)σ2
u +

1

2
γ2σ2

u +
1

2
(νB(h−1) + ϕh−1)2ν2σ2

u

=
1

2
(νB(h−1) + ϕh−1)[(νB(h−1) + ϕh−1)(1 + ν2)− 2γ]σ2

u (OA.82)

Next, approximate by using (1 + ν2) ≈ 1 for small ν, yielding:

1

2
(νB(h−1) + ϕh−1)[(νB(h−1) + ϕh−1)− 2γ]σ2

u (OA.83)

Define C(h) ≡ νB(h−1) + ϕh−1. Then:

P
(h)
t = exp

{
A(h) +B(h)Ft[µ] + ϕhet

}
(OA.84)

where:

A(h) = A(h−1) − rf +
1

2
C(h)[C(h) − 2γ]σ2

u (OA.85)

B(h) = B(h−1) + ϕh−1 =
1− ϕh

1− ϕ
(OA.86)

C(h) = νB(h−1) + ϕh−1 (OA.87)

with initial conditions A(0) = B(0) = C(0) = 0.
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OB.3.6 Aggregate Returns

Realized Strip Returns The realized return on the h-period strip from t to t+ 1 is:

R
(h)
t+1 =

P
(h−1)
t+1

P
(h)
t

=
exp

{
A(h−1) +B(h−1)Ft+1[µ] + ϕh−1et+1

}
exp {A(h) +B(h)Ft[µ] + ϕhet}

(OA.88)

Substitute Ft+1[µ] = (1− ν)Ft[µ] + ν(µ+ ut+1) and et+1 = µ+ ϕet + ut+1:

R
(h)
t+1 = exp

{
(A(h−1) −A(h)) + (B(h−1)(1− ν)−B(h))Ft[µ] + (νB(h−1) + ϕh−1)(µ+ ut+1)

}
(OA.89)

Note that B(h) = B(h−1) + ϕh−1, so:

B(h−1)(1− ν)−B(h) = B(h−1)(1− ν)−B(h−1) − ϕh−1 = −νB(h−1) − ϕh−1 = −C(h) (OA.90)

Therefore:

R
(h)
t+1 = exp

{
(A(h−1) −A(h)) + C(h)(µ− Ft[µ] + ut+1)

}
(OA.91)

Expected Strip Returns Taking expectations at time t:

Ft[R
(h)
t+1] = Ft

[
exp

{
A(h−1) −A(h) + C(h)(µ− Ft[µ]) + C(h)ut+1

}]
= exp

{
A(h−1) −A(h) + 0 +

1

2
C(h)2σ2

u

}
(OA.92)

Substitute A(h) = A(h−1) − rf + 1
2
C(h)[C(h) − 2γ]σ2

u and simplify:

Ft[R
(h)
t+1] = exp

{
A(h−1) −A(h) +

1

2
C(h)2σ2

u

}
= exp

{
rf + C(h)γσ2

u

}
(OA.93)

Aggregate Stock Price and Returns The aggregate stock price is the sum of strip prices:

Pt =

∞∑
h=1

P
(h)
t (OA.94)

The aggregate stock return is the value-weighted average:

Rt+1 =

∑∞
h=1 P

(h−1)
t+1∑∞

h=1 P
(h)
t

=

∞∑
h=1

wt,hR
(h)
t+1, wt,h =

P
(h)
t∑∞

k=1 P
(k)
t

(OA.95)

Constant Weights Approximation I assume that, under subjective beliefs, expected strip weights are approxi-
mately constant: wt+j−1,h ≈ wt,h. Justification: In the small-gain limit as ν → 0, we have C(h) ≈ ϕh−1. The strip price
becomes:

P
(h)
t ≈ exp

{
Ã(h) + B̃(h)Ft[µ] + ϕhet

}
(OA.96)

where the coefficients depend on ϕ but not on ν (to first order). When et changes to et+1, all strip prices change by
approximately exp{ϕh∆et+1}. Since this factor differs only by the power ϕh across maturities, and ϕ < 1, the relative
weights:

wt,h =
P

(h)
t∑

k P
(k)
t

(OA.97)

remain approximately constant over time. This approximation becomes exact as ν → 0 and is accurate for small learning
gains. Under this approximation, the expected return is:

Ft[Rt+j ] ≈
∞∑

h=1

wt,hFt[Ft+1[. . .Ft+j−1[R
(h)
t+j ]]]

=

∞∑
h=1

wt,h exp
{
rf + C(h)γσ2

u

}
(OA.98)
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OB.3.7 Firm-Level Strip Prices and Returns

Each firm’s total value is the sum of expected discounted future cash flows:

Pi,t =

∞∑
h=1

P
(h)
i,t , P

(h)
i,t = Ft[Mt+1P

(h−1)
i,t+1 ] = Ft[Mt+1 . . .Ft+h−1[Mt+hEt+hẼi,t+h]] (OA.99)

Assuming independence between aggregate and idiosyncratic components:

P
(h)
i,t = P

(h)
t · Ft[. . .Ft+h−1[Ẽi,t+h]] (OA.100)

Idiosyncratic Expectations To compute Ft[. . .Ft+h−1[Ẽi,t+h]], start with the one-period-ahead expectation:

Ft+h−1[Ẽi,t+h] = Ft+h−1[exp{ẽi,t+h}]

= Ft+h−1[exp{ϕ̃ẽi,t+h−1 + µ̃i + vi,t+h}]

= exp

{
ϕ̃ẽi,t+h−1 + Ft+h−1[µ̃i] +

1

2
σ2
v

}
(OA.101)

Then iterate backward. Note that Ft+h−1[µ̃i] depends on future shocks through the learning rule:

Ft+h−1[µ̃i] = (1− ν)Ft+h−2[µ̃i] + ν(µ̃i + vi,t+h−1) (OA.102)

Taking expectations at time t+ h− 2:

Ft+h−2[Ft+h−1[µ̃i]] = Ft+h−2[µ̃i] (OA.103)

Also, substitute ẽi,t+h−1 = ϕ̃ẽi,t+h−2 + µ̃i + vi,t+h−1. Since µ̃i is unknown to the agent, when taking Ft+h−2[·], the term
µ̃i is replaced by Ft+h−2[µ̃i]:

Ft+h−2[Ft+h−1[Ẽi,t+h]]

= Ft+h−2

[
exp

{
ϕ̃(ϕ̃ẽi,t+h−2 + µ̃i + vi,t+h−1) + Ft+h−1[µ̃i] +

1

2
σ2
v

}]
= exp

{
ϕ̃2ẽi,t+h−2 + (1 + ϕ̃)Ft+h−2[µ̃i] +

1

2
(1 + ϕ̃2)σ2

v

}
(OA.104)

Continuing this backward recursion to time t:

Ft[. . .Ft+h−1[Ẽi,t+h]] = exp

{
ϕ̃hẽi,t +

h−1∑
j=0

ϕ̃jFt[µ̃i] +

h−1∑
j=0

1

2
ϕ̃2jσ2

v

}

= exp

{
ϕ̃hẽi,t +

1− ϕ̃h

1− ϕ̃
Ft[µ̃i] +

1

2

1− ϕ̃2h

1− ϕ̃2
σ2
v

}
(OA.105)

Firm Strip Returns The realized firm-level strip return is:

R
(h)
i,t+1 =

P
(h−1)
i,t+1

P
(h)
i,t

=
P

(h−1)
t+1 Ft+1[. . .Ft+h−1[Ẽi,t+h]]

P
(h)
t Ft[. . .Ft+h−1[Ẽi,t+h]]

= R
(h)
t+1 ·

Ft+1[. . .Ft+h−1[Ẽi,t+h]]

Ft[. . .Ft+h−1[Ẽi,t+h]]
(OA.106)

From the calculations above:

Ft+1[. . .Ft+h−1[Ẽi,t+h]]

Ft[. . .Ft+h−1[Ẽi,t+h]]
= exp

{
ϕ̃h−1ẽi,t+1 +

h−2∑
j=0

ϕ̃jFt+1[µ̃i] +

h−2∑
j=0

1

2
ϕ̃2jσ2

v − ϕ̃hẽi,t −
h−1∑
j=0

ϕ̃jFt[µ̃i]−
h−1∑
j=0

1

2
ϕ̃2jσ2

v

}
(OA.107)
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Substitute ẽi,t+1 = µ̃i + ϕ̃ẽi,t + vi,t+1 and Ft+1[µ̃i] = (1− ν)Ft[µ̃i] + ν(µ̃i + vi,t+1):

= exp

{
ϕ̃h−1(µ̃i + ϕ̃ẽi,t + vi,t+1) +

h−2∑
j=0

ϕ̃j((1− ν)Ft[µ̃i] + ν(µ̃i + vi,t+1))− ϕ̃hẽi,t −
h−1∑
j=0

ϕ̃jFt[µ̃i]−
1

2
ϕ̃2(h−1)σ2

v

}

= exp

{
ϕ̃h−1vi,t+1 +

h−2∑
j=0

ϕ̃jν(µ̃i − Ft[µ̃i] + vi,t+1) + ϕ̃h−1(µ̃i − Ft[µ̃i])−
1

2
ϕ̃2(h−1)σ2

v

}

= exp

{
C̃(h)(µ̃i − Ft[µ̃i] + vi,t+1)−

1

2
ϕ̃2(h−1)σ2

v

}
(OA.108)

where:

C̃(h) = ϕ̃h−1 + ν

h−2∑
j=0

ϕ̃j = ϕ̃h−1 + ν
1− ϕ̃h−1

1− ϕ̃
(OA.109)

Therefore:

R
(h)
i,t+1 = R

(h)
t+1 exp

{
C̃(h)(µ̃i − Ft[µ̃i] + vi,t+1)−

1

2
ϕ̃2(h−1)σ2

v

}
(OA.110)

Expected Firm Returns Taking expectations:

Ft[R
(h)
i,t+1] = Ft[R

(h)
t+1]Ft

[
exp

{
C̃(h)(µ̃i − Ft[µ̃i] + vi,t+1)−

1

2
ϕ̃2(h−1)σ2

v

}]
= Ft[R

(h)
t+1] exp

{
C̃(h)Ft[µ̃i − Ft[µ̃i]] +

1

2
(C̃(h))2σ2

v − 1

2
ϕ̃2(h−1)σ2

v

}
= Ft[R

(h)
t+1] exp

{
1

2
((C̃(h))2 − ϕ̃2(h−1))σ2

v

}
= exp

{
rf + C(h)γσ2

u +
1

2
((C̃(h))2 − ϕ̃2(h−1))σ2

v

}
(OA.111)

The firm-level stock return is:

Ri,t+1 =

∞∑
h=1

wi,t,hR
(h)
i,t+1, wi,t,h =

P
(h)
i,t∑∞

k=1 P
(k)
i,t

(OA.112)

I assume that, under subjective beliefs, expected strip weights are approximately constant as in the aggregate case
wi,t+j−1,h ≈ wi,t,h, which yields the expected firm-level stock return:

Ft[Ri,t+j ] ≈
∞∑

h=1

wi,t,h exp

{
rf + C(h)γσ2

u +
1

2
((C̃(h))2 − ϕ̃2(h−1))σ2

v

}
(OA.113)

OB.3.8 Firm Valuation

The firm’s equilibrium stock price is:

P
(h)
i,t = P

(h)
t · Ft[. . .Ft+h−1[Ẽi,t+h]]

= exp
{
A(h) +B(h)Ft[µ] + ϕhet

}
× exp

{
ϕ̃hẽi,t +

1− ϕ̃h

1− ϕ̃
Ft[µ̃i] +

1

2

1− ϕ̃2h

1− ϕ̃2
σ2
v

}
= exp

{
A

(h)
i +B(h)Ft[µ] + B̃(h)Ft[µ̃i] + ϕhet + ϕ̃hẽi,t

}
(OA.114)

where:

A
(h)
i = A(h) +

1

2

1− ϕ̃2h

1− ϕ̃2
σ2
v, B̃(h) =

1− ϕ̃h

1− ϕ̃
(OA.115)

Therefore, the total firm value is:

Pi,t =

∞∑
h=1

P
(h)
i,t =

∞∑
h=1

exp
{
A

(h)
i +B(h)Ft[µ] + B̃(h)Ft[µ̃i] + ϕhet + ϕ̃hẽi,t

}
(OA.116)
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OB.3.9 Hiring Condition and Labor Market Equilibrium

Firms post vacancies until the marginal cost of hiring equals its marginal value:

κ

qt
=

Pi,t

Li,t+1
(OA.117)

where κ is the cost per vacancy posting, qt is the vacancy filling rate, and Li,t+1 denotes employment. Given values for
κ, δ,B, η, Pi,t and initial values for employment Li,0, one can construct the sequence of vacancies Vi,t, employment Li,t+1,
labor market tightness θt, vacancy filling rates qt, and unemployment rate Ut by solving for the employment accumulation
(4), firm valuation (48), and optimal hiring (49) equations under a Cobb-Douglas matching function (3).

1. Initialize labor market tightness: θ
(0)
t = 1

2. At iteration s, use labor market tightness θ
(s)
t to construct vacancy filling rate by using the Cobb-Douglas matching

function in equation (3):

q
(s)
t = B(θ

(s)
t )−η (OA.118)

3. Update each firm’s employment policy using the hiring equation (49):

L
(s)
i,t+1 =

Pi,tq
(s)
t

κ
(OA.119)

where Pi,t is determined by the firm valuation equation (48) under the constant-gain learning rules in equations
(31) and (32).

4. Update each firm’s vacancy posting using the employment accumulation equation (4):

V
(s)
i,t =

1

q
(s)
t

(L
(s)
i,t+1 − (1− δ)Li,t) (OA.120)

5. Aggregate firm-level variables over the set of firms I:

V
(s)
t =

∑
i∈I

V
(s)
i,t , L

(s)
t+1 =

∑
i∈I

L
(s)
i,t+1, U

(s)
t = 1−

∑
i∈I

Li,t (OA.121)

6. Update labor market tightness: θ
(s+1)
t =

V
(s)
t

U
(s)
t

. Check convergence: |θ(s+1)
t − θ

(s)
t | < ε for some small tolerance

ε > 0. If not, return to step 2 with the updated values.

OB.3.10 Model-Implied Decompositions

The time-series decomposition of the aggregate vacancy filling rate is:

log qt =

h∑
j=1

ρj−1Ft[rt+j ]−

[
elt +

h∑
j=1

ρj−1Ft[∆et+j ]

]
− ρhFt [pet+h] (OA.122)

where eli,t ≡ logEi,t−logLi,t+1 is log earnings per worker. The cross-sectional decomposition of hiring rates uses deviations
from means x̃i,t = xi,t − 1

I

∑
i xi,t:

h̃li,t = −
h∑

j=1

ρj−1Ft[r̃i,t+j ] +

[
ẽli,t +

h∑
j=1

ρj−1Ft[∆ẽi,t+j ]

]
+ ρhFt

[
p̃ei,t+h

]
(OA.123)

Under constant-gain learning (ν > 0), beliefs deviate from truth: µ − Ft[µ] ̸= 0 and µ̃i − Ft[µ̃i] ̸= 0. These distortions
drive fluctuations in expected cash flow growth through equations (OA.70) and (OA.72), amplifying the cash flow channel
while the discount rate channel remains muted.
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OB.4 Model of Constant-Gain Learning from Prices and Cash Flows
In this section, I introduce a model of hiring in which firms form subjective beliefs about cash flows and prices using

a constant-gain learning rule. The evolving expectations shape firms’ vacancy posting decisions and drive variation in
hiring and vacancy filling rates. The model embeds belief distortions in a search-and-matching framework and generates
decompositions that can match those estimated from the data.

Cash Flow Process Assume that the firm’s cash flow process consists of aggregate and idiosyncratic components.
Firm i’s earnings at time t are given by:

Ei,t = exp(ei,t) = Et · Ẽi,t (OA.124)

where Et represents the aggregate component and Ẽi,t captures firm-specific variation. The log aggregate earnings follow
a random walk with drift:

∆et = log a+ log εt, log εt ∼ N (− s2

2
, s2) (OA.125)

while the log idiosyncratic component evolves as:

∆ẽi,t = log ãi + log ε̃i,t, log ε̃i,t ∼ N (− s̃2i
2
, s̃2i ) (OA.126)

For simplicity, I assume that the aggregate εt and idiosyncratic ε̃i,t are independently distributed, and that subjective
beliefs preserve this independence.

Full Information Rational Expectations Under full information rational expectations, agents know the true drift
and volatility parameters and form expectations using the true data generating process. Let gRE

i,t and mRE
i,t denote expected

earnings and price growth for firm i under rational beliefs, decomposed into aggregate (gRE
t , mRE

t ) and idiosyncratic (g̃RE
i,t ,

m̃RE
i,t ) components. Under rational expectations, all growth expectations equal the corresponding true drift parameters:

gRE
t = mRE

t = a and g̃RE
i,t = m̃RE

i,t = ãi. Assuming a risk-neutral discount factor β, this makes the price-earnings ratio
Pi,t/Ei,t = βgRE

i,t /(1− βmRE
i,t ) constant. By independence of shocks, firm-level expectations are:

gRE
i,t = gRE

t · g̃RE
i,t = a · ãi, (OA.127)

mRE
i,t = mRE

t · m̃RE
i,t = a · ãi (OA.128)

Subjective Expectations Under Constant-Gain Learning Suppose that agents do not observe the true drift
terms a and ãi in the cash flow process, and the firms do not know how their stock price Pi,t is determined. Instead, they
form beliefs and update these beliefs recursively as new information arrives. Firms form subjective expectations about the
aggregate and idiosyncratic components of both cash flow growth and stock price growth:

Ft[Et+1] = gtEt, Ft[Pt+1] = mtPt, (OA.129)

Ft[Ẽi,t+1] = g̃i,tẼi,t, Ft[P̃i,t+1] = m̃i,tP̃i,t (OA.130)

where gt, mt denote expectations about growth in the aggregate component and g̃i,t and m̃i,t denote expectations about
growth in the idiosyncratic component. Under the independence of aggregate and idiosyncratic shocks, beliefs about total
firm-level growth can be written as:

Ft[Ei,t+1] = gi,tEi,t = gtg̃i,t · EtẼi,t (OA.131)

Ft[Pi,t+1] = mi,tPi,t = mtm̃i,t · PtP̃i,t (OA.132)

where gi,t = gtg̃i,t and mi,t = mtm̃i,t. I assume that firms employ constant-gain learning to update their expectations
using the rule:

gt = gt−1 + ν

(
Et−1

Et−2
− gt−1

)
, mt = mt−1 + ν

(
Pt−1

Pt−2
−mt−1

)
(OA.133)

for the aggregate components, and

g̃i,t = g̃i,t−1 + ν

(
Ẽi,t−1

Ẽi,t−2

− g̃i,t−1

)
, m̃i,t = m̃i,t−1 + ν

(
P̃i,t−1

P̃i,t−2

− m̃i,t−1

)
(OA.134)
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for the idiosyncratic components, where ν is the constant gain parameter that governs the speed of learning. Suppose the
initial beliefs are set equal to the growth rates under full information rational expectations:

g0 = m0 = a, g̃i,0 = m̃i,0 = ãi (OA.135)

Note that the current price and current cash flows do not enter the learning rule for gi,t and mi,t. The belief updates
incorporate information with a lag by using information only up to period t−1, which eliminates the simultaneity between
prices and price growth expectations. The lag in the updating equation can be motivated by an information structure in
which agents observe part of the lagged transitory shocks to stock price growth (Adam et al., 2016).

Under constant-gain learning, agents update their beliefs using a fixed gain, which causes past observations to receive
exponentially decreasing weights. As a result, memory fades over time and beliefs never fully converge to rational expecta-
tions, even in a stationary environment (Nagel and Xu, 2021). This learning scheme has the advantage of allowing beliefs to
remain responsive to structural changes in the data-generating process. Compared to ordinary least squares (OLS) learn-
ing, where the gain vanishes over time, constant-gain learning avoids the counterfactual implication of declining volatility
in predicted variables, and is often more realistic in environments with potential regime shifts.

Constant-gain learning can be micro-founded in two complementary ways. First, when agents are internally rational
but lack external knowledge of market dynamics, they optimally forecast next-period prices using past data (Adam et al.,
2016). Alternatively, when agents learn from recent experience, as older generations pass and newer ones rely more on
recent data, the aggregation of their belief updates approximates a constant-gain rule (Nagel and Xu, 2021).

For parsimony and interpretability, the updating rules use the same constant gain parameter ν across all components.
This reflects a shared rate at which firms update beliefs about different components of prices and cash flows. Existing
estimates of the constant gain parameter ν are deliberately small, meaning that learning is slow and allows subjective
beliefs to remain persistently distorted even after observing large forecast errors (Malmendier and Nagel, 2015; Adam
et al., 2016).1 This persistence plays an important role for generating the sustained belief distortions needed to explain
fluctuations in hiring and unemployment.

Subjective Firm Valuation To highlight how learning can improve the model’s performance, I consider the simplest
asset pricing model by assuming risk-neutral agents and time separable preferences (Adam et al., 2016). In this case, the
aggregate stock price under subjective beliefs satisfies:

Pt = βFt[Pt+1 + Et+1] = β(mtPt + gtEt) (OA.136)

which implies Pt(1− βmt) = βgtEt and thus we have

Pt =
βgt

1− βmt
· Et (OA.137)

The firm’s equilibrium stock price under subjective beliefs is:

Pi,t = βFt[Pi,t+1 + Ei,t+1] = β(mi,tPi,t + gi,tEi,t) (OA.138)

which implies Pi,t(1− βmi,t) = βgi,tEi,t and thus we have

Pi,t =
βgi,t

1− βmi,t
· Ei,t (OA.139)

where β is the time discount factor. The equation shows that the firm’s value rises with expected cash flow growth gi,t
and falls with expected price growth mi,t. The belief distortions captured in these expectation terms will affect the firm’s
hiring decisions through its valuation.

1The constant-gain learning specification for cash flow growth is supported by empirical evidence showing
that survey respondents update their long-run earnings expectations only gradually following short-term earnings
surprises (Nagel and Xu, 2021; De La O et al., 2024). The learning specification for stock price growth is motivated
by empirical evidence showing that the implied return expectation can reproduce the dynamics of various survey
based measures of subjective return expectations (Adam et al., 2016).
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Projection Facility To prevent agents from having an infinite demand for stocks based on the valuations in (OA.137)
and (OA.139), I assume that the subjective beliefs about price growth are bounded such that

0 < mt < β−1, 0 < mi,t = mtm̃i,t < β−1 (OA.140)

which rules out the case mi,t ≥ β−1 where the expected stock returns are greater than the inverse of the time discount
factor. To prevent perceived stock price growth from violating the bounds in (OA.140), I apply a projection facility which
makes a smooth modification to the belief-updating equation (Timmermann, 1993; Cogley and Sargent, 2005; Adam et
al., 2016). If the updated belief from (OA.133) exceeds a constant mU ≤ β−1, then the update is ignored:

mt = mt−1 if mt−1 + ν

(
Pt−1

Pt−2
−mt−1

)
≥ mU . (OA.141)

For the idiosyncratic component, the bound applies to the firm-level expectation mi,t = mtm̃i,t. Given beliefs about the
aggregate component mt, the projection rule therefore becomes:

m̃i,t = m̃i,t−1 if mt

[
m̃i,t−1 + ν

(
P̃i,t−1

P̃i,t−2

− m̃i,t−1

)]
≥ mU (OA.142)

This procedure can be interpreted as an approximate Bayesian updating scheme where agents have a truncated prior that
assigns probability zero to mt ≥ mU and mi,t ≥ mU (Adam et al., 2016). It can be viewed as agents ignoring observations
that would lead to beliefs implying infinite demand for stocks, which would represent economically implausible behavior.

Applying the projection facility is equivalent to imposing that firm-level price-earnings ratios remain below an upper
bound UPE ≡ βa/(1 − βmU ). One interpretation is that, if the price-earnings ratio exceeds this upper bound, either
market participants begin to fear a sharp downturn or some regulatory authority intervenes to bring prices down. In the
simulations below, the results are not sensitive to the exact value of UPE provided it is sufficiently high, since the bounding
facility binds only rarely.

Hiring Condition I close the model by connecting asset valuations to firm hiring behavior. The connection to labor
markets operates through the hiring condition. Firms post vacancies until the marginal cost of hiring equals its marginal
value:

κ

qt︸︷︷︸
Cost of Hiring

=
Pi,t

Li,t+1︸ ︷︷ ︸
Value of Hiring

(OA.143)

where κ is the cost per vacancy, qt is the vacancy filling rate, and Li,t+1 represents future employment. When firms are
overly pessimistic about their expected cash flows (low gi,t), this leads to lower firm value Pi,t, which reduces the value of
hiring and leads to fewer job postings. The resulting decrease in vacancy creation drives up unemployment and reduces
the vacancy filling rate qt.

Let eli,t ≡ ei,t − li,t+1 = logEi,t − logLi,t+1 denote log earnings per worker. Given values for κ, δ,B, η, Pi,t and initial
values for employment Li,0, one can construct the sequence of vacancies Vi,t, employment Li,t+1, labor market tightness
θt, vacancy filling rates qt, and unemployment rate Ut by solving for the firm valuation, optimal hiring, and employment
accumulation equations:

1. Initialize labor market tightness: θ
(0)
t = 1

2. At iteration s, construct vacancy filling rate under Cobb-Douglas matching:

q
(s)
t = B(θ

(s)
t )−η (OA.144)

3. Update each firm’s employment policy using the hiring equation (OA.143):

L
(s)
i,t+1 =

Pi,tq
(s)
t

κ
(OA.145)

where Pi,t is determined by the firm valuation equation (OA.139) under the constant-gain learning rules in (OA.133)
and (OA.134).
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4. Update each firm’s vacancy posting using the employment accumulation:

V
(s)
i,t =

1

q
(s)
t

(L
(s)
i,t+1 − (1− δ)Li,t) (OA.146)

5. Aggregate firm-level variables over the set of firms I:

Pt =
∑
i∈I

Pi,t, V
(s)
t =

∑
i∈I

V
(s)
i,t , L

(s)
t+1 =

∑
i∈I

L
(s)
i,t+1, U

(s)
t = 1−

∑
i∈I

Li,t (OA.147)

6. Update labor market tightness: θ
(s+1)
t =

V
(s)
t

U
(s)
t

. Check convergence: |θ(s+1)
t − θ

(s)
t | < ε for some small tolerance

ε > 0. If not, return to step 2 with the updated values.

Long-Horizon Cash Flow Growth and Stock Returns In this learning environment, the realized j ≥ 1 period
ahead log cash flow growth ∆ei,t+j ≡ log(Ei,t+j/Ei,t+j−1) follows:

∆ei,t+j = log ai + log εi,t+j (OA.148)

and stock returns ri,t+j ≡ log((Pi,t+j + Ei,t+j)/Pi,t+j−1) follow:

ri,t+j = log

(
Ei,t+j

Ei,t+j−1

Ei,t+j−1

Pi,t+j−1

(
Pi,t+j

Ei,t+j
+ 1

))
(OA.149)

= ∆ei,t+j + log

(
1− βmi,t+j−1

βgi,t+j−1

)
+ log

(
1− βmi,t+j + βgi,t+j

1− βmi,t+j

)
(OA.150)

where ai ≡ a·ãi and εi,t ≡ εt · ε̃i,t. The price-earnings ratios are based on the firm valuations implied by equation (OA.139).
Subjective expectations of these variables reflect beliefs about future earnings and capital gains. In models with

constant-gain learning, beliefs evolve with fading memory, breaking the law of iterated expectations and making resale
and buy-and-hold valuation methods non-equivalent. The buy-and-hold approach evaluates long-run payoffs under today’s
beliefs, while the resale method prices assets through a sequence of one-period-ahead valuations, each using updated beliefs.
Following Nagel and Xu (2021), I adopt the resale valuation approach because it ensures time consistency under belief
updating and reflects the idea that assets are effectively resold across agents with evolving expectations. I assume that the
manager and the representative investor share the same beliefs and both apply the resale method, ensuring consistency
between decision-making and valuation.

Let xt and x̃i,t denote the aggregate and idiosyncratic level of a variable x ∈ {E,P} at time t, which are either
aggregate cash flows or prices. Define:

Rx
t ≡ xt

xt−1
, Zx

t ≡ (1− ν)Zx
t−1 + νRx

t−1 (OA.151)

R̃x
i,t ≡

x̃i,t

x̃i,t−1
, Z̃x

i,t ≡ (1− ν)Z̃x
i,t−1 + νR̃x

i,t−1 (OA.152)

That is, Zx
t , Z̃

x
i,t denotes the subjective expectation of the growth rate of variable x, formed using constant-gain learning

based on past realized growth Rx
t−1, R̃

x
i,t−1, respectively. It can be shown by induction that the j-step-ahead expectation

at time t is given by:

Ft[Z
x
t+j ] = ax

jZ
x
t + bxjR

x
t , (OA.153)

Ft[Z̃
x
i,t+j ] = ax

j Z̃
x
i,t + bxj R̃

x
i,t, (OA.154)

Ft[Z
x
i,t+j ] = Ft[Z

x
t+j ] · Ft[Z̃

x
i,t+j ] (OA.155)

with recursively defined coefficients:

a0 = 1, b0 = 0, a1 = 1− ν, b1 = ν, (OA.156)

aj = (1− ν)aj−1 + νaj−2, bj = (1− ν)bj−1 + νbj−2, j ≥ 2 (OA.157)

Base case (j = 0). At time t, the value Zx
t is known:

Ft[Z
x
t ] = Zx

t = a0Z
x
t + b0R

x
t . (OA.158)
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Base case (j = 1). From the learning rule:

Zx
t+1 = (1− ν)Zx

t + νRx
t , (OA.159)

Taking expectations at time t:

Ft[Z
x
t+1] = (1− ν)Zx

t + νRx
t = a1Z

x
t + b1R

x
t . (OA.160)

Inductive step. Assume for j − 1 and j − 2 that:

Ft[Z
x
t+j−1] = aj−1Z

x
t + bj−1R

x
t , (OA.161)

Ft[Z
x
t+j−2] = aj−2Z

x
t + bj−2R

x
t . (OA.162)

Then, by the learning rule:

Zx
t+j = (1− ν)Zx

t+j−1 + νRx
t+j−1. (OA.163)

Taking expectations at time t, note that Zx
t+j−2 is defined as the time-(t+ j − 2) forecast of Rx

t+j−1. Since the innovation
in Rx

t+j−1 realized at t+j−1 is mean-independent of information available at t, the time-t expectation of Rx
t+j−1 coincides

with the time-t expectation of Zx
t+j−2:

Ft[R
x
t+j−1] = Ft[Z

x
t+j−2] (OA.164)

which implies:

Ft[Z
x
t+j ] = (1− ν)Ft[Z

x
t+j−1] + νFt[Z

x
t+j−2] (OA.165)

= (1− ν)(aj−1Z
x
t + bj−1R

x
t ) + ν(aj−2Z

x
t + bj−2R

x
t ) (OA.166)

= [(1− ν)aj−1 + νaj−2]Z
x
t + [(1− ν)bj−1 + νbj−2]R

x
t . (OA.167)

Thus, the recursion holds for j, completing the induction. After making a first-order approximation Ft[log(X)] ≈
log(Ft[X]), subjective expectations of log cash flow growth can be written as:

Ft[∆et+j ] = Ft

[
log

(
Et+j

Et+j−1

)]
≈ log

(
Ft

[
Et+j

Et+j−1

])
= log (Ft [gt+j−1]) (OA.168)

Ft[∆ei,t+j ] = Ft

[
log

(
Ei,t+j

Ei,t+j−1

)]
≈ log

(
Ft

[
Ei,t+j

Ei,t+j−1

])
= log (Ft [gi,t+j−1]) (OA.169)

Similarly, subjective expectations of log stock returns can be written as:

Ft[rt+j ] = Ft

[
∆et+j + log

(
1− βmt+j−1

βgt+j−1

)
+ log

(
1− βmt+j + βgt+j

1− βmt+j

)]
≈ log (Ft[gt+j−1]) + log

(
1− βFt[mt+j−1]

βFt[gt+j−1]

)
+ log

(
1− βFt[mt+j ] + βFt[gt+j ]

1− βFt[mt+j ]

)
≈ (1− β) log (Ft[gt+j−1]) + log

(
1− βFt[mt+j−1]

1− βFt[mt+j ]

)
+ log (1− βFt[mt+j ] + βFt[gt+j ])

(OA.170)

Ft[ri,t+j ] = Ft

[
∆ei,t+j + log

(
1− βmi,t+j−1

βgi,t+j−1

)
+ log

(
1− βmi,t+j + βgi,t+j

1− βmi,t+j

)]
≈ log (Ft[gi,t+j−1]) + log

(
1− βFt[mi,t+j−1]

βFt[gi,t+j−1]

)
+ log

(
1− βFt[mi,t+j ] + βFt[gi,t+j ]

1− βFt[mi,t+j ]

)
≈ (1− β) log (Ft[gi,t+j−1]) + log

(
1− βFt[mi,t+j−1]

1− βFt[mi,t+j ]

)
+ log (1− βFt[mi,t+j ] + βFt[gi,t+j ])

(OA.171)

where Ft[gi,t+j ] and Ft[mi,t+j ] are determined by the recursion in equations (OA.155) through (OA.157). Under constant-
gain learning, realized stock returns ri,t+j and expected cash flow growth Ft[∆ei,t+j ] can fluctuate substantially due to
large and persistent distortions in subjective beliefs embedded in gi,t. In contrast, expected stock returns Ft[ri,t+j ] from
equation (OA.171) can show only small fluctuations because its variation depends mainly on the gap between expected cash
flow growth and price growth gi,t −mi,t. Since β is a number close to one, the first term in equation (OA.171) involving
1− β will be quantitatively small. Since the learning rate ν is small, the one-period belief revisions in Ft[mi,t+j ] will also
be quantitatively small in equation (OA.171). Since both gi,t and mi,t terms adjust slowly and often move together, their
difference remains relatively stable. This generates the empirically observed pattern of high volatility in realized returns
but low volatility in expected returns, consistent with survey evidence on return expectations.
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Model-Implied Decompositions I use data simulated from the learning model to decompose the vacancy filling
rate at the aggregate level and hiring rates at the firm level. The time-series decomposition of the aggregate vacancy filling
rate qt is given by:

log qt =

h∑
j=1

ρj−1Ft[rt+j ]︸ ︷︷ ︸
Discount Rate

−

[
elt +

h∑
j=1

ρj−1Ft[∆et+j ]

]
︸ ︷︷ ︸

Cash Flow

− ρhFt [pet+h]︸ ︷︷ ︸
Future Price-Earnings

(OA.172)

where xt =
∑

i∈I xi,t aggregates firm-level variable xi,t. To analyze differences across firms, I estimate a cross-sectional
decomposition of hiring rates using simulated firm-level data:

h̃li,t = −
h∑

j=1

ρj−1Ft[r̃i,t+j ]︸ ︷︷ ︸
Discount Rate

+

[
ẽli,t +

h∑
j=1

ρj−1Ft[∆ẽi,t+j ]

]
︸ ︷︷ ︸

Cash Flow

+ ρhFt

[
p̃ei,t+h

]
︸ ︷︷ ︸

Future Price-Earnings

(OA.173)

where x̃i,t = xi,t − 1
I

∑
i xi,t denotes a cross-sectional deviation from the mean at time t.

Firms’ hiring decisions reflect their evolving beliefs about cash flow growth gi,t and stock price growth mi,t, which
are updated according to the constant-gain learning rules. The slow learning rate in the model can generate large and
persistent fluctuations in gi,t which drives fluctuations in expected cash flow growth Ft[∆ei,t+j ] and realized stock returns
ri,t+j . In contrast, the model can produce a low volatility in expected returns Ft[ri,t+j ] because their variation depends
only on the gap between cash flow growth and price growth gi,t − mi,t, which is relatively stable over time. Therefore
under subjective beliefs, the cash flow component in the decompositions will be highly volatile while the discount rate
component remains relatively muted. Consequently, subjective expectations will systematically over-weight the role of
cash flows relative to discount rates, generating the empirical pattern observed in the data. This contrasts sharply with
rational expectations where the cash flow component contributes zero to the variance because expected future cash flow
growth equals the constant drift term.

Simulation Details I simulate a panel of 300 firms over 500 periods, where the first 150 periods are discarded as a
burn-in to eliminate the influence of initial conditions. Under constant-gain learning, each firm updates its beliefs using
the updating rules in equations (OA.133) and (OA.134). All expectations, returns, and decompositions are computed at a
monthly frequency using the model equations derived above. At each horizon h, I compute the model-implied time-series
decomposition of the aggregate vacancy filling rate based on equation (OA.172) and the cross-sectional decomposition of
the firm-level hiring rates (OA.173). I then compare these model-implied decompositions to those estimated from the
observed data.

Model Estimation Table OA.9 reports the parameters used in the quantitative model along with the empirical
moments they are calibrated to or sourced from. The drift a and volatility s of aggregate cash flow growth is set to match
the long-run mean and standard deviation of aggregate U.S. dividend growth (Adam et al., 2016). The drift ã and volatility
s̃i of idiosyncratic earnings growth is set to match the long-run mean and standard deviation of dividend growth across
listed firms. The time discount rate ρ = exp(pe)/(1+exp(pe)) is chosen to be consistent with a steady-state price-earnings
ratio from the Campbell and Shiller (1988) present value identity, where pe is the long-run average of the log price-earnings
ratio over 1983–2023.

The speed at which agents discount past observations of realized cash flow growth depends on the constant gain
parameter ν in the learning rule. This parameter shapes the persistence and volatility of the price-earnings ratio and the
extent of return predictability. I take the value directly from survey-based estimates in Malmendier and Nagel (2015),
setting it to ν = 0.018 at the quarterly frequency. This implies that in forming expectations, agents assign a weight of
0.018 to the most recent growth surprise and 1− ν = 0.982 to their previous estimate, making the perceived growth rate
evolve slowly over time.

Labor market parameters are mainly adopted from Kehoe et al. (2023). Following Shimer (2005), I normalize the
value of labor market tightness θ to one in the deterministic steady state, which implies an efficiency of the matching
function B = 0.562 by noting from the matching function that q = Bθ−η. I set the elasticity of the matching function to
η = 0.5 following Ljungqvist and Sargent (2017). I use an annual job separation rate of δ = 0.286, which is the annualized
value of the Abowd-Zellner corrected estimate by Krusell et al. (2017) based on data from the Current Population Survey
(CPS). Following Elsby and Michaels (2013), per-worker vacancy posting cost 0.314 is targeted to match a per-worker
hiring cost κ/q equal to 14 percent of the quarterly worker compensation. In the context of the annual calibration of this
model, this implies a value approximately equal κ = 4 × 0.14 × q = 0.314, where 4 × 0.14 is the annualized percent of
worker compensation, while q = 0.562 is the long-run average of the vacancy filling rate in the historical sample from 1983
to 2023.
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Table OA.9: Model Parameters

Parameter Value Moments

ν 0.006 Constant-gain learning rate (Malmendier and Nagel (2015))
a 1.009 Mean of U.S. aggregate earnings growth
s 0.025 S.D. of U.S. aggregate earnings growth
ãi 1.000 Mean of U.S. idiosyncratic earnings growth
s̃i 0.036 S.D. of U.S. idiosyncratic earnings growth
β 0.996 Time discount rate (Adam et al. (2016))
ρ 0.998 Average price-earnings ratio
B 0.562 Matching function efficiency (Kehoe et al. (2023))
η 0.500 Matching function elasticity (Kehoe et al. (2023))
δ 0.028 Separation rate (Kehoe et al. (2023))
κ 0.026 Per worker hiring cost (Elsby and Michaels (2013))

Notes: Table reports the parameter values used in the quantitative model along with the empirical moments they are calibrated to
or sourced from. The model is calibrated at a monthly frequency.

Model vs. Data: Variance Decompositions The model successfully replicates the empirical variance decompo-
sitions from the data. Figure OA.13 shows that the model can reproduce the finding that belief distortions drive excess
sensitivity to cash flow news in explaining labor market fluctuations.

Panel (a) presents the time-series decomposition of the vacancy filling rate, comparing contributions under subjective
and rational expectations. The model captures the empirical pattern where subjective expectations (dark bars) assign a
larger role to cash flows compared to rational expectations (light bars). The model-implied values (circles and triangles)
align closely with the empirical estimates, demonstrating the model’s ability to match the data.

Panel (b) shows the cross-sectional decomposition of hiring rates across firms. Again, the model captures the empirical
pattern that subjective belief distortions drive excess sensitivity to cash flow news. This cross-sectional fit is particularly
important as it shows that the model can explain not just aggregate patterns but also the heterogeneity in hiring behavior
across different firms.

Model vs. Data: Moments Table OA.10 demonstrates that the constant-gain learning model successfully matches
both asset market and labor market moments. The table compares moments generated by the learning model against
those generated from a rational model under no learning, where all agents have full information rational expectations. To
generate simulations under the rational model, I employ the same sequence of shocks as in the baseline learning specification
but set the learning rate parameter to zero. This eliminates belief updating and, conditional on the true initial values,
reduces the model exactly to its rational expectations counterpart in equations (OA.127) and (OA.128).

Panel (a) reports time-series and cross-sectional moments for asset prices. The learning model broadly matches the
mean and volatility of price-earnings ratios, the persistence in valuations, and the volatility of returns and expected
returns. In contrast, the rational expectations model severely understates price-earnings volatility and generates virtually
no variation in expected returns, confirming that belief distortions are essential for matching observed financial market
behavior (Adam et al., 2016). For the cross-sectional moments, the learning model captures the dispersion in price-
earnings ratios, expected earnings growth, returns, and expected returns. These moments confirm that the firm-specific
beliefs g̃i,t and m̃i,t generate realistic heterogeneity in firm valuations and expectations. The rational expectations model,
by construction, produces minimal cross-sectional variation in expectations, highlighting how constant-gain learning creates
the belief heterogeneity observed in the data.

Panel (b) reports moments related to the labor market. The learning model broadly matches key labor market
statistics including the volatility and persistence of the vacancy filling rate qt and unemployment rate ut. The constant-
gain learning model only slightly undershoots the volatility of the unemployment rate, which is a substantial improvement
over the rational expectations model where unemployment volatility is typically an order of magnitude too small. The
learning model’s ability to match these moments demonstrates that the constant-gain learning mechanism provides a
coherent explanation for both asset market and labor market fluctuations.

Response to 1 Std. Dev. Shock to Cash Flow Growth Expectation To examine the dynamic implications
of the model and compare them with the data, I estimate a four-variable VAR where the observation vector includes
expected cash flow growth, expected returns, expected price-earnings, and the job-filling rate. The VAR is estimated using
both the actual survey data and the simulated series generated from the model. For identification, I apply a recursive
(Cholesky) scheme in which expected cash flow growth is ordered first, so that the estimated impulse responses trace out
the effect of a one standard deviation shock to cash flow growth expectations. This identification strategy allows me to
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Figure OA.13: Model vs. Data: Variance Decompositions

(a) Time-Series Decomposition of the Vacancy Filling Rate
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(b) Cross-Sectional Decomposition of the Hiring Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of
the aggregate vacancy filling rate (panel (a)) and cross-sectional decomposition of the hiring rate (panel (b)). Light bars show
contributions under rational expectations; dark bars show contributions under subjective expectations. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4. Circle and triangle dots show the values of
rational and subjective expectations implied by the model, respectively.

interpret the innovation to expected cash flows as an exogenous shift in beliefs about future earnings growth. Figure OA.14
reports the resulting impulse response functions.

The impulse response functions in Figure OA.14 reveal several notable patterns. Expectations of cash flow growth
jump immediately on impact and then gradually decay back toward zero. Subjective expected returns exhibit a positive,
hump-shaped response that peaks with a lag before fading out. The mechanism behind this pattern is straightforward:
a positive shock to expected cash flow growth raises expected stock returns and current stock prices. Because beliefs are
updated with a lag, higher stock prices increase expected price growth in the following period, which in turn drives stock
prices even higher. This feedback loop amplifies the initial shock for several periods, but each successive round of increases
diminishes as the memory of the initial shock fades. Eventually, realized price growth begins to fall short of the inflated
expectations, at which point the response of expected returns peaks and gradually declines. The subjective price-earnings
ratio rises initially before decaying back to zero. Finally, the job-filling rate falls immediately after the shock and then
slowly converges back to its baseline level.

Role of the Learning Rate ν The second figure examines the role of the constant-gain learning rate, ν, in shaping
the variance decomposition of the job-filling rate. Figure OA.15 plots the share of job-filling rate variance explained by
subjective discount rates on the left and by subjective cash flow expectations on the right, evaluated at a five-year horizon
across a range of values for ν. For relatively small values of the learning rate, the decomposition is similar: discount-rate
and cash-flow components contribute in roughly stable proportions. However, as the learning rate increases, the results
diverge. A higher learning rate implies that agents place greater weight on recent observations, making expectations more
responsive to new information but shortening the memory of past data. As a result, subjective discount rates become more
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Table OA.10: Model vs. Data: Asset Market and Labor Market Moments

Moment Data Learning Model Rational Model

(a) Asset Market

Mean(pet) 2.98 2.53 3.15
SD(pet)× 100 47.4 31.2 0.0
AC(pet) 0.75 0.71 1.00
SD(rt)× 100 16.0 9.0 2.0
SD(Ft[rt+1])× 100 1.1 0.0 0.0
SD(Ft[∆et+1])× 100 26.8 13.1 0.0
SDi(pei,t)× 100 22.6 15.0 0.0
SDi(ri,t)× 100 5.7 4.7 2.4
SDi(Ft[ri,t+1])× 100 2.6 0.1 0.0
SDi(Ft[∆ei,t+1])× 100 14.0 11.7 0.0

(b) Labor Market

SD(ut)× 100 2.09 1.09 0.07
AC(ut) 0.91 0.83 0.98
SD(qt)× 100 8.71 5.85 0.21
AC(qt) 0.94 0.92 0.98
Corr(ut, qt) 0.82 0.87 1.00
SDi(hli,t)× 100 15.70 10.20 1.13

Notes: This table compares empirical moments with model-generated moments with and without constant-gain learning. SD(·)
denotes the time-series standard deviation of aggregate variables. SDi(·) denotes the cross-sectional standard deviation across firms
at each point in time, averaged over time. AC(·) denotes the first-order autocorrelation coefficient. Corr(·) denotes the correlation
between two time series. pet is the log price-earnings ratio, rt is the log stock return, ∆et is log earnings growth, qt is the job-filling
rate, ut is the unemployment rate, and hli,t is the firm-level hiring rate. Ft[·] denotes subjective expectations formed at time t.
Data column reports empirical moments estimated from historical data. Learning model reports moments from simulations of the
constant-gain learning model. Rational model reports moments from the rational expectations benchmark where agents have perfect
knowledge of the earnings process.

volatile and their contribution to the variance of the job-filling rate rises. In contrast, subjective cash flow expectations
lose persistence when ν is high, reducing their explanatory power for fluctuations in the job-filling rate. This contrast
illustrates how fading memory can shift the relative importance of discount-rate and cash-flow channels in driving labor
market outcomes.

OC Data Details

This section describes the time-series and cross-sectional data sources used in the estimation. I use quarterly data on
the variables represented in the decomposition from equations (OA.35) and (OA.36): employment Lt, unemployment Ut,
vacancy filling rates qt, stock returns rt,t+h, earnings growth ∆et,t+h, price-earnings ratio pet+h, and earnings-employment
ratio elt+h. For each dependent variable of the decomposition, I also construct their corresponding survey expectations Ft

and machine expectations Et.

Employment For realized values of employment, I first construct an annual series for the aggregate number of employees
(EMP) of the S&P 500 constituents by using accounting information from the CRSP and Compustat Merged Annual
Industrial Files. The data spans 1970 to 2023 and was downloaded from WRDS on May 15, 2024. I aggregate the firm-level
employment data to construct a total employment series for the S&P 500. I interpolate this series to a monthly frequency
by using the fitted values from real-time regressions of log annual Compustat employment series on the log monthly BLS
series for total nonfarm payrolls (PAYEMS). The regressions are estimated over recursively expanding samples from an
initial monthly sample that begins on 1970:01 and ends on the month of the data release for each month’s total nonfarm
payrolls. To ensure that the fitted values do not use future information not available on each data release, I align each
monthly BLS nonfarm payroll release with the annual Compustat S&P 500 employment series from the previous calendar
year. To obtain a measure of employment Lt+1 at the beginning of period t+1, I convert the monthly interpolated values
to a quarterly frequency by taking the value of the series as of the last month of each calendar quarter. This timing
assumption ensures that the measures are consistent with the timing conventions from Section OB while still remaining
known to firms by the end of period t. Data on nonfarm payrolls was downloaded through FRED on May 15, 2024.
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Figure OA.14: Impulse responses to a one standard deviation innovation in expected cash flow growth. Blue solid
line: model-based IRFs from simulated series. Black dashed line: data-based IRFs. Shaded area: 90% bootstrap
confidence interval for the data VAR. Sample: 1984Q1-2023Q4.

Vacancy Filling Rate I construct a monthly series for the number of vacancies Vt following Barnichon (2010), by
using JOLTS job openings starting 2000:12 (JTS00000000JOL) and extending the series back in time using the help-wanted
index before 2000:12. The vacancies data has been downloaded from available on the author’s website on May 19, 2024. For
realized values of unemployment Ut, I use the BLS monthly series for the unemployment level (UNEMPLOY), downloaded
through FRED on May 15, 2024. Labor market tightness θt = Vt/Ut is the ratio between vacancies and unemployment.
The job separation rate δt uses the corresponding series from JOLTS.

I follow Shimer (2012) in constructing the job separation rate δt, job finding rate ft, and vacancy filling rate qt. Job
separation rate is the share of short-term unemployed out of total employment δt = Us

t /Lt, where Us
t is the BLS series for

the number of unemployed less than 5 weeks (UEMPLT5) that was downloaded through FRED on May 15, 2024. The job
finding rate is:

ft = 1− Ut − Us
t

Ut−1

The expression for the job finding rate follows from the unemployment accumulation equation:

Ut = (1− ft)Ut−1 + Us
t

which states that unemployment Ut consists of either the previously unemployed Ut−1 who did not find a job (1− ft), or
the short-term unemployed Us

t that lost a job during the current period. The vacancy filling rate is defined as the share
of filled vacancies ftVt out of unemployment Ut:

qt =
ft
θt

=
ftUt

Vt

I first construct the vacancy filling rate qt at the monthly frequency. To remove high-frequency fluctuations that likely
reflect measurement errors, I time-aggregate the monthly series to a quarterly frequency by taking a 3-month trailing
average that ends on the first month of each calendar quarter. This timing assumption ensures that the survey and
machine expectations in the variance decomposition do not use advance information about vacancy filling rates that were
not published at the time of each forecast. To ensure that all variables used in the variance decomposition are stationary,
I follow Shimer (2012) by detrending the quarterly vacancy filling rate qt using an HP filter with a smoothing parameter
of 105.

Realized Stock Returns Stock market returns use monthly data on CRSP value-weighted returns including divi-
dends (VWRETD) from the Center for Research in Security Prices (CRSP). I compute annualized log stock returns by
compounding the monthly returns using rt+h ≡ 1

h

∑12h
j=1 log(1+VWRETDt+j/12). The data was downloaded from WRDS
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Figure OA.15: Share of job-filling rate variance explained by discount-rate (left) and cash-flow (right) components
at the five-year horizon, as the constant-gain learning rate ν varies.

on May 15, 2024. When evaluating the MSE ratios of the machine relative to that of a benchmark survey, I compute
machine forecasts for either annual CRSP returns or S&P 500 price growth depending on which value most closely aligns
with the concept that survey respondents are asked to predict. To measure one-year stock market price growth, I use the
one-year log cumulative growth rate of the S&P 500 index, ∆pt+1 ≡ log (Pt+1/Pt). The monthly S&P index series spans
the period 1957:03 to 2022:12 and was downloaded from WRDS on May 15, 2024 from the Annual Update data of the
Index File on the S&P 500.

Survey Expectations of Stock Returns

CFO Survey I use survey forecasts of S&P 500 stock returns from the CFO survey to measure subjective return
expectations. The CFO survey is a quarterly survey that asks respondents about their expectations for the S&P 500 return
over the next 12 months and 10 years ahead, obtained from https://www.richmondfed.org/-/media/RichmondFedOrg/

research/national_economy/cfo_survey/current_historical_cfo_data.xlsx. I use the mean point forecast for the
value of the “most likely” future stock return in the estimation. More specifically, the survey asks the respondent “over
the next 12 months, I expect the average annual S&P 500 return will be: Most Likely: I expect the return to be: %”.
The survey question for stock return expectations 10 years ahead is “over the next 10 years, I expect the average annual
S&P 500 return will be: Most Likely: I expect the return to be: %”. The CFO survey panel includes firms that range
from small operations to Fortune 500 companies across all major industries. Respondents include chief financial officers,
owner-operators, vice presidents, and directors of finance, and others with financial decision-making roles. The CFO panel
has 1,600 members as of December 2022.

I take a stand on the information set of respondents when each forecast was made, and I assume that respondents
could have used all data released before they completed the survey. Because the CFO survey releases quarterly forecasts
at the end of each quarter, I conservatively set the response deadline for the machine forecast to be the first day of the
last month of each quarter (e.g., March 1st). The data spans the periods 2001Q4 to 2023Q4 and were downloaded on
March 20th, 2024. Mean point forecasts before 2020Q3 are available in column sp 1 exp of sheet through Q1 2020; mean
point forecasts from 2020Q3 and onwards are available in column sp 12moexp 2 of sheet CFO SP500. The forecast is not
available in 2019Q1, 2019Q4, 2020Q1, and 2020Q2. I impute the missing forecast for 2019Q1 by linearly interpolating
between the available forecasts from 2018Q4 and 2019Q2. I impute the missing forecasts for 2019Q4, 2020Q1, and 2020Q2
by interpolating with the nearest available forecast between 2019Q3 and 2020Q3. Following Nagel and Xu (2022), I assume
that the forecasted S&P 500 return includes dividends and capture expectations about annualized cumulative simple net
returns compounded from time t to t+ h, i.e., Ft[Rt,t+h]. To obtain survey expectations of log returns Ft[log(1 + rt,t+h)]
from a survey expectation of net simple returns Ft[Rt,t+h], I use the approximation Ft[log(1+rt,t+h)] ≈ log(1+Ft[Rt,t+h]).

To obtain long-horizon survey expectations of annualized cumulative log S&P 500 returns over the next 1 < h < 10
years, I interpolate the forecasts across annualized 1 year and 10 year cumulative log return expectations:

Ft[rt,t+h] =
10− h

10− 1
Ft[rt,t+1] +

h− 1

10− 1
Ft[rt,t+10], h = 1, 2, . . . , 10

Finally, I use the difference between cumulative long-horizon log return expectations between adjacent years (i.e., Ft[rt,t+h−1]
and Ft[rt,t+h]) to obtain Ft[rt+h], the survey expectation of forward one-year log stock returns h years ahead:

Ft[rt+h] = h× Ft[rt,t+h]− (h− 1)× Ft[rt,t+h−1], h = 1, 2, . . . , 10
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IBES and Value Line I proxy expected firm-level stock returns using price growth expectations following De La O
et al. (2024). Specifically, I construct expected price growth from IBES 12-month median price targets and Value Line 3–5
year median price targets, interpolating linearly for intermediate horizons.

To construct expected price growth, I combine short- and long-term price targets from two sources. For the short
horizon, I use the 12-month median price targets from the Institutional Brokers Estimate System (IBES) database. For
longer horizons, I use the median price targets from Value Line, which provide the expected stock price level approximately
3–5 years into the future for each firm. These targets reflect analysts’ consensus expectations for each firm’s stock price.
I interpret the Value Line price target as the expected price level five years ahead and interpolate linearly between the
IBES 12-month price target and the Value Line five-year price target to construct expected price growth for intermediate
horizons between one and five years. For each firm i, expected annualized price growth over horizon h is given by:

Ft[ri,t+h] ≈
1

h
log

(
Ft[Pi,t+h]

Pi,t

)
where Ft[Pi,t+h] is the forecasted price at horizon h, constructed through linear interpolation of IBES and Value Line
targets, and Pi,t is the observed stock price at time t. As shown in De La O et al. (2024), using price growth expectations
to approximate expected firm-level stock returns is reasonably accurate, as dividends represent a relatively small component
of total returns for most firms.

Gallup/UBS Survey The UBS/Gallup is a monthly survey of one-year-ahead stock market return expectations. I
use the mean point forecast in our estimation and compare these to machine forecasts of the annual CRSP return. Gallup
conducted 1,000 interviews of investors during the first two weeks of every month and results were reported on the last
Monday of the month. The first survey was conducted on 1998:05. Until 1992:02, the survey was conducted quarterly on
1998:05, 1998:09, and 1998:11. The data on 1998:06, 1998:07, 1998:08, 1998:10, 1998:12, 1999:01, and 2006:01 are missing
because the survey was not conducted on these months. I follow Adam et al. (2021) in starting the sample after 1999:02
due to missing values at the beginning of the sample.

For each month when the survey was conducted, respondents are asked about the return they expect on their own
portfolio. The survey question is “What overall rate of return do you expect to get on your portfolio in the next twelve
months?” Before 2003:05, respondents are also asked about the return they expect from an investment in the stock market
during the next 12 months. The survey question is “Thinking about the stock market more generally, what overall rate of
return do you think the stock market will provide investors during the coming twelve months?” For each month, I calculate
the average expectations of returns on their own portfolio and returns on the market index. When calculating the average,
survey respondents are weighted by the weight factor provided in the survey. I exclude extreme observations where a
respondent reported expected returns higher than 95% or lower than -95%.

In order to construct a consistent measure of stock market return expectations over the entire sample period, I
impute missing market return expectations using the fitted values from two regressions. First, I impute missing values
during 1999:02-2005:12 and 2006:02-2007:10 with the fitted value from regressing expected market returns on own portfolio
expectations contemporaneously, where the regression is estimated using the part of the sample where both are available.
Second, I impute the one missing observation in both market and own portfolio return expectations for 2006:01 with the
fitted value from regressing the market return expectations on the lagged own portfolio return expectations, where the
coefficients are estimated using part of the sample where both are available, and the fitted value combines the estimated
coefficients with lagged own portfolio expectations data from 2005:12. Following Nagel and Xu (2022), I assume that
the forecasted stock market return includes dividends and capture expectations about annual simple net stock returns
Ft[Rt+1]. To obtain survey expectations of annual log returns Ft[log(1 + rt+1)] from a survey expectation of annual net
simple returns Ft[Rt+1], I use the approximation Ft[log(1 + rt+1)] ≈ log(1 + Ft[Rt+1]). After applying all the procedures,
the Gallup market return expectations series spans the periods 1999:02 to 2007:10. The data were downloaded on August
1st, 2024 from Roper iPoll: http://ropercenter.cornell.edu/ubs-index-investor-optimism/.

I take a stand on the information set of respondents when each forecast was made, and I assume that respondents
could have used all data released before they completed the survey. Since interviews are in the first two weeks of a month
(e.g., February), I conservatively set the response deadline for the machine forecast to be the first day of the survey month
(e.g., February 1st), implying that I allow the machine to use information only up through the end of the previous month
(e.g., through January 31st). This ensures that the machine only sees information that would have been available to all
UBS/Gallup respondents for that survey month (February). This approach is conservative in the sense that it handicaps
the machine, since all survey respondents who are being interviewed during the next month would have access to more
timely information than the machine. Since the survey asks about the “one-year-ahead” I interpret the question to be
asking about the forecast period spanning from the current survey month to the same month one year ahead.

Michigan Survey of Consumers (SOC) The SOC contains approximately 50 core questions, and a minimum of
500 interviews are conducted by telephone over the course of the entire month, each month. Table 20 of the SOC reports
the probability of an increase in stock market in next year. The survey question was “The next question is about investing
in the stock market. Please think about the type of mutual fund known as a diversified stock fund. This type of mutual fund
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holds stock in many different companies engaged in a wide variety of business activities. Suppose that tomorrow someone
were to invest one thousand dollars in such a mutual fund. Please think about how much money this investment would be
worth one year from now. What do you think the percent chance that this one thousand dollar investment will increase in
value in the year ahead, so that it is worth more than one thousand dollars one year from now?” When using this survey
forecast to compare to machine forecasts, I impute a point forecast for stock market returns using the method described
in Section OC below. I compare the imputed point forecast to machine forecasts of CRSP returns.

For the SOC, interviews are conducted monthly typically over the course of an entire month. (In rare cases, interviews
may commence at the end of the previous month, as in February 2018 when interviews began on January 31st 2018.) I take
a stand on the information set of respondents when each forecast was made, and I assume that respondents could have used
all data released before they completed the survey. Since interviews are almost always conducted over the course of an entire
month (e.g., February), I conservatively set the response deadline for the machine forecast to be the first day of the survey
month (e.g., February 1st), implying that I allow the machine to use information only up through the end of the previous
month (e.g., through January 31st). This ensures that the machine only sees information that would have been available to
all respondents for that survey month (February). This approach is conservative in the sense that it handicaps the machine,
since all survey respondents who are being interviewed during the next month would have access to more timely information
than the machine. Since the survey asks about the “year ahead” I interpret the question to be asking about the forecast
period spanning the period running from the current survey month to the same month one year ahead. The data spans
2002:06 to 2023:12. The SOC responses were obtained from https://data.sca.isr.umich.edu/data-archive/mine.php

and downloaded on May 15, 2024.

Livingston Survey Stock Price Forecast I obtain the Livingston Survey S&P 500 index forecast (SPIF) from the
Federal Reserve Bank of Philadelphia, and use the mean values in our structural and forecasting models. I compare the
one-year growth in these forecasts to machine forecasts of S&P 500 price growth. Our sample spans 1947:06 to 2023:06.
The forecast series were downloaded on January 24, 2024.

The survey provides semi-annual forecasts on the level of the S&P 500 index. Participants are asked to provide
forecasts for the level of the S&P 500 index for the end of the current survey month, 6 months ahead, and 12 months
ahead. I use the mean of the respondents’ forecasts each period, where the sample is based on about 50 observations.
Most of the survey participants are professional forecasters with “formal and advanced training in economic theory and
forecasting and use econometric models to generate their forecasts.” Participants receive questionnaires for the survey in
May and November, after the Consumer Price Index (CPI) data release for the previous month. All forecasts are typically
submitted by the end of the respective month of May and November. The results of the survey are released near the
end of the following month, on June and December of each calendar year. The exact release dates are available on the
Philadelphia Fed website, at the header of each news release. I take a stand on the information set of the respondents when
each forecast was made by assuming that respondents could have used all data released before they completed the survey.
Since all forecasts are typically submitted by the end of May and November of each calendar year, I set the response
deadline for the machine forecast to be the first day of the last month of June and December, implying that I allow the
machine to use information only up through the end of the May and November.

I follow Nagel and Xu (2021) in constructing one-year stock price growth expectations from the level forecasts. Starting
from June 1992, I use the ratio between the 12-month level forecast (SPIF 12Mt) and 0-month level nowcasts (SPIF ZMt) of
the S&P 500 index. Before June 1992, the 0-month nowcast is not available. Therefore I use the annualized ratio between
the 12-month (spi12t) and 6-month (spi6t) level forecast of the S&P 500 index

F(Liv)
t

[
Pt+1

Pt

]
≈


F(Liv)
t [Pt+1]

F(Liv)
t [Pt]

= SPIF 12Mt
SPIF ZMt

if t ≥ 1992M6(
F(Liv)
t [Pt+1]

F(Liv)
t [Pt+6]

)2

=
(

spi12t
spi6t

)2
if t < 1992M6

where Pt is the S&P 500 index and t indexes the survey’s response deadline. To obtain a survey expectation of the log
change in price growth I use the approximation Ft(∆pt+1) ≈ log(Ft[Pt+1])− log(Pt).

Conference Board (CB) Survey Respondents provide the categorical belief of whether they expect stock prices
to “increase,” “decrease,” or stay the “same” over the next year. Since the survey asks respondents about stock prices
in the “year ahead,” I interpret the question to be asking about the forecast period from the end of the current survey
month to the end of the same month one year ahead. When we use this qualitative survey forecast to compare to machine
forecasts, we impute a point forecast for stock market returns using the method described in Section OC below. I compare
the imputed point forecast to machine forecasts of CRSP returns.

The survey is conducted monthly and I use the survey responses over 1987:04 to 2022:08. The data was downloaded
on September 26, 2022. The survey uses an address-based mail sample design. Questionnaires are mailed to households
on or about the first of each month. Survey responses flow in throughout the collection period, with the sample close-
out for preliminary estimates occurring around the 18th of the month. Any responses received after then are used to
produce final estimates for the month, which are published with the following month’s data. Conversations with those
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knowledgeable about the survey suggested that most panelists respond early. Any responses received after around the 20th
of the month–regardless of when they are filled out–are included in the final (but not preliminary) numbers.

I take a stand on the information set of the respondents when each forecast was made by assuming that respondents
could have used all data released before they completed the survey. Since questionnaires reach households on or about the
first of each month (e.g., February 1st) and most respondents respond early, I conservatively set the response deadline for
the machine forecast to be the first day of the survey month (e.g., February 1st), implying that I allow the machine to use
information only up through the end of the previous month (e.g., January 31st).

Converting Qualitative Forecasts to Point Forecasts (SOC and CB) I use the SOC probability to impute
a quantitative point forecast of stock returns using a linear regression of CFO point forecasts for returns onto the SOC
probablity of a price increase. The SOC asks respondents about the percent chance that an investment will “increase in
value in the year ahead.” I interpret this as asking about the ex dividend value, i.e., about price price growth. The CFO
survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1. The SOC survey is conducted monthly,
where survey months span 2002:06 to 2021:12. Since the CFO is a quarterly survey, the regression is estimated in real-time
over a quarterly overlapping sample. Since the CFO survey is conducted during the last month of the quarter while the
SOC is conducted monthly, I align the survey months between CFO and SOC by regressing the quarterly CFO survey
point forecast with the qualitative SOC survey response during the last month of the quarter.

Since the SOC survey question is interpreted as asking about S&P 500 price growth while the CFO survey question
asks about stock returns including dividends, I follow Nagel and Xu (2021) in subtracting the current dividend yield of
the CRSP value weighted index from the CFO variable before running the regression. After estimating the regression, I
then add back the dividend yield to the fitted value to obtain an imputed SOC point forecast of stock returns including
dividends. Specifically, at time t, I assume that the CFO forecast of stock returns, FCFO

t [rt,t+1], minus the current dividend
yield, Dt/Pt, is related to the contemporaneous SOC probability of an increase in the stock market next year, P SOC

t,t+1, by:

FCFO
t [rt,t+1]−Dt/Pt = β0 + β1P

SOC
t,t+1 + ϵt.

The final imputed SOC point forecast is constructed as FSOC
t [rt,t+1] = β̂0+β̂1P

SOC
t,t+1+Dt/Pt. I first estimate the coefficients

of the above regression over an initial overlapping sample of 2002Q2 to 2004Q4, where the quarterly observations from the
CFO survey is regressed on the SOC survey responses from the last month of each calendar quarter. Using the estimated
coefficients and the SOC probability from 2005:03 gives us the point forecast of the one-year stock return from 2005Q1 to
2006Q1. I then re-estimate this equation, recursively, adding one quarterly observation to the end of the sample at a time,
and storing the fitted values. This results in a time series of SOC point forecasts FSOC

t [rt,t+1] spanning 2005Q1 to 2021Q1.
The same procedure is done for the Conference Board Survey, except I replace P SOC

t,t+1 by PCB
t,t+1, a ratio of the proportion

of those who respond with “increase” to the sum of “decrease” and “same.” The CB survey asks respondents to provide
the categorical belief of whether they expect stock prices to “increase,” “decrease,” or stay the “same” over the next year.
I interpret this as asking about price price growth. Since the CB survey question is interpreted as asking about S&P 500
price growth while the CFO survey question asks about stock returns including dividends, I follow Nagel and Xu (2021)
in subtracting the current dividend yield of the CRSP value weighted index from the CFO variable before running the
regression. After estimating the regression, I then add back the dividend yield to the fitted value to obtain an imputed
CB point forecast of stock returns including dividends.

The CFO survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1. The CB survey is con-
ducted monthly, where survey months span 1987:04 to 2022:08. The regression is first estimated over an initial overlapping
sample of 2001Q4 to 2004Q4, where the quarterly observations from the CFO survey is regressed on the CB survey re-
sponses from the last month of each calendar quarter. Using the estimated coefficients and the CB survey response PCB

t,t+1

from 2005:03 gives us the point forecast of the stock return from 2005Q1 to 2006Q1. I then re-estimate this equation,
recursively, adding one observation to the end of the sample at a time, and storing the fitted values. This results in a time
series of CB point forecasts FCB

t [rt,t+1] over 2005Q1 to 2021Q1.

Nagel and Xu Individual Investor Expectations Nagel and Xu (2021)’s individual investor expectations series
for returns covers 1972-1977 (Annual) and 1987Q2-2023Q4 (Quarterly) and combine data from the following surveys:

1. UBS/Gallup: 1998:06-2007:10; Survey captures respondents’ expected stock market returns, in percent, over a
1-year horizon.

2. Michigan Survey of Consumers (SOC): 2002:04-2023:12; Respondents provide the probability of a rise in the stock
market over a 1-year horizon.

3. Conference Board (CB): 1987:04-2022:08; Respondents provide the categorial opinion whether they expect stock
prices to rise, or stay about where they are, or decline over the next year.
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4. Vanguard Research Initiative (VRI): 2014:08; Survey captures respondents’ expected stock market returns, in
percent, over a 1-year horizon.

5. Roper: 1974-1977, annual, observed June of each calendar year; Respondents provide the categorial opinion whether
they expect stock prices to rise, or stay about where they are, or decline over the next year.

6. Lease, Lewellen, and Schlarbaum (1974, 1977): 1972-1973, annual, observed July of each calendar year; Survey
captures respondents’ expected stock market returns, in percent, over a 1-year horizon.

Among these sources, UBS/Gallup and VRI provide direct, point forecasts of expected stock returns, while SOC, CB, and
Roper offer qualitative or probabilistic information that requires conversion to consistent return expectations. Nagel and
Xu (2021) construct their final series using the following procedure:

1. Start with UBS/Gallup for 1998:06-2007:10 and VRI for 2014:08 since they capture the respondents’ expected stock
returns relatively closely (other surveys only provide qualitative measures).

2. Regress SOC on UBS/Gallup and VRI using periods of overlapping coverage (2002:04-2007:10). Use the fitted
values from this regression to impute missing data for 2007:11-2023:12 (excluding 2014:08).

3. Regress CB on UBS/Gallup and VRI using periods of overlapping coverage (1998:06-2007:10). Use the fitted values
from this regression to impute missing data for 1987:04-1998:05 (using CB) and 1974-1977 (using Roper).

4. Use the coefficients from regressing CB on UBS/Gallup and VRI (from step 3) to compute fitted values that convert
the probabilistic forecast from Roper into point forecasts of stock returns.

5. Convert expected returns to expected excess returns by subtracting the average 1-year Treasury yield measured at
the beginning of the survey month.

6. Aggregate monthly series to a quarterly frequency by taking the average expectation within calendar quarters.

Risk-Free Rates

Realized Risk-Free Rates As a measure of realized risk-free rates rft , I obtain daily series for the annualized three-
month Treasury bill rate (DTB3), downloaded from FRED on May 15, 2024. To match the definition used as the target
variable in the Survey of Professional Forecasters (SPF), I time-aggregate the daily realized risk-free rate series to a
quarterly frequency by taking the quarterly average, as discussed below.

Survey Expectations of Risk-Free Rates I obtain subjective expectations about risk-free rates from median
forecasts for the annualized three-month Treasury bill rate from the Survey of Professional Forecasters (SPF). The SPF
provides forecasts at the one and ten year horizons. For one year ahead forecasts (TBILL), respondents are asked to provide
quarterly forecasts of the quarterly average three-month Treasury bill rate, in percentage points, where the forecasts are
for the quarterly average of the underlying daily levels. I interpret the survey to be asking about annual net simple rates
Ft[R

f
t,t+1], and approximate the expected log risk-free rate as Ft[r

f
t,t+1] ≈ log(1 + Ft[R

f
t,t+1]). For ten year ahead forecasts

(BILL10), respondents are asked to provide forecasts for the annual-average rate of return to three-month Treasury bills
over the next 10 years, in percentage points. The ten year ahead forecasts are available only for surveys conducted in
the first quarter of each calendar year. I interpret the survey to be asking about annualized cumulative net simple rates
compounded from the survey quarter to the same quarter that is ten years after the survey year Ft[R

f
t,t+10], and approximate

the expected log risk-free rate as Ft[r
f
t,t+10] ≈ log(1+Ft[R

f
t,t+10]). To obtain long-horizon survey expectations of annualized

log three-month Treasury bill rates over the next 1 < h < 10 years, I interpolate the forecasts across annualized 1 year
and 10 year return expectations:

Ft[r
f
t,t+h] =

10− h

10− 1
Ft[r

f
t,t+1] +

h− 1

10− 1
Ft[r

f
t,t+10], h = 1, 2, . . . , 10

Finally, I use the difference between the cumulative annualized long-horizon log three-month Treasury bill rate expectations
between adjacent years (i.e., Ft[r

f
t,t+h−1] and Ft[r

f
t,t+h]) to obtain Ft[r

f
t+h], the time t survey expectation of annualized

forward log three-month Treasury bill rate h years ahead:

Ft[r
f
t+h] = h× Ft[r

f
t,t+h]− (h− 1)× Ft[r

f
t,t+h−1], h = 1, 2, . . . , 10

The surveys are sent out at the end of the first month of each quarter, and collected in the second or third week of the
middle month of each quarter. When constructing machine learning forecasts for the risk-free rate, I assume that forecasters
could have used all data released before the survey deadlines for the SPF, which are posted online at the Federal Reserve
Bank of Philadelphia website. Since surveys are typically sent out at the end of the first month of each quarter, I make
the conservative assumption that respondents only had data released by the first day of the second month of each quarter.

52



Realized Earnings I use IBES street earnings per share (EPS) data that start in 1983:Q4 as the forecast target for
IBES analysts. Following the recommendation of Hillenbrand and McCarthy (2024), I use Street earnings as the forecast
target for IBES analysts. Street earnings differ from GAAP earnings by excluding discontinued operations, extraordinary
charges, and other non-operating items. According to the IBES user guide, analysts submit forecasts after backing out these
transitory components, and IBES constructs the realized series to align with those forecasts. While analysts have some
discretion over which items to exclude, Hillenbrand and McCarthy (2024) demonstrate that the target of these forecasts
corresponds closely to earnings before special items in Compustat, suggesting that street earnings accurately reflect the
measure analysts are targeting. To convert EPS to total earnings, I multiply the resulting quarterly EPS series by the
quarterly S&P 500 divisor, available at: https://ycharts.com/indicators/sp_500_divisor. The final quarterly total
earnings series spans the period 1983:Q4 to 2023:Q4. To extend the sample back to 1965Q1, I use quarterly Compustat
data on earnings before special items. As noted in Hillenbrand and McCarthy (2024), this measure closely tracks IBES
street earnings, indicating it accurately reflects analysts’ forecast targets. IBES street earnings data and Compustat data
has been downloaded from WRDS on July 19, 2025. The divisor data were downloaded on July 21, 2025.

Survey Expectations of Earnings I obtain monthly survey data for the median analyst earnings per share forecast
and actual earnings per share from the Institutional Brokers Estimate System (IBES) via Wharton Research Data Services
(WRDS). The data spans the period 1976:01 to 2023:12.

Short-Term Growth (STG) Expectations I build measures of aggregate S&P 500 earnings expectations growth
using the constituents of the S&P 500 at each point in time following De La O and Myers (2021). I first construct expected
earnings expectations for aggregate earnings h-months-ahead as:

Ft[Et+h] = Ωt

∑
i∈xt

Ft[EPSi,t+h] · Si,t/Divisort

where F is the median analyst survey forecast, E is aggregate S&P 500 earnings, EPSi is earning per share of firm i
among all S&P 500 firms xt for which I have forecasts in IBES for t+h, Si is shares outstanding of firm i, and Divisort is
calculated as the S&P 500 market capitalization divided by the S&P 500 index. I obtain the number of outstanding shares
for all companies in the S&P500 from Compustat. IBES estimates are available for most but not all S&P 500 companies.
Following De La O and Myers (2021), I multiply this aggregate by Ωt, a ratio of total S&P 500 market value to the market
value of the forecasted companies at t to account for the fact that IBES does not provide earnings forecasts for all firms
in the S&P 500 in every period.

IBES database contains earning forecasts up to five annual fiscal periods (FY1 to FY5) and as a result, I interpolate
across the different horizons to obtain the expectation over the next 12 months. This procedure has been used in the
literature, including De La O and Myers (2021). Specifically, if the fiscal year of firm XYZ ends nine months after the
survey date, I have a 9-month earning forecast Ft[Et+9] from FY1 and a 21-month forecast Ft[Et+21] from FY2. I then
obtain the 12-month ahead forecast by interpolating these two forecasts as follows,

Ft[Et+12] =
9

12
Ft[Et+9] +

3

12
Ft[Et+21].

To convert the monthly forecast to quarterly frequency, I use the forecast made in the middle month of each quarter, and
construct one-year earnings expectations from 1976Q1 to 2023Q4 and the earning expectation growth is calculated as an
approximation following following De La O and Myers (2021):

Ft (∆et+12) ≈ ln (Ft[Et+12])− et

where et is log earnings for S&P 500 at time t calculated as et = log (EPSt ·Divisort), where EPSt is the earnings per
share for the S&P 500 obtained from Shiller’s data depository and S&P Global, as described above.

Long-Term Growth (LTG) Expectations I construct long term expected earnings growth (LTG) for the S&P
500 following Bordalo et al. (2019). Specifically, I obtain the median firm-level LTG forecast from IBES, and aggregate
the value-weighted firm-level forecasts,

LTGt =

S∑
i=1

LTGi,t
Pi,tQi,t∑S
i=1 Pi,tQi,t

where S is the number of firms in the S&P 500 index, and where Pi,t and Qi,t are the stock price and the number of shares
outstanding of firm i at time t, respectively. LTGi,t is the median forecast of firm i’s long term expected earnings growth.
The data spans the periods from 1981:12 to 2023:12. All data were downloaded in July 19, 2025.

Finally, I use the difference between survey expectations of log earnings between adjacent years (i.e., Ft[et+h−1] and
Ft[et+h]) to obtain Ft[∆et+h] = Ft[et+h]−Ft[et+h−1], the time t survey expectation of forward one-year log earnings growth
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h = 1, 2 years ahead. For the h = 3, 4, 5 year horizon, I interpret the IBES’s Long-Term Growth (LTG) forecast as the
forward annual log earnings growth:

Ft[∆et+h] =

{
Ft[et+h]− Ft[et+h−1] if h = 1, 2 years
LTGt if h = 3, 4, 5 years

To estimate any biases in IBES analyst forecasts, the dynamic machine algorithm takes as an input a likely date cor-
responding to information analysts could have known at the time of their forecast. IBES does not provide an explicit
deadline for their forecasts to be returned. Therefore I instead use the “statistical period” day (the day when the set of
summary statistics was calculated) as a proxy for the deadline. I set the machine deadline to be the day before this date.
The statistical period date is typically between day 14 and day 20 of a given month, implying that the machine deadline
varies from month to month. As the machine learning algorithm uses mixed-frequency techniques adapted to quarterly
sampling intervals, while the IBES forecasts are monthly, I compare machine and IBES analyst forecasts as of the middle
month of each quarter, considering 12-month ahead forecast from the beginning of the month following the survey month.

Price-Earnings Ratio I construct a quarterly series for the price-earnings ratio PEt ≡ Pt/Et using the end-of-quarter
S&P 500 stock price index Pt and the S&P 500 quarterly total earnings Et. I infer subjective expectations of the log price-
earnings ratio Ft[pet+h] by combining the current log price-earnings ratio pet with h year ahead subjective expectations of
annual log stock returns Ft[rt+h] and annual log earnings growth Ft[∆et+h], following the approach used in De La O and
Myers (2021). Rearrange the Campbell and Shiller (1988) present value identity for the price-earnings ratio in equation
(OA.32) to express the future log price-earnings ratio as a function of current log price-earnings, log earnings growth, and
log stock returns:

pet+h =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe +∆et+j − rt+j)

where the equation holds both ex-ante and ex-post. Apply subjective expectations Ft on both sides of the equation:

Ft[pet+h] =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe + Ft[∆et+j ]︸ ︷︷ ︸
Survey (IBES)

− Ft[rt+j ]︸ ︷︷ ︸
Survey (CFO)

) (OA.174)

where subjective expectations about j years ahead forward annual log stock returns Ft[rt+j ] and forward annual log earnings
growth Ft[∆et+j ] use survey forecasts from the CFO survey and IBES, respectively. I construct firm-level price-earnings
expectations by applying the same log-linear approximation to firm-level expectations of stock returns (from IBES and
Value Line) and earnings growth (from IBES).

Earnings-Employment Ratio The current earnings-employment ratio is defined as ELt ≡ Et/Lt+1, where Et

denotes quarterly total earnings for the S&P 500 and Lt+1 is the employment stock at the beginning of period t + 1.
I measure Lt+1 using end-of-period employment levels within each quarter. This timing assumption ensures that the
measures are consistent with the timing conventions from Section OB while still remaining known to firms by the end of
period t.

Machine Learning Forecasts For each survey forecast, I also construct their corresponding machine learning forecast
by estimating a Long Short-Term Memory (LSTM) neural network:

Et[yt+h] = G(Xt,βh,t)

where yt+h denotes the variable y to be predicted h years ahead of time t, and Xt is a large input dataset of right-hand-side
variables including the intercept. G(Xt,βh,t) denotes predicted values from a LSTM neural network that can be represented
by a (potentially) high-dimensional set of finite-valued parameters βh,t. The machine learning model is estimated using
an algorithm that takes into account the data-rich environment in which firms operate in (Bianchi et al., 2022 and Bianchi
et al., 2024). When constructing machine learning forecasts of each variable, I allow the machine to use only information
that would have been available to all survey respondents at the time of each forecast. See Section OE for details about
the machine learning algorithm and predictor variables. Machine expectations about the price-earnings ratio Et[pet+h] is
constructed similarly to the survey counterpart, by replacing the survey forecasts of stock returns and earnings growth on
the right-hand side of equation (OA.174) with the corresponding machine learning forecasts.

For the cross-sectional decomposition, I construct analogous machine learning forecasts of returns, earnings growth,
and price-earnings ratios at the firm level using the same LSTM framework, applied to portfolio-specific predictors and
outcomes. To keep the machine learning algorithm tractable, I re-estimate the model parameters and update the hyper-
parameter cross-validation every four quarters.
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OD Method of Simulated Moments Estimation

This section describes the Method of Simulated Moments (MSM) implementation for the constant-gain learning model.
The estimation proceeds in three steps: (i) define the parameters to be estimated, (ii) specify the empirical statistics SN

to be matched, and (iii) derive the model-implied counterparts S(θ) that map parameters into moments.

Parameters estimated. The MSM estimation targets a parameter vector

θ ≡ (ν, ϕ, σu, rf , γ, ϕe, σv) ,

where ν is the constant-gain learning rate, (ϕ, σu) govern the aggregate earnings process, rf is the risk-free rate, γ is
relative risk aversion, and (ϕe, σv) govern the idiosyncratic earnings process. Other parameters (e.g., separation rate,
matching-function elasticity) are calibrated externally as described in Table 1.

Empirical statistics. The set of empirical statistics SN used in the objective function consists of twelve moments:
the volatility and autocorrelation of aggregate price–earnings ratios, the volatility of aggregate stock returns, the volatility
of aggregate earnings growth, the volatility of the vacancy filling rate, three statistics for idiosyncratic earnings growth
(variance, autocorrelation, and cross-sectional dispersion), the volatility of idiosyncratic stock returns, the volatility of
idiosyncratic price–earnings ratios, the mean price–earnings ratio, and the Coibion–Gorodnichenko regression slopes at
horizons h = 4 and h = 8. The degrees of freedom for the over-identification test therefore correspond to twelve matched
moments and seven free parameters.

Model mappings. The model delivers simulated analogs S(θ) for each of the nine empirical statistics. These mappings
tie the data moments directly to the estimated parameters. For the earnings growth block, aggregate earnings follow the
process

et = µ+ ϕet−1 + ut, ut ∼ N (0, σ2
u),

so that ∆et = (ϕ − 1)et−1 + ut. In the stationary distribution, the variance of earnings is Var(et) = σ2
u/(1 − ϕ2). This

leads to exact mappings for the variance and autocorrelation of growth:

Var(∆et) =
(ϕ− 1)2

1− ϕ2
σ2
u + σ2

u, (OA.175)

ρ∆e(1) =
(ϕ− 1)2 ϕ

1−ϕ2 σ
2
u + (ϕ− 1)σ2

u

(ϕ−1)2

1−ϕ2 σ2
u + σ2

u

. (OA.176)

These moments provide direct information about the persistence and volatility parameters (ϕ, σu). For expected returns,
strip prices are given by

P
(h)
t = exp{A(h) +B(h)Ft[µ] + ϕhet},

where the coefficients are defined recursively as

A(h) = A(h− 1)− rf + 1
2
C(h)

(
C(h)− 2γ

)
σ2
u, (OA.177)

B(h) =
1− ϕh

1− ϕ
, (OA.178)

C(h) = νB(h− 1) + ϕh−1. (OA.179)

The expected return on a strip of maturity h is then

Ft[R
(h)
t+1] = exp{rf + C(h)γσ2

u}. (OA.180)

The aggregate stock return is constructed as the value-weighted average of strip returns,

Rt+1 =
∑
h≥1

wt,hR
(h)
t+1, wt,h =

P
(h)
t∑

k≥1 P
(k)
t

. (OA.181)

Simulation of (OA.180)-(OA.181) yields the model-implied mean and volatility of returns, and thereby helps to identify γ
jointly with (ϕ, σu). For the price-earnings ratio, the Campbell-Shiller log-linearization implies

pet = cpe − rt+1 +∆et+1 + ρpet+1, (OA.182)
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Simulating (OA.182) provides the model-implied volatility and persistence of pet, which are jointly informative about ν,
ϕ, and γ. For the Coibion and Gorodnichenko (2015) regression coefficient, start by noting that earnings follow an AR(1)
process

et = µ+ ϕet−1 + ut, ut ∼ N (0, σ2
u),

so that
∆et = (ϕ− 1)et−1 + ut.

Beliefs update with constant gain ν according to

Ft[µ]− Ft−1[µ] = ν
(
∆et − Ft−1[∆et]

)
.

The one-step forecast error is
FEt,1 = ∆et − Ft−1[∆et] = ut − Ft−1[µ],

and the h-step forecast revision is

Revt,h = Ft[∆et+h]− Ft−1[∆et+h] = ϕh−1ν FEt,1 + ϕh−1(ϕ− 1)∆et.

Iterating the updating recursion gives

Ft[µ] = ν

∞∑
j=0

(1− ν)jut−j ,

which implies
Var(Ft[µ]) =

ν
2−ν

σ2
u, Var(FEt,1) =

2
2−ν

σ2
u.

The covariance between earnings growth and the forecast error is

Cov(∆et,FEt,1) = σ2
u − (ϕ− 1)

ν

1− ϕ(1− ν)
σ2
u,

so that
Cov(∆et,FEt,1)

Var(FEt,1)
=

2− ν

2
· 1− ϕ+ ν

1− ϕ+ ϕν
.

Therefore the CG slope is

βCG(h) =
Cov(Revt,h,FEt,1)

Var(FEt,1)
= ϕh−1

[
ν + (ϕ− 1)

2− ν

2
· 1− ϕ+ ν

1− ϕ+ ϕν

]
.

These statistics discipline the constant-gain parameter ν.

MSM criterion. The estimator minimizes the distance between empirical and model-implied moments:

θ̂N = argmin
θ

(SN − S(θ))′W−1
N (SN − S(θ)).

In the first step, the weighting matrix WN is set to the identity. In the second step, it is replaced by a heteroskedasticity
and autocorrelation robust covariance matrix of the empirical moments, with regression-based moments adjusted by the
delta method. The minimized criterion also yields a test of overidentifying restrictions with degrees of freedom equal to
the number of moments minus the number of estimated parameters.

Estimation results. Table OA.11 reports the results of the MSM estimation. Panel A compares each data moment
to its model counterpart and reports the t-statistic of the difference based on the step two weighting matrix. Panel B lists
the estimated values of the parameters ν, ϕ, σu, rf , and γ. Panel C reports the parameters that are held fixed during
estimation, such as the time discount factor ρ, matching efficiency B, matching elasticity η, separation rate δ, and vacancy
posting cost κ. The final rows of Panel B report the minimized value of the MSM criterion and the associated p-value
of the overidentification test. These results summarize how the model parameters map into the observed dynamics of
earnings, returns, price-earnings ratios, and learning coefficients, providing a joint test of the model’s ability to replicate
the empirical moments.
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Table OA.11: Model Estimation Outcome

Moment or parameter Data Model t statistic

Panel A: Moments

Mean log stock return 0.072 0.088 -0.510
SD log stock return 0.160 0.118 0.568
Mean log risk free rate 0.046 0.045 0.144
Mean of log price earnings 2.980 2.392 0.424
SD of log price earnings 0.285 0.293 -0.084
AC of log price earnings 0.750 0.798 -0.457
SD of aggregate earnings growth 0.268 0.294 -0.455
AC of aggregate earnings growth -0.144 -0.142 -0.045
SD of idiosyncratic earnings growth 0.112 0.091 0.388
AC of idiosyncratic earnings growth -0.027 -0.023 -0.304
CG slope h = 4 aggregate -0.263 -0.266 0.063
CG slope h = 8 aggregate -0.463 -0.454 -0.040

Panel B: Estimated Parameters

Gain coefficient ν 0.013
AR coefficient aggregate ϕ 0.854
AR coefficient idiosyncratic ϕe 0.936
Aggregate shock standard deviation σu 0.271
Idiosyncratic shock standard deviation σv 0.086
Risk free rate rf 0.045
Risk aversion γ 1.647

Test statistic WN 728.457
p value of WN 0.000

Panel C: Assigned Parameters

Time discount factor ρ (Campbell and Shiller (1988)) 0.980
Matching function efficiency B (Kehoe et al. (2023)) 0.562
Matching function elasticity η (Kehoe et al. (2023)) 0.500
Separation rate δ (Kehoe et al. (2023)) 0.286
Per worker hiring cost κ (Elsby and Michaels (2013)) 0.314

Notes: This table reports data moments, moments from the estimated model, parameter estimates, and test statistics. The model is
calibrated at an annual frequency.

OE Machine Learning

OE.1 Machine Algorithm Details
The basic dynamic algorithm follows the six step approach of Bianchi et al. (2022) of 1. Sample partitioning, 2.

In-sample estimation, 3. Training and cross-validation, 4. Grid reoptimization, 5. Out-of-sample prediction, and 6. Roll
forward and repeat. We refer the interested reader to that paper for details and discuss details of the implementation
here only insofar as they differ. At time t, a prior sample of size Ṫ is partitioned into two subsample windows: a training
sample consisting of the first TE observations, and a hold-out validation sample of TV subsequent observations so that
Ṫ = TE + TV . The training sample is used to estimate the model subject to a specific set of tuning parameter values, and
the validation sample is used for tuning the hyperparameters. The model to be estimated over the training sample is

yt+h = Ge (Xt,βh,t

)
+ ϵt+h.

where yt+h is a time series indexed by j whose value in period h ≥ 1 the machine is asked to predict at time t, Xt is a large
input dataset of right-hand-side variables including the intercept, and Ge(·) is a machine learning estimator that can be
represented by a (potentially) high-dimensional set of finite-valued parameters βe

h,t. We consider two estimators for Ge(·):
Elastic Net GEN(Xt,β

EN
j,h ), and Long Short-Term Memory (LSTM) network GLSTM(Xt,β

LSTM
j,h ). The e ∈ {EN,LSTM}

superscripts on β indicate that the parameters depend on the estimator being used (See the next section for a description
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of EN and LSTM). Xt always denotes the most recent data that would have been in real time prior to the date on which
the forecast was submitted. To ensure that the effect of each variable in the input vector is regularized fairly during the
estimation, we standardize the elements of Xt such that sample means are zero and sample standard deviations are unity.
It should be noted that the most recent observation on the left-hand-side is generally available in real time only with a
one-period lag, thus the forecasting estimations can only be run with data over a sample that stops one period later than
today in real time. The parameters βe

h,t are estimated by minimizing the mean-square loss function over the training
sample with L1 and L2 penalties

L(βe
h,t,XTE ,λe

t ) ≡
1

TE

TE∑
τ=1

(
yτ+h −Ge (Xτ ,β

e
h,t

))2
︸ ︷︷ ︸

Mean Square Error

+ λe
1,t

K∑
k=1

∣∣βe
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λe
2,t

K∑
k=1

(βe
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

where XTE = (yt−TE , . . . , yt,X ′
t−TE

, . . . ,X ′
t )

′ is the vector containing all observations in the training sample of size TE . The

estimated βe
h,t is a function of the data XTE and a non-negative regularization parameter vector λe

t =
(
λe
1,t, λ

e
2,t,λ

LSTM
0,t

)′
where λLSTM

0,t is a set of hyperparameters only relevant when using the LSTM estimator for Ge(·) (see below). For the
EN case there are only two hyperparameters, which determine the optimal shrinkage and sparsity of the time t machine
specification. The regularization parameters λe

t are estimated by minimizing the mean-square loss over pseudo-out-of-
sample forecast errors generated from rolling regressions through the validation sample:

λ̂
e

t , T̂E , T̂V = argmin
λe
t ,TE ,TV

{
1

TV − h

TE+TV −h∑
τ=TE

(
yτ+h −Ge(Xτ , β̂

e

j,h,τ (XTE ,λe
t ))
)2

+ λe
1,t

K∑
k=1

∣∣βe
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λe
2,t

K∑
k=1

(βe
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

}

where β̂
e

j,h,τ (·) for e ∈ {EN,LSTM} is the time τ estimate of βe
j,h given λe

t and data through time τ in a training sample

of size TE . Denote the combined final estimator β̂
e

h,t(X T̂E
, λ̂

e

t ), where the regularization parameter λ̂
e

t is estimated using
cross-validation dynamically over time. Note that the algorithm also asks the machine to dynamically choose both the
optimal training window T̂E and the optimal validation window T̂V by minimizing the pseudo-out-of-sample MSE.

The estimation of β̂
e

h,t(X T̂E
, λ̂

e

t ) is repeated sequentially in rolling subsamples, with parameters estimated from

information known at time t. Note that the time t subscripts of β̂
e

h,t and λ̂
e

t denote one in a sequence of time-invariant
parameter estimates obtained from rolling subsamples, rather than estimates that vary over time within a sample. Likewise,
we denote the time t machine belief about yt+h as Ee

t [yt+h], defined by

Ee
t [yt+h] ≡ Ge

(
Xt, β̂

e

h,t(X T̂E
, λ̂

e

t )
)

Finally, the machine MSE is computed by averaging across the sequence of squared forecast errors in the true out-of-sample
forecasts for periods t = (Ṫ + h), . . . , T where T is the last period of our sample. The true out-of-sample forecasts used
for neither estimation nor tuning is the testing subsample used to evaluate the model’s predictive performance.

On rare occasions, one or more of the explanatory variables used in the machine forecast specification assumes a value
that is order of magnitudes different from its historical value. This is usually indicative of a measurement problem in the
raw data. We therefore program the machine to detect in real-time whether its forecast is an extreme outlier, and in that
case to discard the forecast replacing it with the historical mean. Specifically, at each t, the machine forecast Ee

t [yt+h] is
set to be the historical mean calculated up to time t whenever the former is five or more standard deviations above its
own rolling mean over the most recent 20 quarters.

We include the contemporaneous survey forecasts Ft [yt+h] for the median respondent only for inflation and GDP
forecasts, following Bianchi et al. (2022). This procedure allows the machine to capture intangible information due to
judgement or private signals. Specifically, for these forecasts of inflation and GDP growth, we consider the following
machine learning empirical specification for forecasting yt+h given information at time t, to be benchmarked against the
time t survey forecast of respondent-type X, where this type is the median here:

yt+h = Ge
jh (Zt) + γjhMFt [yt+h] + ϵt+h, h ≥ 1

where γjhM is a parameter to be estimated, and where GjhM (Zt) represents a ML estimator as function of big data. Note
that the intercept αjh from Bianchi et al. (2022) gets absorbed into the Ge

jh (Zt) in LSTM via the outermost bias term.

OE.1.1 Elastic Net (EN)

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Selection Operator (LASSO)
and ridge type penalties. The model can be written as:

yt+h = X ′
tjβ

EN
j,h + ϵt+h
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where Xt = (1,X1t,...,XKt)
′ include the independent variable observations (Ft [yt+h] ,Zj,t) into a vector with “1” and

βEN
j,h = (αj,h, βj,hF, vec (Bj,hZ))

′ ≡ (β0, β1, ...βK)′ collects all the coefficients.
It is customary to standardize the elements of Xt such that sample means are zero and sample standard deviations

are unity. The coefficient estimates are then put back in their original scale by multiplying the slope coefficients by their
respective standard deviations, and adding back the mean (scaled by slope coefficient over standard deviation.) The EN
estimator incorporates both an L1 and L2 penalty:

β̂
EN

j,h = argmin
β0,β1,...,βK

1

TE

TE∑
τ=1

(
yτ+h −X

′
τβj,h

)2
+ λ1

K∑
k=1

∣∣βj,h,k

∣∣
︸ ︷︷ ︸

LASSO

+ λ2

K∑
k=1

(βj,h,k)
2

︸ ︷︷ ︸
ridge

By minimizing the MSE over the training samples, we choose the optimal λ1 and λ2 values simultaneously.
In the implementation, the EN estimator is sometimes used as an input into the algorithm using the LSTM estimator.

Specifically, we ensure that the machine forecast can only differ from the relevant benchmark if it demonstrably improves
the pseudo out-of-sample prediction in the training samples prior to making a true out-of-sample forecast. Otherwise, the
machine is replaced by the benchmark calculated up to time t. In some cases the benchmark is a survey forecast, in others
it could be a historical mean value for the variable. However, for the implementation using LSTM, we also use the EN
forecast as a benchmark.

OE.1.2 Long Short-Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network (RNN), which are neural networks used to learn about
sequential data such as time series or natural language. In particular, LSTM networks can learn long-term dependencies
between across time periods by introducing hidden layers and memory cells to control the flow of information over longer
time periods. The general case of the LSTM network with up to N hidden layers is defined as

GLSTM(Xt,β
LSTM
j,h )︸ ︷︷ ︸

1×1

= W (yhN )︸ ︷︷ ︸
1×D

hN

hN
t︸︷︷︸

D
hN ×1

+ by︸︷︷︸
1×1

(Output layer)

hn
t︸︷︷︸

Dhn×1

= ont︸︷︷︸
Dhn×1

⊙ tanh( cnt︸︷︷︸
Dhn×1

) (Hidden layer)

cnt︸︷︷︸
Dhn×1

= fn
t︸︷︷︸

Dhn×1

⊙ cnt−1︸︷︷︸
Dhn×1

+ int︸︷︷︸
Dhn×1

⊙ c̃nt︸︷︷︸
Dhn×1

(Final memory)

c̃nt︸︷︷︸
Dhn×1

= tanh(W (cnhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (cnhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bcn︸︷︷︸
Dhn×1

) (New memory)

fn
t︸︷︷︸

Dhn×1

= σ(W (fnhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (fnhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bfn︸︷︷︸
Dhn×1

) (Forget gate)

int︸︷︷︸
Dhn×1

= σ(W (inhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (inhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bin︸︷︷︸
Dhn×1

) (Input gate)

ont︸︷︷︸
Dhn×1

= σ(W (onhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (onhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bon︸︷︷︸
Dhn×1

) (Output gate)

where n = 1, . . . , N indexes each hidden layer. hn
t ∈ RDhn is the n-th hidden layer, where Dhn is the number of neurons

or nodes in the hidden layer. The 0-th layer is defined as the input data: h0
t ≡ Xt. The memory cell cnt allows the

LSTM network to retain information over longer time periods. The output gate ont controls the extent to which the
memory cell cnt maps to the hidden layer hn

t . The forget gate fn
t controls the flow of information carried over from the

final memory in the previous timestep cnt−1. The input gate int controls the flow of information from the new memory
cell c̃nt . The initial states for the hidden layers (hn

0 )
N
n=1 and memory cells (cn0 )

N
n=1 are set to zeros. σ(·) and tanh(·) are

activation functions that introduce non-linearities in the LSTM network, applied elementwise. σ : R → R is the sigmoid

function: σ(x) = (1 + e−x)−1. tanh : R → R is the hyperbolic tangent function: tanh(x) = e2x−1
e2x+1

. The ⊙ operator

refers to elementwise multiplication. βLSTM
j,h ≡ (((vec(W (gnhn−1))′, vec(W (gnhn))′, b′gn)g∈{c,f,i,o})

N
n=1, vec(W

(yhN ))′, by)
′

are parameters to be estimated. We will refer to parameters indexed with W as weights; parameters indexed with b are
biases. We estimate the parameters βLSTM

j,h for the LSTM network using Stochastic Gradient Decent (SGD), which is an
iterative algorithm for minimizing the loss function and proceeds as follows:

1. Initialization. Fix a random seed R and draw a starting value of the parameters β
(0)
j,h randomly, where the superscript

(0) in parentheses indexes the iteration for an estimate of βLSTM
j,h .
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(a) Initialize input weights W (gnhn−1) ∈ RDhn×D
hn−1 for g ∈ {c, f, i, o} using the Glorot initializer. Draw from

a uniform distribution with zero mean and a variance that depends on the dimensions of the matrix:

W
(gnhn−1)
ij

iid∼ U

[
−
√

6

Dhn +Dhn−1

,

√
6

Dhn +Dhn−1

]
for each i = 1, . . . , Dhn and j = 1, . . . , Dhn−1 .

(b) Initialize the recurrent weights W (gnhn) ∈ RDhn×Dhn for g ∈ {c, f, i, o} using the Orthogonal initializer. Use
the orthogonal matrix obtained from the QR decomposition of a Dhn × Dhn matrix of random numbers
drawn from a standard normal distribution.

(c) Initialize biases (bgn)g∈{c,f,i,o}, hidden layers hn
0 , and memory cells cn0 with zeros.

2. Mini-batches. Prepare the input data by dividing the training sample into a collection of mini-batches.

(a) Suppose that we have a multi-variate time-series training sample with dimensions (TE ,K) whose time steps
t are indexed by t = 1, . . . , TE and K is the number of predictors. We transform this training sample into a
3-D tensor with dimensions (NS ,M,K) where

� NS = Total number of sequences in training sample

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

This can be done by creating overlapping sequences from the time series:

� Sequence 1 contains time steps 1, . . . ,M

� Sequence 2 contains time steps 2, . . . ,M + 1

� Sequence 3 contains time steps 3, . . . ,M + 2

� . . .

� Sequence TE −M contains time steps TE −M, . . . , TE − 1

� Sequence NS = TE −M + 1 contains time steps TE −M + 1, . . . , TE

(b) Randomly shuffle the NS sequences by randomly sampling a permutation without replacement.

(c) Partition the NS shuffled sequences into ⌈NS/NB⌉ mini-batches. We partition the NS sequences in the
training sample ((NS ,M,K) tensor) into a list of ⌈NS/NB⌉ mini-batches. A mini-batch is a (NB ,M,K)-
dimensional tensor containing NB out of NS randomly shuffled sequences. When NS/NB is not a whole
number, ⌊NS/NB⌋ of the mini-batches will be 3-D tensors with dimensions (NB ,M,K). One batch will
contain leftover sequences and will have dimensions (NS%NB ,M,K) where % is the modulus operator. Let
B(1), . . . , B⌈NS/NB⌉ denote the list of mini-batches.

� NS = Total number of sequences in training sample

� NB = Mini-batch size, i.e., number of sequences in each partition.

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

3. Repeat until the stopping condition is satisfied (k = 1, 2, 3, . . . ):

(a) Dropout. Apply dropout to the mini-batch. To obtain the n-th hidden layer under dropout, multiply the
current value of the n−1-th hidden layer hn−1

t and the lagged value of the n-th hidden layer hn
t−1 with binary

masks r
(k)

t,hn−1
t

∈ RD
hn−1 and r

(k)
t,hn

t−1
∈ RDhn , respectively:

h
n−1
t︸ ︷︷ ︸

D
hn−1×1

= r
(k)

t,hn−1
t︸ ︷︷ ︸

D
hn−1×1

⊙ hn−1
t︸ ︷︷ ︸

D
hn−1×1

, r
(k)

t,hn−1
t ,i

iid∼ Bernoulli(p
hn−1
t

), i = 1, . . . , Dhn−1

h
n
t−1︸︷︷︸

Dhn×1

= r
(k)
t,hn

t−1︸ ︷︷ ︸
Dhn×1

⊙ hn
t−1︸︷︷︸

Dhn×1

, r
(k)
t,hn

t−1,i

iid∼ Bernoulli(phn
t−1

), i = 1, . . . , Dhn

where t ∈ B(k) and n = 1, . . . , N indexes the hidden layer and it is understood that the 0-th layer is the
input vector h0

t ≡ Xt. p
hn−1
t

, phn
t−1

∈ [0, 1] is the probability that time t nodes in the n − 1-th hidden layer

and time t− 1 nodes in the n-th hidden layer are retained, respectively.
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(b) Stochastic Gradient. Average the gradient over observations in the mini-batch

∇L(β
(k−1)
j,h ,XB(k) ,λ

LSTM) =
1

M

∑
t∈B(k)

∇L(β
(k−1)
j,h ,Xt,λ

LSTM)

where ∇L(β
(k−1)
j,h ,Xt,λ

LSTM) is the gradient of the loss function with respect to the parameters β
(k−1)
j,h ,

evaluated at the time t observation Xt = (yt+h, X̂ ′
t )

′ after applying dropout.

(c) Learning rate shrinkage. Update the parameters to β
(k)
j,h using the Adaptive Moment Estimation (Adam)

algorithm. The method uses the first and second moments of the gradients to shrink the overall learning rate
to zero as the gradient approaches zero.

β
(k)
j,h = β

(k−1)
j,h − γ

m(k)

√
v(k) + ε

where m(k) and v(k) are weighted averages of first two moments of past gradients:

m(k) =
1

1− πk
1

(π1m
(k−1) + (1− π1)∇L(β

(k−1)
j,h ,XB(k) ,λ

LSTM))

v(k) =
1

1− πk
2

(π2v
(k−1) + (1− π2)∇L(β

(k−1)
j,h ,XB(k) ,λ

LSTM)2)

πk denotes the k-the power of π ∈ (0, 1), and /,
√
·, and (·)2 are applied elementwise. The default values

of the hyperparameters are m(0) = v(0) = 0 (initial moment vectors), γ = 0.001 (initial learning rate),
(π1, π2) = (0.9, 0.999) (decay rates), and ε = 10−7 (prevent zero denominators).

(d) Stopping Criteria. Stop iterating and return β
(k)
j,h if one of the following holds:

� Early stopping. At each iteration, use the updated β
(k)
j,h to calculate the loss from the validation sample.

Stop when the validation loss has not improved for S steps, where S is a “patience” hyperparameter. By
updating the parameters for fewer iterations, early stopping shrinks the final parameters βj,h towards

the initial guess β
(0)
j,h, and at a lower computational cost than ℓ2 regularization.

� Maximum number of epochs. Stop if the number of iterations reaches the maximum number of epochs
E. An epoch happens when the full set of the training sample has been used to update the parameters.
If the training sample has TE observations and each mini-batch has M observations, then each epoch
would contain ⌈TE/M⌉ iterations (after rounding up as needed). So the maximum number of iterations
is bounded by E × ⌈TE/M⌉.

4. Ensemble forecasts. Repeat steps 1. and 2. over different random seeds R and save each of the estimated parameters

β̂
LSTM

j,h,TE
(XTE ,λLSTM, R). Then construct out-of-sample forecasts using the top 10 out of 20 starting values with

the best performance in the validation sample. Ensemble can be considered as a regularization method because it
aims to guard against overfitting by shrinking the forecasts toward the average across different random seeds. The
random seed affects the random draws of the parameter’s initial starting value β

(0)
j,h, the sequences selected in each

mini-batch B(k), and the dropout mask r
(k)
t .

Hyperparameters Let λLSTM ≡ [λ1, λ2, γ, π1, π2, p,N, (Dhn)Nn=1,M,E, S]′ collect all the hyper-parameters that con-
trol the LSTM network’s complexity and prevent the model from overfitting the data. The number of hidden layers N
and the number of neurons Dh1 , . . . , DhN in each hidden layer are hyper-parameters that characterize the network’s archi-
tecture. To choose the number of neurons in each layer, we apply a geometric pyramid rule where the dimension of each
additional hidden layer is half that of the previous hidden layer. We select the best LSTM architecture iteratively by mini-
mizing the pseudo out-of-sample mean-squared error from rolling forecasts over the validation sample. Table OA.12 reports
the hyper-parameters for the LSTM network and its estimation. Hyper-parameters reported as a range or a set of values
are cross-validated. The hyper-parameters are estimated by minimizing the mean-square loss over pseudo out-of-sample
forecast errors generated from rolling regressions through the validation sample. The pseudo out-of-sample forecasts are
ensemble averages implied by parameters based on different random seeds R.

Adaptive Architecture Selection We allow the LSTM architecture to evolve over time using a simple, adaptive
updating procedure. At each period in the testing sample, the machine selects the architecture (number of hidden layers
and neurons per layer) that minimized out-of-sample forecast errors in the preceding period. The candidate architectures
considered span various combinations of hidden layers and neurons per layer, as listed in Table OA.12. The architecture
is updated quarterly by using the forecast performance from the most recent quarter. This approach allows the machine
to adjust its specification over time based on evolving patterns in the data, while avoiding look-ahead bias or overfitting
to future outcomes.
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Table OA.12: Candidate hyper-parameters for the machine learning forecast

Variable Earnings Stock
Growth Returns

Horizon (Years) 1,2,3,4,5 1,2,3,4,5
(a) Elastic Net
L1 penalty λ1 [10−2, 101] [10−6, 10−2]
L2 penalty λ2 [10−2, 101] [10−6, 10−2]
Training window TE 4, 6, 8, 10 5, 7
Validation window TV 4, 6, 8, 10 5, 7, 20
(b) Long Short-Term Memory Network
L1 penalty λ1 [10−6, 10−2] [10−6, 10−2]
L2 penalty λ2 [10−6, 10−2] [10−6, 10−2]
Learning rate γ 0.001 0.001
Gradient decay π1, π2 0.9, 0.999 0.9, 0.999
Dropout input px 0.5 0.5
Dropout recurrent ph 0.5 0.5
Hidden layers N 1, 3, 5 1, 3, 5
Neurons per layer 16, 32, 64 4, 8, 16
Mini-batch size M 4 4
Max epochs E 10, 000 10, 000
Early stopping S 20 20
Random seeds R 1, . . . , 20 1, . . . , 20
Training window TE 4, 8, 12 5, 7
Validation window TV 4, 8, 12 5, 7, 20

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each estimator.

OE.2 Data Inputs for Machine Learning Algorithm

OE.2.1 Macro Data Surprises

These data are used as inputs into the machine learning forecasts. I obtain median forecasts for GDP growth
(Q/Q percentage change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change) from the Money Market Service Survey. The median market survey forecasts are compiled and
published by the Money Market Services (MMS) the Friday before each release. I apply the approach used in Bauer
and Swanson (2023) and define macroeconomic data surprise as the actual value of the data release minus the median
expectation from MMS on the Friday immediately prior to that data release. The GDP growth forecasts are available
quarterly from 1990Q1 to 2023Q4. The core CPI forecast is available monthly from July 1989 to December 2023. The
median forecasts for the unemployment rate and nonfarm payrolls are available monthly from January 1980 to December
2023, and January 1985 to December 2023, respectively. All survey forecasts were downloaded from Haver Analytics on
December 17, 2022 and the Bloomberg Terminal on July 15, 2025. To pin down the timing of when the news was actually
released I follow the published tables of releases from the Bureau of Labor Statistics (BLS), discussed below.

The macro news events are indexed by their date and time of the data release, while the machine learning algorithm
is adapted to quarterly sampling frequencies. When including the macro data surprises as additional predictors for the
machine forecast, I time-aggregate the macro data surprises to a quarterly frequency by taking the sum of the surprises
across data releases that occurred before the response deadline set for the machine. For example, if the response deadline
is set to the first day of the middle month of each quarter (e.g., February 1st), I take the sum of the surprises from data
releases up to the day before the deadline, the last day of the first month of each quarter (e.g., January 31st).

OE.2.2 FOMC Surprises

FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds futures
(FFF) contract rate and changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contract rate, from 10 minutes
before to 20 minutes after each U.S. Federal Reserve Federal Open Market Committee (FOMC) announcement. The data
on FFF and ED were downloaded on July 15, 2025. When benchmarking against a survey, I use the last FOMC meeting
before the survey deadline to compute surprises. For surveys that do not have a clear deadline, I compute surprises using
from the last FOMC in the first month of the quarter. When benchmarking against moving average, I use the last FOMC
meeting before the end of the first month in each quarter to compute surprises.

When including the FOMC surprises as additional predictors for the machine forecast, I time-aggregate the FOMC
surprises to a quarterly frequency by taking the sum of the surprises across FOMC announcements that occurred before
the response deadline set for the machine. For example, if the response deadline is set to the first day of the middle month
of each quarter (e.g., February 1st), I take the sum of the surprises from FOMC announcements up to the day before the
deadline, the last day of the first month of each quarter (e.g., January 31st).
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OE.2.3 S&P 500 Jumps

As a measure of the market’s reaction to news shocks, I use the jump in the S&P 500 pre- and post- a 30-minute
window around major news events. The events in our analysis include (i) 1,482 macroeconomic data releases for U.S.
GDP, Consumer Price Index (CPI), unemployment, and payroll data spanning 1980:01-2023:12, (ii) 16 corporate earnings
announcement days spanning 1999:03-2020:05, and (iii) 219 Federal Open Market Committee (FOMC) press releases from
the Fed spanning 1994:02-2023:12. The corporate earnings news events are from Baker et al. (2019) who conduct textual
analyses ofWall Street Journal articles to identify days in which there were large jumps in the aggregate stock market
that could be attributed to corporate earnings news with high confidence. The jump in the S&P 500 for a given event is
defined as jτ = pτ+δpost − pτ−δpre , where τ indexes the time of an event and pτ = log(Pτ ) is the log S&P 500 index. δpre
and δpost denote the pre and post event windows, which is 10 minutes before and 20 minutes after the event, respectively.
I obtain data on Pτ using tick-by-tick data on the S&P 500 index from tickdata.com. The series was purchased and
downloaded on July 15, 2025 from https://www.tickdata.com/. I create the minutely data using the close price within
each minute. I supplement the S&P 500 index using S&P500 E-mini futures for events that occur in off-market hours. I
use the current-quarter contract futures. I purchased the S&P 500 E-mini futures from CME group on July 15, 2025 at
https://datamine.cmegroup.com/. Our sample spans 1/2/1986 to 12/31/2023.

For each event, I separate out the events for which the S&P 500 increased over the window (j
(+)
τ ≥ 0) and those for

which the market decreased (j
(−)
τ ≤ 0). I aggregate the event-level jumps to monthly time series by summing over all

the relevant events within the month, where the events are partitioned into two groups based on the sign of the jump:
J
(+)
t =

∑
τ∈x(t) j

(+)
τ , J

(−)
t =

∑
τ∈x(t) j

(−)
τ , where t indexes the month and x(t) is the set of all events that occurred within

month t. The procedure results in two monthly variables, J
(+)
t and J

(−)
t , which capture total market reaction to news

events in either direction during the quarter. The series spans the period 1994:02 to 2023:12. Separating out the events
based on the sign of the jump allows us to capture any differential effects on return predictability based on whether the
market perceived the news as good or bad. The partition also allows us to accurately capture the total extent of over-
or underreaction. Otherwise, mixing all the events would only capture the net effect of the jumps and bias the market
reaction towards zero.

When used as additional predictors in the for the machine forecast, the jumps need to be converted to quarterly
time series because the machine learning algorithm is adapted to a quarterly sampling frequency. The set of events in
x(t) is chosen so that the machine only sees the news events that would have been available to the real-time firm. When
combining the events within a quarter, I impose the response deadline used to produce the machine forecast. For example,
if the response deadline is set to the first day of the middle month of each quarter (e.g., February 1st), I use the jumps
from the events up to the day before the deadline, the last day of the first month of each quarter (e.g., January 31st).

OE.2.4 Real-Time Macro Data

This section gives details on the real time macro data inputs used in the machine learning forecasts. A subset of these
series are used in the structural estimation. At each forecast date in the sample, I construct a dataset of macro variables
that could have been observed on or before the day of the survey deadline. I use the Philadelphia Fed’s Real-Time Data Set
to obtain vintages of macro variables. The real-time data sets are available at https://www.philadelphiafed.org/research-
and-data/real-time-center/real-time-data/data-files. These vintages capture changes to historical data due to periodic
revisions made by government statistical agencies. The vintages for a particular series can be available at the monthly
and/or quarterly frequencies, and the series have monthly and/or quarterly observations. In cases where a variable has both
frequencies available for its vintages and/or its observations, I choose one format of the variable. For instance, nominal
personal consumption expenditures on goods is quarterly data with both monthly and quarterly vintages available; in this
case, I use the version with monthly vintages.

Table OA.13 gives the complete list of real-time macro variables. Included in the table is the first available vintages
for each variable that has multiple vintages. I do not include the last vintage because most variables have vintages through
the present. For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the last
available vintage is 2013Q2. Table OA.13 also lists the transformation applied to each variable to make them stationary
before generating factors. Let Xi,t denote variable i at time t after the transformation, and let XA

i,t be the untransformed
series. Let ∆ = (1− L) with LXi,t = Xit−1. There are seven possible transformations with the following codes:

1 Code lv: Xi,t = XA
i,t

2 Code ∆lv: Xi,t = XA
i,t −XA

it−1

3 Code ∆2lv: Xi,t = ∆2XA
i,t

4 Code ln: Xi,t = ln(XA
i,t)

5 Code ∆ln: Xi,t = ln(XA
i,t)− ln(XA

it−1)

6 Code ∆2ln: Xi,t = ∆2ln(XA
i,t)

7 Code ∆lv/lv: Xi,t = (XA
i,t −XA

it−1)/X
A
it−1
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Table OA.13: List of Macro Dataset Variables

No. Short Name Source Tran Description First Vintage
Group 1: Output and Income

1 IPMMVMD Philly Fed ∆ln Ind. production index - Manufacturing 1962M11
2 IPTMVMD Philly Fed ∆ln Ind. production index - Total 1962M11
3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979M8
4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983M7
5 NCPROFATMVQD Philly Fed ∆ln Nom. corp. profits after tax without IVA/CCAdj 1965Q4
6 NCPROFATWMVQD Philly Fed ∆ln Nom. corp. profits after tax with IVA/CCAdj 1981Q1
7 OPHMVQD Philly Fed ∆ln Output per hour - Business sector 1998Q4
8 NDPIQVQD Philly Fed ∆ln Nom. disposable personal income 1965Q4
9 NOUTPUTQVQD Philly Fed ∆ln Nom. GNP/GDP 1965Q4
10 NPIQVQD Philly Fed ∆ln Nom. personal income 1965Q4
11 NPSAVQVQD Philly Fed ∆lv Nom. personal saving 1965Q4
12 OLIQVQD Philly Fed ∆ln Other labor income 1965Q4
13 PINTIQVQD Philly Fed ∆ln Personal interest income 1965Q4
14 PINTPAIDQVQD Philly Fed ∆ln Interest paid by consumers 1965Q4
15 PROPIQVQD Philly Fed ∆ln Proprietors’ income 1965Q4
16 PTAXQVQD Philly Fed ∆ln Personal tax and nontax payments 1965Q4
17 RATESAVQVQD Philly Fed ∆lv Personal saving rate 1965Q4
18 RENTIQVQD Philly Fed ∆lv Rental income of persons 1965Q4
19 ROUTPUTQVQD Philly Fed ∆ln Real GNP/GDP 1965Q4
20 SSCONTRIBQVQD Philly Fed ∆ln Personal contributions for social insurance 1965Q4
21 TRANPFQVQD Philly Fed ∆ln Personal transfer payments to foreigners 1965Q4
22 TRANRQVQD Philly Fed ∆ln Transfer payments 1965Q4
23 CUUR0000SA0E BLS ∆2ln Energy in U.S. city avg., all urban consumers, not

seasonally adj
Group 2: Employment

24 EMPLOYMVMD Philly Fed ∆ln Nonfarm payroll 1946M12
25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971M9
26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971M9
27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971M9
28 LFCMVMD Philly Fed ∆ln Civilian labor force 1998M11
29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998M11
30 POPMVMD Philly Fed ∆ln Civilian noninstitutional population 1998M11
31 ULCMVQD Philly Fed ∆ln Unit labor costs - Business sector 1998Q4
32 RUCQVMD Philly Fed ∆lv Unemployment rate 1965Q4
33 WSDQVQD Philly Fed ∆ln Wage and salary disbursements 1965Q4

Group 3: Orders, Investment, Housing
34 HSTARTSMVMD Philly Fed ∆ln Housing starts 1968M2
35 RINVBFMVQD Philly Fed ∆ln Real gross private domestic inv. - Nonresidential 1965Q4
36 RINVCHIMVQD Philly Fed ∆lv Real gross private domestic inv. - Change in pri-

vate inventories
1965Q4

37 RINVRESIDMVQD Philly Fed ∆ln Real gross private domestic inv. - Residential 1965Q4
38 CASESHILLER S&P ∆ln Case-Shiller US National Home Price index/CPI 1987M1

Group 4: Consumption
39 NCONGMMVMD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009M8
40 NCONHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. 2009M8
41 NCONSHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009M8
42 NCONSNPMMVMD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009M8
43 RCONDMMVMD Philly Fed ∆ln Real personal cons. exp. - Durables 1998M11
44 RCONGMMVMD Philly Fed ∆ln Real personal cons. exp. - Goods 2009M8
45 RCONHHMMVMD Philly Fed ∆ln Real hh. cons. exp. 2009M8
46 RCONMMVMD Philly Fed ∆ln Real personal cons. exp. - Total 1998M11
47 RCONNDMVMD Philly Fed ∆ln Real personal cons. exp. - Nondurables 1998M11
48 RCONSHHMMVMD Philly Fed ∆ln Real hh. cons. exp. - Services 2009M8
49 RCONSMMVMD Philly Fed ∆ln Real personal cons. exp. - Services 1998M11
50 RCONSNPMMVMD Philly Fed ∆ln Real final cons. exp. of NPISH 2009M8
51 NCONGMVQD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009Q3
52 NCONHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. 2009Q3
53 NCONSHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009Q3
54 NCONSNPMVQD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009Q3
55 RCONDMVQD Philly Fed ∆ln Real personal cons. exp. - Durable goods 1965Q4
56 RCONGMVQD Philly Fed ∆ln Real personal cons. exp. - Goods 2009Q3
57 RCONHHMVQD Philly Fed ∆ln Real hh. cons. exp. 2009Q3
58 RCONMVQD Philly Fed ∆ln Real personal cons. exp. - Total 1965Q4
59 RCONNDMVQD Philly Fed ∆ln Real personal cons. exp. - Nondurable goods 1965Q4
60 RCONSHHMVQD Philly Fed ∆ln Real hh. cons. exp. - Services 2009Q3
61 RCONSMVQD Philly Fed ∆ln Real personal cons. exp. - Services 1965Q4
62 RCONSNPMVQD Philly Fed ∆ln Real final cons. exp. of NPISH 2009Q3
63 NCONQVQD Philly Fed ∆ln Nom. personal cons. exp. 1965Q4

Group 5: Prices
64 PCONGMMVMD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009M8
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No. Short Name Source Tran Description First Vintage
65 PCONHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. 2009M8
66 PCONSHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009M8
67 PCONSNPMMVMD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009M8
68 PCPIMVMD Philly Fed ∆2ln Consumer price index 1998M11
69 PCPIXMVMD Philly Fed ∆2ln Core consumer price index 1998M11
70 PPPIMVMD Philly Fed ∆2ln Producer price index 1998M11
71 PPPIXMVMD Philly Fed ∆2ln Core producer price index 1998M11
72 PCONGMVQD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009Q3
73 PCONHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. 2009Q3
74 PCONSHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009Q3
75 PCONSNPMVQD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009Q3
76 PCONXMVQD Philly Fed ∆2ln Core price index for personal cons. exp. 1996Q1
77 CPIQVMD Philly Fed ∆2ln Consumer price index 1994Q3
78 PQVQD Philly Fed ∆2ln Price index for GNP/GDP 1965Q4
79 PCONQVQD Philly Fed ∆2ln Price index for personal cons. exp. 1965Q4
80 PIMPQVQD Philly Fed ∆2ln Price index for imports of goods and services 1965Q4

Group 6: Trade and Government
81 REXMVQD Philly Fed ∆ln Real exports of goods and services 1965Q4
82 RGMVQD Philly Fed ∆ln Real government cons. and gross inv. - Total 1965Q4
83 RGFMVQD Philly Fed ∆ln Real government cons. and gross inv. - Federal 1965Q4
84 RGSLMVQD Philly Fed ∆ln Real government cons. and gross. inv. - State and

local
1965Q4

85 RIMPMVQD Philly Fed ∆ln Real imports of goods and services 1965Q4
86 RNXMVQD Philly Fed ∆lv Real net exports of goods and services 1965Q4

Group 7: Money and Credit
87 BASEBASAQVMD Philly Fed ∆2ln Monetary base 1980Q2
88 M1QVMD Philly Fed ∆2ln M1 money stock 1965Q4
89 M2QVMD Philly Fed ∆2ln M2 money stock 1971Q2
90 NBRBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves 1967Q3
91 NBRECBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves plus extended credit 1984Q2
92 TRBASAQVMD Philly Fed ∆2ln Total reserves 1967Q3
93 DIVQVQD Philly Fed ∆ln Dividends 1965Q4

OE.2.5 Monthly Financial Data

The 147 financial series in this data set are versions of the financial dataset used in Jurado et al. (2015) and Ludvigson
et al. (2021). It consists of a number of indicators measuring the behavior of a broad cross-section of asset returns, as well
as some aggregate financial indicators not included in the macro dataset. These data include valuation ratios such as the
dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and prices, default and term spreads,
yields on corporate bonds of different ratings grades, yields on Treasuries and yield spreads, and a broad cross-section of
industry equity returns. Following Fama and French (1992), returns on 100 portfolios of equities sorted into 10 size and 10
book-to-market categories. The dataset Xf also includes a group of variables we call “risk-factors,” since they have been
used in cross-sectional or time-series studies to uncover variation in the market risk-premium. These risk-factors include
the three Fama and French (1993) risk factors, namely the excess return on the market MKTt, the “small-minus-big”
(SMBt) and “high-minus-low” (HMLt) portfolio returns, the momentum factor UMDt, and the small stock value spread
R15−R11.

The raw data used to form factors are always transformed to achieve stationarity. In addition, when forming forecasting
factors from the large macro and financial datasets, the raw data (which are in different units) are standardized before
performing PCA. When forming common uncertainty from estimates of individual uncertainty, the raw data (which are in
this case in the same units) are demeaned, but we do not divide by the observation’s standard deviation before performing
PCA. Throughout, the factors are estimated by the method of static principal components (PCA). Specifically, the T × rF
matrix F̂t is

√
T times the rF eigenvectors corresponding to the rF largest eigenvalues of the T × T matrix xx′/(TN) in

decreasing order. In large samples (when
√
T/N → ∞), Bai and Ng (2006) show that the estimates F̂t can be treated as

though they were observed in the subsequent forecasting regression. All returns and spreads are expressed in logs (i.e., the
log of the gross return or spread), are displayed in percent (i.e., multiplied by 100), and are annualized by multiplying by
12. That is, if x is the original return or spread, we transform to 1200× log(1+x/100). Federal Reserve data are annualized
by default and are therefore not re-annualized. Note that this annualization implies that the annualized standard deviation
(volatility) is equal to the data standard deviation divided by

√
12. The data series used in this dataset are listed below

by data source. Additional details on data transformations are given below the table.
We convert monthly data to quarterly by using either the beginning-of-quarter or end-of-quarter values. The decision

to use beginning-of-quarter or end-of-quarter depends on the survey deadline of a particular forecast date. If the survey
deadline is known to be in the middle of the second month of quarter t, then it is conceivable that the forecasters would have
information about the first month of quarter t. Therefore, we use the first month of that quarter’s values. Alternatively, a
few anomalous observations have unknown survey deadlines (e.g., the SPF deadlines for 1990Q1). In such cases, we allow
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only information up to quarter t − 1 to enter the model. Thus, we use the last month of the previous quarter’s values in
these cases. Let Xi,t denote variable i observed at time t after, e.g., logarithm and differencing transformation, and let
XA

i,t be the actual (untransformed) series. Let ∆ = (1 − L) with LXi,t = Xi,t−1. There are six possible transformations
with the following codes:

1 Code lv : Xi,t = XA
i,t

2 Code ∆lv : Xi,t = XA
i,t −XA

i,t−1

3 Code ∆2lv : Xi,t = ∆2XA
i,t

4 Code ln : Xi,t = log(XA
i,t)

5 Code ∆ln : Xi,t = log(XA
i,t)− log(XA

i,t−1)

6 Code ∆2ln : Xi,t = ∆2 log(XA
i,t)

7 Code ∆lv/lv : Xi,t =
XA

i,t −XA
i,t−1

XA
i,t−1

Table OA.14: List of Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Prices, Yields, Dividends

1 D log(DIV) CRSP ∆ln 1 log Dt, see additional details below
2 D log(P) CRSP ∆ln 1 log Pt, see additional details below
3 D DIVreinvest CRSP ∆ln 1 log Dre,∗

t , see additional details below
4 D Preinvest CRSP ∆ln 1 log P re,∗

t , see additional details below
5 d-p CRSP ln log Dt − Pt, see additional details below

Group 2: Equity Risk Factors
6 R15-R11 Kenneth French lv (Small, High) minus (Small, Low) sorted on (size, book-to-market)
7 Mkt-RF Kenneth French lv Market excess return
8 SMB Kenneth French lv Small Minus Big, sorted on size
9 HML Kenneth French lv High Minus Low, sorted on book-to-market
10 UMD Kenneth French lv Up Minus Down, sorted on momentum

Group 3: Industries
11 Agric Kenneth French lv Agric industry portfolio
12 Food Kenneth French lv Food industry portfolio
13 Beer Kenneth French lv Beer industry portfolio
14 Smoke Kenneth French lv Smoke industry portfolio
15 Toys Kenneth French lv Toys industry portfolio
16 Fun Kenneth French lv Fun industry portfolio
17 Books Kenneth French lv Books industry portfolio
18 Hshld Kenneth French lv Hshld industry portfolio
19 Clths Kenneth French lv Clths industry portfolio
20 MedEq Kenneth French lv MedEq industry portfolio
21 Drugs Kenneth French lv Drugs industry portfolio
22 Chems Kenneth French lv Chems industry portfolio
23 Rubbr Kenneth French lv Rubbr industry portfolio
24 Txtls Kenneth French lv Txtls industry portfolio
25 BldMt Kenneth French lv BldMt industry portfolio
26 Cnstr Kenneth French lv Cnstr industry portfolio
27 Steel Kenneth French lv Steel industry portfolio
28 Mach Kenneth French lv Mach industry portfolio
29 ElcEq Kenneth French lv ElcEq industry portfolio
30 Autos Kenneth French lv Autos industry portfolio
31 Aero Kenneth French lv Aero industry portfolio
32 Ships Kenneth French lv Ships industry portfolio
33 Mines Kenneth French lv Mines industry portfolio
34 Coal Kenneth French lv Coal industry portfolio
35 Oil Kenneth French lv Oil industry portfolio
36 Util Kenneth French lv Util industry portfolio
37 Telcm Kenneth French lv Telcm industry portfolio
38 PerSv Kenneth French lv PerSv industry portfolio
39 BusSv Kenneth French lv BusSv industry portfolio
40 Hardw Kenneth French lv Hardw industry portfolio
41 Chips Kenneth French lv Chips industry portfolio
42 LabEq Kenneth French lv LabEq industry portfolio
43 Paper Kenneth French lv Paper industry portfolio
44 Boxes Kenneth French lv Boxes industry portfolio
45 Trans Kenneth French lv Trans industry portfolio
46 Whlsl Kenneth French lv Whlsl industry portfolio
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No. Short Name Source Tran Description
47 Rtail Kenneth French lv Rtail industry portfolio
48 Meals Kenneth French lv Meals industry portfolio
49 Banks Kenneth French lv Banks industry portfolio
50 Insur Kenneth French lv Insur industry portfolio
51 RlEst Kenneth French lv RlEst industry portfolio
52 Fin Kenneth French lv Fin industry portfolio
53 Other Kenneth French lv Other industry portfolio

Group 4: Size/BM
54 1 2 Kenneth French lv (1, 2) portfolio sorted on (size, book-to-market)
55 1 4 Kenneth French lv (1, 4) portfolio sorted on (size, book-to-market)
56 1 5 Kenneth French lv (1, 5) portfolio sorted on (size, book-to-market)
57 1 6 Kenneth French lv (1, 6) portfolio sorted on (size, book-to-market)
58 1 7 Kenneth French lv (1, 7) portfolio sorted on (size, book-to-market)
59 1 8 Kenneth French lv (1, 8) portfolio sorted on (size, book-to-market)
60 1 9 Kenneth French lv (1, 9) portfolio sorted on (size, book-to-market)
61 1 high Kenneth French lv (1, high) portfolio sorted on (size, book-to-market)
62 2 low Kenneth French lv (2, low) portfolio sorted on (size, book-to-market)
63 2 2 Kenneth French lv (2, 2) portfolio sorted on (size, book-to-market)
64 2 3 Kenneth French lv (2, 3) portfolio sorted on (size, book-to-market)
65 2 4 Kenneth French lv (2, 4) portfolio sorted on (size, book-to-market)
66 2 5 Kenneth French lv (2, 5) portfolio sorted on (size, book-to-market)
67 2 6 Kenneth French lv (2, 6) portfolio sorted on (size, book-to-market)
68 2 7 Kenneth French lv (2, 7) portfolio sorted on (size, book-to-market)
69 2 8 Kenneth French lv (2, 8) portfolio sorted on (size, book-to-market)
70 2 9 Kenneth French lv (2, 9) portfolio sorted on (size, book-to-market)
71 2 high Kenneth French lv (2, high) portfolio sorted on (size, book-to-market)
72 3 low Kenneth French lv (3, low) portfolio sorted on (size, book-to-market)
73 3 2 Kenneth French lv (3, 2) portfolio sorted on (size, book-to-market)
74 3 3 Kenneth French lv (3, 3) portfolio sorted on (size, book-to-market)
75 3 4 Kenneth French lv (3, 4) portfolio sorted on (size, book-to-market)
76 3 5 Kenneth French lv (3, 5) portfolio sorted on (size, book-to-market)
77 3 6 Kenneth French lv (3, 6) portfolio sorted on (size, book-to-market)
78 3 7 Kenneth French lv (3, 7) portfolio sorted on (size, book-to-market)
79 3 8 Kenneth French lv (3, 8) portfolio sorted on (size, book-to-market)
80 3 9 Kenneth French lv (3, 9) portfolio sorted on (size, book-to-market)
81 3 high Kenneth French lv (3, high) portfolio sorted on (size, book-to-market)
82 4 low Kenneth French lv (4, low) portfolio sorted on (size, book-to-market)
83 4 2 Kenneth French lv (4, 2) portfolio sorted on (size, book-to-market)
84 4 3 Kenneth French lv (4, 3) portfolio sorted on (size, book-to-market)
85 4 4 Kenneth French lv (4, 4) portfolio sorted on (size, book-to-market)
86 4 5 Kenneth French lv (4, 5) portfolio sorted on (size, book-to-market)
87 4 6 Kenneth French lv (4, 6) portfolio sorted on (size, book-to-market)
88 4 7 Kenneth French lv (4, 7) portfolio sorted on (size, book-to-market)
89 4 8 Kenneth French lv (4, 8) portfolio sorted on (size, book-to-market)
90 4 9 Kenneth French lv (4, 9) portfolio sorted on (size, book-to-market)
91 4 high Kenneth French lv (4, high) portfolio sorted on (size, book-to-market)
92 5 low Kenneth French lv (5, low) portfolio sorted on (size, book-to-market)
93 5 2 Kenneth French lv (5, 2) portfolio sorted on (size, book-to-market)
94 5 3 Kenneth French lv (5, 3) portfolio sorted on (size, book-to-market)
95 5 4 Kenneth French lv (5, 4) portfolio sorted on (size, book-to-market)
96 5 5 Kenneth French lv (5, 5) portfolio sorted on (size, book-to-market)
97 5 6 Kenneth French lv (5, 6) portfolio sorted on (size, book-to-market)
98 5 7 Kenneth French lv (5, 7) portfolio sorted on (size, book-to-market)
99 5 8 Kenneth French lv (5, 8) portfolio sorted on (size, book-to-market)
100 5 9 Kenneth French lv (5, 9) portfolio sorted on (size, book-to-market)
101 5 high Kenneth French lv (5, high) portfolio sorted on (size, book-to-market)
102 6 low Kenneth French lv (6, low) portfolio sorted on (size, book-to-market)
103 6 2 Kenneth French lv (6, 2) portfolio sorted on (size, book-to-market)
104 6 3 Kenneth French lv (6, 3) portfolio sorted on (size, book-to-market)
105 6 4 Kenneth French lv (6, 4) portfolio sorted on (size, book-to-market)
106 6 5 Kenneth French lv (6, 5) portfolio sorted on (size, book-to-market)
107 6 6 Kenneth French lv (6, 6) portfolio sorted on (size, book-to-market)
108 6 7 Kenneth French lv (6, 7) portfolio sorted on (size, book-to-market)
109 6 8 Kenneth French lv (6, 8) portfolio sorted on (size, book-to-market)
110 6 9 Kenneth French lv (6, 9) portfolio sorted on (size, book-to-market)
111 6 high Kenneth French lv (6, high) portfolio sorted on (size, book-to-market)
112 7 low Kenneth French lv (7, low) portfolio sorted on (size, book-to-market)
113 7 2 Kenneth French lv (7, 2) portfolio sorted on (size, book-to-market)
114 7 3 Kenneth French lv (7, 3) portfolio sorted on (size, book-to-market)
115 7 4 Kenneth French lv (7, 4) portfolio sorted on (size, book-to-market)
116 7 5 Kenneth French lv (7, 5) portfolio sorted on (size, book-to-market)
117 7 6 Kenneth French lv (7, 6) portfolio sorted on (size, book-to-market)
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No. Short Name Source Tran Description
118 7 7 Kenneth French lv (7, 7) portfolio sorted on (size, book-to-market)
119 7 8 Kenneth French lv (7, 8) portfolio sorted on (size, book-to-market)
120 7 9 Kenneth French lv (7, 9) portfolio sorted on (size, book-to-market)
121 8 low Kenneth French lv (8, low) portfolio sorted on (size, book-to-market)
122 8 2 Kenneth French lv (8, 2) portfolio sorted on (size, book-to-market)
123 8 3 Kenneth French lv (8, 3) portfolio sorted on (size, book-to-market)
124 8 4 Kenneth French lv (8, 4) portfolio sorted on (size, book-to-market)
125 8 5 Kenneth French lv (8, 5) portfolio sorted on (size, book-to-market)
126 8 6 Kenneth French lv (8, 6) portfolio sorted on (size, book-to-market)
127 8 7 Kenneth French lv (8, 7) portfolio sorted on (size, book-to-market)
128 8 8 Kenneth French lv (8, 8) portfolio sorted on (size, book-to-market)
129 8 9 Kenneth French lv (8, 9) portfolio sorted on (size, book-to-market)
130 8 high Kenneth French lv (8, high) portfolio sorted on (size, book-to-market)
131 9 low Kenneth French lv (9, low) portfolio sorted on (size, book-to-market)
132 9 2 Kenneth French lv (9, 2) portfolio sorted on (size, book-to-market)
133 9 3 Kenneth French lv (9, 3) portfolio sorted on (size, book-to-market)
134 9 4 Kenneth French lv (9, 4) portfolio sorted on (size, book-to-market)
135 9 5 Kenneth French lv (9, 5) portfolio sorted on (size, book-to-market)
136 9 6 Kenneth French lv (9, 6) portfolio sorted on (size, book-to-market)
137 9 7 Kenneth French lv (9, 7) portfolio sorted on (size, book-to-market)
138 9 8 Kenneth French lv (9, 8) portfolio sorted on (size, book-to-market)
139 9 high Kenneth French lv (9, high) portfolio sorted on (size, book-to-market)
140 10 low Kenneth French lv (10, low) portfolio sorted on (size, book-to-market)
141 10 2 Kenneth French lv (10, 2) portfolio sorted on (size, book-to-market)
142 10 3 Kenneth French lv (10, 3) portfolio sorted on (size, book-to-market)
143 10 4 Kenneth French lv (10, 4) portfolio sorted on (size, book-to-market)
144 10 5 Kenneth French lv (10, 5) portfolio sorted on (size, book-to-market)
145 10 6 Kenneth French lv (10, 6) portfolio sorted on (size, book-to-market)
146 10 7 Kenneth French lv (10, 7) portfolio sorted on (size, book-to-market)
147 VXO Fred MD lv VXOCLS

CRSP Data Details Value-weighted price and dividend data were obtained from the Center for Research in Se-
curity Prices (CRSP, Center for Research in Security Prices (1926–2022)). From the Annual Update data, we obtain
the monthly value-weighted return series vwretd (with dividends) and vwretx (excluding dividends). These series have

the interpretations: VWRETt =
Pt+1+Dt+1

Pt
, VWRETXt =

Pt+1

Pt
. From these series, a normalized price series Pt can

be constructed recursively as: P0 = 1, Pt = Pt−1 × VWRETXt−1. A dividend series can then be constructed using:
Dt = Pt−1 × (VWRETt−1 − VWRETXt−1). In order to remove seasonality of dividend payments from the data, instead
of Dt we use the series: D̄t = 1

12

∑11
j=0 Dt−j , i.e., the moving average over the entire year. For the price and dividend

series under “reinvestment,” we calculate the price under reinvestment, P re
t , as the normalized value of the market port-

folio under reinvestment of dividends, using the recursion: P re
0 = 1, P re

t = Pt−1 × VWRETt−1. Similarly, we can define
dividends under reinvestment, Dre

t , as the total dividend payments on this portfolio (the number of “shares” of which have
increased over time) using: Dre

t = P re
t−1 × (VWRETt−1 − VWRETXt−1). As before, we can remove seasonality by using:

D̄re
t = 1

12

∑11
j=0 D

re
t−j . Five data series are constructed from the CRSP data as follows: D log(DIV): ∆ log(D̄t); D log(P):

∆ log(Pt); D DIVreinvest: ∆ log(D̄re
t ); D Preinvest: ∆ log(P re

t ); d-p: log(D̄t)− log(Pt).

Kenneth French Data Details The following data are obtained from the data library of Kenneth French’s Dart-
mouth website (French (1926–2022)):

� Fama/French Factors: From this dataset we obtain the series RF, Mkt-RF, SMB, and HML.

� 25 Portfolios Formed on Size and Book-to-Market (5 x 5): From this dataset we obtain the series R15-R11, which
is the return spread between the (small, high book-to-market) and (small, low book-to-market) portfolios.

� Momentum Factor (Mom): From this dataset we obtain the series UMD, which is equal to the momentum factor.

� 49 Industry Portfolios: From this dataset we use all value-weighted series, excluding any series that have missing
observations from January 1960 onward. This yields the series Agric through Other. The omitted series are Soda,
Hlth, FabPr, Guns, Gold, and Softw.

� 100 Portfolios Formed on Size and Book-to-Market: From this dataset we use all value-weighted series, excluding
any series that have missing observations from January 1960 onward. This yields variables with names X Y, where
X denotes the size index (1, 2, . . . , 10) and Y denotes the book-to-market index (Low, 2, 3, . . . , 8, 9,High). The
omitted series are 1 low, 1 3, 7 high, 9 9, 10 8, 10 9, and 10 high.
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VXO Data Details VXO data is obtained from the Monthly Database for Macroeconomic Research (FRED-MD,
McCracken (2015–2022)).

OE.2.6 Daily Financial Data

Daily Data and construction of daily factors These data are used in the machine learning forecasts. The daily
financial series in this data set are from the daily financial dataset used in Andreou et al. (2013). I create a smaller
daily database which is a subset of the large cross-section of 991 daily series in their dataset. Our dataset covers five
classes of financial assets: (i) the Commodities class; (ii) the Corporate Risk category; (iii) the Equities class; (iv) the
Foreign Exchange Rates class and (v) the Government Securities. The dataset includes up to 87 daily predictors in a
daily frequency from 23-Oct-1959 to 31-Dec-2023 from the above five categories of financial assets. I remove series with
fewer than ten years of data and time periods with no variables observed, which occurs for some series in the early part
of the sample. For those years, I have less than 87 series. There are 39 commodity variables which include commodity
indices, prices and futures, 16 corporate risk series, 9 equity series which include major US stock market indices and the
500 Implied Volatility, 16 government securities which include the federal funds rate, government treasury bills of securities
from three months to ten years, and 7 foreign exchange variables which include the individual foreign exchange rates of
major five US trading partners and two effective exchange rate. I choose these daily predictors because they are proposed
in the literature as good predictors of economic growth.

I construct daily financial factors in a quarterly frequency in two steps. First, I use these daily financial time series to
form factors at a daily frequency. The raw data used to form factors are always transformed to achieve stationarity and
standardized before performing factor estimation (see generic description below). I re-estimate factors at each date in the
sample recursively over time using the entire history of data available in real time prior to each out-of-sample forecast.
In the second step, I convert these daily financial indicators to quarterly weighted variables to form quarterly factors by
selecting an optimal weighting scheme according to the method described below (see the weighting scheme section). The
data series used in this dataset are listed below in Table OA.15 by data source. The tables also list the transformation
applied to each variable to make them stationary before generating factors. The transformations used to stationarize a
time series are the same as those explained in the section “Monthly financial factor data”.

Table OA.15: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Commodities

1 GSIZSPT Data Stream ∆ln S&P GSCI Zinc Spot - PRICE INDEX
2 GSSBSPT Data Stream ∆ln S&P GSCI Sugar Spot - PRICE INDEX
3 GSSOSPT Data Stream ∆ln S&P GSCI Soybeans Spot - PRICE INDEX
4 GSSISPT Data Stream ∆ln S&P GSCI Silver Spot - PRICE INDEX
5 GSIKSPT Data Stream ∆ln S&P GSCI Nickel Spot - PRICE INDEX
6 GSLCSPT Data Stream ∆ln S&P GSCI Live Cattle Spot - PRICE INDEX
7 GSLHSPT Data Stream ∆ln S&P GSCI Lean Hogs Index Spot - PRICE INDEX
8 GSILSPT Data Stream ∆ln S&P GSCI Lead Spot - PRICE INDEX
9 GSGCSPT Data Stream ∆ln S&P GSCI Gold Spot - PRICE INDEX
10 GSCTSPT Data Stream ∆ln S&P GSCI Cotton Spot - PRICE INDEX
11 GSKCSPT Data Stream ∆ln S&P GSCI Coffee Spot - PRICE INDEX
12 GSCCSPT Data Stream ∆ln S&P GSCI Cocoa Index Spot - PRICE INDEX
13 GSIASPT Data Stream ∆ln S&P GSCI Aluminum Spot - PRICE INDEX
14 SGWTSPT Data Stream ∆ln S&P GSCI All Wheat Spot - PRICE INDEX
15 EIAEBRT Data Stream ∆ln Europe Brent Spot FOB U$/BBL Daily
16 CRUDOIL Data Stream ∆ln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE
17 LTICASH Data Stream ∆ln LME-Tin 99.85% Cash U$/MT
18 CWFCS00 Data Stream ∆ln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT. PRICE
19 CCFCS00 Data Stream ∆ln CBT-CORN COMP. CONTINUOUS - SETT. PRICE
20 CSYCS00 Data Stream ∆ln CBT-SOYBEANS COMP. CONT. - SETT. PRICE
21 NCTCS20 Data Stream ∆ln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE
22 NSBCS00 Data Stream ∆ln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE
23 NKCCS00 Data Stream ∆ln CSCE-COFFEE C CONTINUOUS - SETT. PRICE
24 NCCCS00 Data Stream ∆ln CSCE-COCOA CONTINUOUS - SETT. PRICE
25 CZLCS00 Data Stream ∆ln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE
26 COFC01 Data Stream ∆ln CBT-OATS COMP. TRc1 - SETT. PRICE
27 CLDCS00 Data Stream ∆ln CME-LIVE CATTLE COMP. CONTINUOUS - SETT. PRICE
28 CLGC01 Data Stream ∆ln CME-LEAN HOGS COMP. TRc1 - SETT. PRICE
29 NGCCS00 Data Stream ∆ln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE
30 LAH3MTH Data Stream ∆ln LME-Aluminium 99.7% 3 Months U$/MT
31 LED3MTH Data Stream ∆ln LME-Lead 3 Months U$/MT
32 LNI3MTH Data Stream ∆ln LME-Nickel 3 Months U$/MT
33 LTI3MTH Data Stream ∆ln LME-Tin 99.85% 3 Months U$/MT
34 PLNYD www.macrotrends.net ∆ln Platinum Cash Price (U$ per troy ounce)
35 XPDD www.macrotrends.net ∆ln Palladium (U$ per troy ounce)
36 CUS2D www.macrotrends.net ∆ln Corn Spot Price (U$/Bushel)
37 SoybOil www.macrotrends.net ∆ln Soybean Oil Price (U$/Pound)
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38 OATSD www.macrotrends.net ∆ln Oat Spot Price (US$/Bushel)
39 WTIOilFut US EIA ∆ln Light Sweet Crude Oil Futures Price: 1St Expiring Contract Set-

tlement ($/Bbl)
Group 2: Equities

40 S&PCOMP Data Stream ∆ln S&P 500 COMPOSITE - PRICE INDEX
41 ISPCS00 Data Stream ∆ln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE
42 SP5EIND Data Stream ∆ln S&P500 ES INDUSTRIALS - PRICE INDEX
43 DJINDUS Data Stream ∆ln DOW JONES INDUSTRIALS - PRICE INDEX
44 CYMCS00 Data Stream ∆ln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE
45 NASCOMP Data Stream ∆ln NASDAQ COMPOSITE - PRICE INDEX
46 NASA100 Data Stream ∆ln NASDAQ 100 - PRICE INDEX
47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX
48 S&P500toVIX Data Stream ∆ln S&P500/VIX

Group 3: Corporate Risk
49 LIBOR FRED ∆lv Overnight London Interbank Offered Rate (%)
50 1MLIBOR FRED ∆lv 1-Month London Interbank Offered Rate (%)
51 3MLIBOR FRED ∆lv 3-Month London Interbank Offered Rate (%)
52 6MLIBOR FRED ∆lv 6-Month London Interbank Offered Rate (%)
53 1YLIBOR FRED ∆lv One-Year London Interbank Offered Rate (%)
54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed

Funds
55 3MEuro-FF FRED lv 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed

Funds
56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed

Funds
57 APFNF-

AANF
Data Stream lv 1-Month A2/P2/F2 Nonfinancial Commercial Paper (NCP) (% P.

A.) minus 1-Month Aa NCP (% P.A.)
58 APFNF-AAF Data Stream lv 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Financial

Commercial Paper (% P.A.)
59 TED Data Stream, FRED lv 3Month Tbill minus 3-Month London Interbank Offered Rate (%)
60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus Y10-

Tbond
61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus Y10-

Tbond
62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: Effective Yield (%)

minus Y10-Tbond
63 MLAA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aa Rated: Effective Yield (%)

minus Y10-Tbond
64 MLAAA-

10YTB
Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: Effective Yield (%)

minus Y10-Tbond
Group 4: Treasuries

65 FRFEDFD Data Stream ∆lv US FED FUNDS EFF RATE (D) - MIDDLE RATE
66 FRTBS3M Data Stream ∆lv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE
67 FRTBS6M Data Stream ∆lv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE
68 FRTCM1Y Data Stream ∆lv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE RATE
69 FRTCM10 Data Stream ∆lv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE RATE
70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity (%)

minus Fed Funds
71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus Fed

Funds
72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.) minus

Fed Funds
73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills
74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills
75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.) minus

3M-Tbills
76 BKEVEN05 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 5-year (%)
77 BKEVEN10 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 10-year (%)
78 BKEVEN1F4 FRB lv BKEVEN1F4
79 BKEVEN1F9 FRB lv BKEVEN1F9
80 BKEVEN5F5 FRB lv US Inflation compensation: coupon equivalent forward rate: 5-10

years (%)
Group 5: Foreign Exchange (FX)

81 US CWBN Data Stream ∆ln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-
DEX

82 US CWMN Data Stream ∆ln US NOMINAL DOLLAR MAJOR CURR INDEX - EXCHANGE
INDEX
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No. Short Name Source Tran Description
83 US CSFR2 Data Stream ∆ln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE
84 EU USFR2 Data Stream ∆ln EURO TO US$ NOON NY - EXCHANGE RATE
85 US YFR2 Data Stream ∆ln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE
86 US SFFR2 Data Stream ∆ln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE
87 US UKFR2 Data Stream ∆ln UK POUND TO US $ NOON NY - EXCHANGE RATE

From Daily to Quarterly Factors: Weighting Schemes After we obtain daily financial factors GD,t, we use
weighting schemes proposed in the literature on Mixed Data Sampling (MIDAS) regressions to form quarterly factors,
denoted GQ

D,t. Let GD
t denote a factor in daily frequency formed from the daily financial dataset, and let GQ

t denote a

quarterly aggregate of the corresponding daily factor time series. Let GD
ND−j,dt,t denote the value of a daily factor on the

j-th day counting backwards from the survey deadline dt in quarter t. Hence, the day dt of quarter t corresponds to j = 0,
so the daily factor on the survey deadline is GD

ND,dt,t. For simplicity, we suppress the subscript dt, writing GD
ND−j,t.

We compute the quarterly aggregate of a daily financial factor as a weighted average of observations over the ND
business days before the survey deadline. This means that the forecaster’s information set includes daily financial data up
to the previous ND business days before the survey deadline. The quarterly factor GQ

t is defined as:

GQ
t (w) =

ND∑
j=1

wj ×GD
ND−j,t

where wj is a weight. We consider the following three types of weighting schemes to convert daily factor observations to
quarterly aggregates. Each weighting scheme weights information by some function of the number of days prior to the
survey deadline.

1. wi = 1 for i = 1 and wi = 0 otherwise. This weighting scheme places all weight on the data from the last business
day before the survey deadline and zero weight on any data prior to that day.

2. wi = δi
/∑ND

j=1 δ
j , where we consider a range of δ values with δ ∈ {0.1, 0.2, 0.3, 0.7, 0.8, 0.9, 1.0}. The smaller the

δ, the more rapidly information prior to the survey deadline is down-weighted. This down-weighting is progressive
but not non-monotonic. The case δ = 1 corresponds to a simple average of observations across all days.

3. The third parameterization uses two parameters θ = (θ1, θ2)
′ and allows for non-monotonic weighting of past

information. The weights are defined as:

w(i; θ1, θ2) =
f
(

i
ND

; θ1, θ2
)∑ND

j=1 f
(

j
ND

; θ1, θ2
)

where f(x; a, b) = xa−1(1 − x)b−1 · Γ(a+b)
Γ(a)Γ(b)

, and Γ(a) is the gamma function Γ(a) =
∫∞
0

xa−1e−x dx. The weights

w(i; θ1, θ2) are the Beta polynomial MIDAS weights of Ghysels et al. (2007), based on the Beta function. This
weighting scheme is flexible enough to generate a wide range of possible shapes with only two parameters.

We consider these possible weighting schemes and choose the optimal weighting scheme w∗ from 24 candidate weighting
schemes for each daily financial factor GD

t by minimizing the sum of squared residuals in a regression of yj,t+h on GQ
t :

yj,t+h = α+ β ×GQ
t (w) + ut+h

This procedure is conducted in real time using recursive regressions. We re-estimate the weights at each date in the sample
recursively over time, using the entire history of data available in real time prior to each out-of-sample forecast. We assume
that ND = 14, which implies that forecasters use daily information from at most the past two weeks before the survey
deadline. This process is repeated for each daily financial factor in GD,t to form quarterly factors GQ

D,t.

OE.2.7 LDA Data

The LDA data are used as inputs into the machine learning forecasts. The database for our Latent Dirichlet Allocation
(LDA) analysis contains around one million articles published in Wall Street Journal between January 1984 to Dec 2023.
The current vintage of the results reported here is based a randomly selected sub-sample of 200,000 articles over the same
period, one-fifth size of the entire database. The sample selection procedure follows Bybee et al. (2021). First, I remove all
articles prior to January 1984 and after June 2022 and exclude articles published in weekends. Second, I exclude articles
with subject tags associated with obviously non-economic content such as sports. Third, I exclude articles with the certain
headline patterns, such as those associated with data tables or those corresponding to regular sports, leisure, or books
columns. I filter the articles using the same list of exclusions provided by Bybee et al. (2021). Last, I exclude articles with
less than 100 words.
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Processing of texts The processing of the texts can be summarized into five steps:

1. Tokenization: parse each article’s text into a white-space-separated word list retaining the article’s word ordering.

2. I drop all non-alphabetical characters and set the remaining characters to lower-case, remove words with less than 3
letters, and remove common stop words and URL-based terms. I use a standard list of stop words from the Python
library gensim.parsing.preprocessing.

3. Lemmatization and Stemming: lemmatization returns the original form of a word using external dictionary
Textblob.Word in Python and based on the context of the word. For instance, as a verb, “went” is converted
to“go”. Stemming usually refers to a heuristic process that removes the trailing letters at the end of the words,
such as from “assesses” to “assess’, and “really” to “real”. I use the Python library Textblob.Word to implement
the lemmatization and SnowballStemmer for the stemming. The results are not very sensitive to the particular
Python packages being used.

4. From the first three steps, I obtain a list of uni-grams which are a list of singular words. For example, “united” and
“states” are uni-grams from “united states”. From the list of uni-grams, I generate a set of bi-grams as all pairs of
(ordered) adjacent uni-grams. For example, “united states” together is one bi-gram. I then exclude uni-grams and
bi-grams appearing in less than 0.1% of articles.

5. Last, I convert an article’s word list into a vector of counts for each uni-gram and bi-gram. For example, the vector
of counts [5, 7, 2] corresponds to the number of times the words [”federal”, ”reserve”, ”bank”] appear in the article.

The LDA Model The LDA model Blei et al. (2003) essentially achieves substantial dimension reduction of the word
distribution of each article using the following assumptions. I assume a factor structure on the vectors of word counts.
Each factor is a topic and each article is a parametric distribution of topics, specified as follows,

V ×1︷︸︸︷
wi︸︷︷︸

word dist of article i

∼ Mult


V ×K︷︸︸︷
Φ′︸︷︷︸,

topic-word dist.

K×1︷︸︸︷
θi︸︷︷︸

topic dist.

, Ni︸︷︷︸
# of words


where Mult is the multinomial distribution. In the above equation, wi is a vector of word counts of each unique term
(uni-gram or bi-gram) in article i, whose size is equal to the number of unique terms V . K is the number of factors in
article i. In the estimation, I assume K = 180 following Bybee et al. (2021). Φ is a matrix sized K × V , whose kth row
and vth column is equal to the probability of the unique term v showing up in topic k. θi stores the weights of all k topics
contained in article i, which sum up to one. Dimension reduction is achieved as long as K << V (the number of topics are
significantly smaller than the number of unique terms). More specifically, it reduces the dimension from T × V to T ×K
(the size of θ) + K × V (the size of Φ).

Real-time news factors. I also generate real-time news factors for each month t starting from January 1991. In theory,
I could train the LDA model using each real-time monthly vintage but it is computationally challenging. Instead, I simplify
the procedure by training the LDA model using quarterly vintages t, t+ 3, t+ 6, etc, and use the LDA model parameters
estimated at t to filter news paper articles within the quarter and generate news factors for those months. More specifically,
given every article’s word distribution wi,t+s,for s = 0, 1, 2, and the estimated real-time topic-word distribution parameters
Φ̂t using articles till date t, one can obtain the filtered topic distribution of each article θ̂i,t+s, as follows,

V ×1︷ ︸︸ ︷
wi,t+s︸ ︷︷ ︸

word dist of article i at time t+s

∼ Mult


V ×K︷︸︸︷
Φ̂′︸︷︷︸,

topic-word dist.

K×1︷ ︸︸ ︷
θ̂i,t+s︸ ︷︷ ︸

topic dist.

, Ni,t+s︸ ︷︷ ︸
# of words

 .

LDA Estimation I use the built-in LDA model estimation toolbox in the Python library https://pypi.org/project/

gensim/Gensim to implement the model estimation. The model requires following initial inputs and parameters and it
is estimated using Bayesian methods. In theory, maximum-likelihood estimation is possible but it is computationally
challenging.

1. I create a document-term matrix W as a collection of wi for all articles i in the sample. The number of rows in
W is equal to the number of articles in our sample and the number of columns in W is equal to the number of
unique uni-gram and bi-grams (after being filtered) across all articles. The matrix W is used as an input for the
LDA model estimation. I then follow Bybee et al. (2021) and set the number of topics K to be 180. The authors
used Bayesian criteria to find 180 to be an optimal number of topics.
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2. In the Python library Gensim, the key parameters of the LDA estimation are α and β. With a higher value of α,
the documents are composed of more topics. With a higher value of β, each topic contains more terms (uni- or
bi-grams). In the implementations, I do not impose any explicit restrictions on initial values of those parameters
and set them to be “auto”. These two parameters, alongside Φ′ and {θi}i, are estimated by the toolbox from
Python library https://pypi.org/project/gensim/Gensim.

Real-time LDA Factors With the estimated topic weights θi,t of each article i from the LDA model, I further
construct time series of the overall news attention to each topic, or a news factor. The value of the topic k at time t is the
average weights of topic k of all articles published at t, specified as follows,

Fk,t =

∑
i θ̂i,k,t

# of articles at t

for all topics k. We construct daily LDA factors by aggregating all articles published on each calendar day. The value of
topic k at day t is the average weights of topic k across all articles published that day.

OE.2.8 Machine Variables to Be forecast

Returns and price growth When evaluating the MSE ratio of the machine relative to that of a benchmark survey,
we use the machine forecast for the return or price growth measure that most closely corresponds to the concept that
survey respondents are asked to predict:

1. CFO survey asks respondents about their expectations for the S&P 500 return over the next 12 months. Following
Nagel and Xu (2021), we interpret the survey to be asking about rdt,t+12, the one-year CRSP value-weighted return
(including dividends) from the current survey month to the same month one year ahead.

2. Gallup/UBS survey respondents report the return (including dividends) they expect on their own portfolio one
year ahead. We interpret the survey to be asking about rdt,t+12, the one-year CRSP value-weighted return(including
dividends) from the current survey month to the same month one year ahead.

3. Livingston survey respondents provide 12-month ahead forecasts of the S&P 500 index. We convert the level
forecast to price growth forecast by taking the log difference between the 12-month ahead level forecast and the
nowcast of the S&P 500 index for the current survey month. Therefore, we interpret the survey to be asking about
the one-year price growth in the S&P 500 index.

4. Bloomberg Consensus Forecasts asks survey respondents about the end-of-year closing value of the S&P 500 index.
We interpret the survey to be asking about the h-month price growth in the S&P 500 index. The horizon of the
forecast changes depending on when in the year the panelists are answering the survey.

5. Michigan Survey of Consumers (SOC) asks respondents about their perceived probability that an investment in a
diversified stock fund would increase in value in the year ahead. We interpret the question to be asking about the
one-year price growth in the S&P 500 index.

6. Conference Board (CB) survey asks respondents about their categorical belief on whether they expect stock prices
to increase, decrease, or stay the same over the next year. We interpret the question to be asking about the one-year
price growth in the S&P 500 index.

Earnings growth (IBES “Street” Earnings) For earnings growth forecasts, we use a quarterly S&P 500 total
earnings series based on IBES street earnings per share (EPS), as described above. Street earnings exclude discontinued
operations, extraordinary charges, and other non-operating items, making them better aligned with the earnings measure
targeted by survey respondents. We convert EPS to total earnings using the S&P 500 index divisor and use the resulting
quarterly series directly, prior to any monthly interpolation, since the machine learning algorithm operates at a quarterly
frequency. The IBES street earnings series spans 1983Q4 to 2021Q4.

For Long-Term Growth (LTG) forecasts, IBES defines LTG as the “expected annual increase in operating earnings
over the company’s next full business cycle. These forecasts refer to a period of between three to five years.” We compare
survey responses of LTG against machine forecasts under alternative interpretations of LTG. First, we consider machine
forecasts of annual five-year forward growth, i.e., annual earnings growth from four to five years ahead (Bianchi et al.
(2024)). Second, we consider machine forecasts of annualized 5-year growth, i.e., annual earnings growth from current
quarter to five years ahead, following the interpretation in Bordalo et al. (2019). Third, we consider machine forecasts of
annualized earnings growth from one to 10 years ahead, following the interpretation in Nagel and Xu (2021)
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Inflation We construct forecasts of annual inflation defined as πt+4,t = log
(

PGDPt+4

PGDPt

)
, where PGDPt is the quarterly

level of the chain-weighted GDP price index. Following Coibion and Gorodnichenko (2015), we use the vintage of inflation
data that is available four quarters after the period being forecast.

OE.2.9 Machine Input Data: Predictor Variables

The vector Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
is an r = 1 + rG + rW vector which collects the data at time t with

Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG ,W′

jt, ...,W
′
jt−pW

)′
a vector of contemporaneous and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ

′
t, W

′
jt,

respectively. The predictors below are listed as elements of yj,t, Ĝ
′
jt, or W

′
jt for variables.

Stock return and price growth predictor variables and specifications For yj equal to CRSP value-weighted
returns or S&P 500 price index growth, we first predict the one-year log stock return or price growth that is expected to
occur h quarters into the future from time t+h−4 to t+h, i.e., Et[rt+h−4,t+h]. For horizons longer than one year, since the
h-quarter long horizon return is the sum of one-year returns between time t to t+h, we first forecast the forward one-year
returns separately and then add the components together to get machine forecasts of h-quarter long horizon returns. The
forecasting model considers the following variables. Lags of the dependent variable:

1. yt−1, yt−2 one and two quarter lagged stock returns or price growth.

The factors in Ĝ′
jt are formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily financial indicators.

The raw daily series are first converted to daily factors GD,t (w) and the daily factors are aggregated up to
quarterly observations GQ

D,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The variables in W′
jt include:

1. LDA topics Fk,t−j , for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at time t is the average weights of
topic k of all articles published at t.

2. Macro data surprises from the money market survey. The macro news include, GDP growth (Q/Q percent-
age change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change). We include first release, second release, and final release for GDP growth. This con-
stitutes six macro data surprises per quarter.

3. FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds
futures (FFF) contract rate and the changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contracts,
from 10 minutes before to 20 minutes after each FOMC announcement. When benchmarking against a survey, we
use the last FOMC meeting before the survey deadline to compute surprises. For surveys that do not have a clear
deadline, we compute surprises using from the last FOMC in the first month of the quarter. When benchmarking
against moving average, we use the last FOMC meeting before the end of the first month in each quarter to compute
surprises. This leaves 10 FOMC surprise variables per quarter.

4. Stock market jumps are accumulated 30-minute window negative and positive jumps in the S&P 500 around news
events over the previous quarter.

5. Long-term growth of earnings: 5-year growth of the SP500 earnings per share.

6. Short rates. When forecasting returns or price growth, the machine controls for the current nominal short rate,
log(1 + 3MTBt/100), imposing a unit coefficient. This is equivalent to forecasting the future return minus the
current short rate.
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The 92 macro series in DM are selected to represent broad categories of macroeconomic time series. The majority of these
are real activity measures: real output and income, employment and hours, consumer spending, housing starts, orders and
unfilled orders, compensation and labor costs, and capacity utilization measures. The dataset also includes commodity
and price indexes and a handful of bond and stock market indexes, and foreign exchange measures. The financial dataset
Df is an updated monthly version of the of 147 variables comprised solely of financial market time series used in Ludvigson
and Ng (2007). These data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth
rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds of different ratings grades,
yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and momentum portfolio
equity returns. A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc data appendix.pdf. The 87 daily financial indicators in DD include daily time series on
commodities spot prices and futures prices, aggregate stock market indexes, volatility indexes, credit spreads and yield
spreads, and exchange rates.

Earning growth predictor variables and specifications For yt equal to S&P 500 log earning growth, we
construct a forecasted value for yt, denoted ŷt|t−h, based on information known up to time t using the following variables.
Lags of the dependent variable:

1. yt−1, yt−2 one and two quarter lagged earnings growth.

The factors in Ĝ′
jt are formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily financial indicators.

The raw daily series are first converted to daily factors GD,t (w) and the daily factors are aggregated up to
quarterly observations GQ

D,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of yj,t on GD,t (w).

The variables in W′
jt include:

1. LDA factors Fk,t−j , for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at time t is the average weights
of topic k of all articles published at t.

2. Macro data surprises from the money market survey. The macro news include, GDP growth (Q/Q percent-
age change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change). We include first release, second release, and final release for GDP growth. This con-
stitutes six macro data surprises per quarter.

3. FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds
futures (FFF) contract rate and the changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contracts,
from 10 minutes before to 20 minutes after each FOMC announcement. When benchmarking against a survey, we
use the last FOMC meeting before the survey deadline to compute surprises. For surveys that do not have a clear
deadline, we compute surprises using from the last FOMC in the first month of the quarter. When benchmarking
against moving average, we use the last FOMC meeting before the end of the first month in each quarter to compute
surprises. This leaves 10 FOMC surprise variables per quarter.

4. Stock market jumps are accumulated 30-minute window negative and positive jumps in the S&P 500 around news
events over the previous quarter.

Inflation predictor variables For yj equal to inflation, the forecasting model considers the following variables. Lags
of the dependent variable:

1. yt−1,t−h−1 one quarter lagged inflation.

The factors in Ĝ′
jt are formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.
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2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily financial indicators.

The raw daily series are first converted to daily factors GD,t (w) and the daily factors are aggregated up to
quarterly observations GQ

D,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The variables in W′
jt include:

1. F(i)
jt−k[yjt+h−k], lagged values of the ith type’s forecast, where k = 1, 2

2. F(s ̸=i)
jt−1 [yjt+h−1], lagged values of other type’s forecasts, s ̸= i

3. varN
(
F(·)
t−1[yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of lagged survey forecasts

4. skewN

(
F(·)
t−1[yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of lagged survey forecasts

5. Trend inflation measured as πt−1 =

{
ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t < 1991Q4
CPI10t−1 if t ≥ 1991Q4

, where CPI10 is the median

SPF forecast of annualized average inflation over the current and next nine years. Trend inflation is intended to
capture long-run trends. When long-run forecasts of inflation are not available, as is the case pre-1991Q4, we us a
moving average of past inflation.

6. ˙GDP t−1 = detrended gross domestic product, defined as the residual from a regression of GDPt−1 on a constant
and the four most recent values of GDP as of date t− 8. See Hamilton (2018).

7. ˙EMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1 on a constant and the
four most recent values of EMP as of date t− 8. See Hamilton (2018).

8. N(i)
t [πt,t−h] = Nowcast as of time t of the ith percentile of inflation over the period t− h to t.

OE.3 Cross-Sectional Forecasts
I construct machine learning forecasts of stock returns and earnings growth at the firm level using the Long Short-Term

Memory (LSTM) framework described in Section OE. The model is estimated using pooled panel data across all firms,
with firm-specific predictors as inputs. I re-estimate model parameters and update hyperparameters every four quarters
using a recursively expanding sample to maintain computational tractability while still incorporating new information.
The stock universe consists of about 5,000 firms listed on the NYSE, AMEX, and NASDAQ with available IBES analyst
coverage for one- and two-year ahead earnings expectations and long-term growth forecasts. Monthly total returns for
these firms are obtained from CRSP. The sample spans March 1990 to December 2024.

To construct predictors, I follow the cross-sectional asset pricing literature and compile a broad set of stock-level
characteristics. Specifically, I include 94 firm characteristics, of which 61 are updated annually, 13 quarterly, and 20
monthly. These characteristics span valuation ratios, profitability, investment, size, momentum, volatility, and other firm-
level attributes, based on the definitions in Green et al. (2013). Book equity and operating profitability follow Fama
and French (2015). I rank-transform each characteristic cross-sectionally within each month to the [−1, 1] interval, as in
Gu et al. (2020). I also include 74 industry dummies based on two-digit Standard Industrial Classification (SIC) codes.
Table OA.16 provides further details on these predictors. To avoid forward-looking bias, I apply realistic reporting lags:
monthly characteristics are assumed available with a one-month delay, quarterly characteristics with at least a four-month
delay, and annual characteristics with at least a six-month delay. Missing values are replaced with the cross-sectional
median at each period.

Following Gu et al. (2020), I construct an expanded set of predictors that interact firm-level characteristics with
aggregate macroeconomic state variables. Let Ci,t denote the vector of firm characteristics for firm i, and let Xt denote
the vector of aggregate predictors, which includes a constant and the same macroeconomic variables used to forecast
aggregate returns, price growth, and earnings growth, respectively. The final predictor set for firm i at time t is given by
Xi,t = Xt ⊗ Ci,t, where ⊗ denotes the Kronecker product. This structure generates interaction terms that capture how
aggregate economic conditions influence the effect of firm-level characteristics on expected returns and earnings growth.
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Table OA.16: Details of Firm Characteristics

No. Acronym Characteristic Authors Source Frq.
1 absacc Absolute accruals Bandyopadhyay, Huang, Wirjanto 2010 Compustat Y
2 acc Working capital accruals Sloan 1996 Compustat Y
3 aeavol Abnormal earnings ann volume Lerman, Livnat, Mendenhall 2007 Compustat/CRSP Q
4 age Years since first coverage Jiang, Lee, Zhang 2005 Compustat Y
5 agr Asset growth Cooper, Gulen, Schill 2008 Compustat Y
6 baspread Bid-ask spread Amihud, Mendelson 1989 CRSP M
7 beta Beta Fama, MacBeth 1973 CRSP M
8 betasq Beta squared Fama, MacBeth 1973 CRSP M
9 bm Book-to-market Rosenberg, Reid, Lanstein 1985 Compustat/CRSP Y
10 bm ia Industry-adj book-to-market Asness, Porter, Stevens 2000 Compustat/CRSP Y
11 cash Cash holdings Palazzo 2012 Compustat Q
12 cashdebt Cash flow to debt Ou, Penman 1989 Compustat Y
13 cashpr Cash productivity Chandrashekar, Rao 2009 Compustat Y
14 cfp Cash flow to price ratio Desai, Rajgopal, Venkatachalam 2004 Compustat Y
15 cfp ia Industry-adj cash flow to price ratio Asness, Porter, Stevens 2000 Compustat Y
16 chatoia Industry-adj chg asset turnover Soliman 2008 Compustat Y
17 chcsho Chg shares outstanding Pontiff, Woodgate 2008 Compustat Y
18 chempia Industry-adj chg employees Asness, Porter, Stevens 1994 Compustat Y
19 chinv Chg inventory Thomas, Zhang 2002 Compustat Y
20 chmom Chg 6-month momentum Gettleman, Marks 2006 CRSP M
21 chpmia Industry-adj chg profit margin Soliman 2008 Compustat Y
22 chtx Chg tax expense Thomas, Zhang 2011 Compustat Q
23 cinvest Corporate investment Titman, Wei, Xie 2004 Compustat Q
24 convind Convertible debt indicator Valta 2016 Compustat Y
25 currat Current ratio Ou, Penman 1989 Compustat Y
26 depr Depreciation over PP&E Holthausen, Larcker 1992 Compustat Y
27 divi Dividend initiation Michaely, Thaler, Womack 1995 Compustat Y
28 divo Dividend omission Michaely, Thaler, Womack 1995 Compustat Y
29 dolvol Dollar trading volume Chordia, Subrahmanyam, Anshuman 2001 CRSP M
30 dy Dividend-to-price ratio Litzenberger, Ramaswamy 1982 Compustat Y
31 ear Earnings announcement return Kishore, Brandt, Santa-Clara, Venkat-

achalam 2008
Compustat/CRSP Q

32 egr Gr common shareholder equity Richardson, Sloan, Soliman, Tuna 2005 Compustat Y
33 ep Earnings-to-price ratio Basu 1977 Compustat Y
34 gma Gross profitability Novy-Marx 2013 Compustat Y
35 grCAPX Gr capex Anderson, Garcia-Feijoo 2006 Compustat Y
36 grltnoa Gr long-term net operating assets Fairfield, Whisenant, Yohn 2003 Compustat Y
37 herf Industry sales concentration Hou, Robinson 2006 Compustat Y
38 hire Employee gr rate Bazdresch, Belo, Lin 2014 Compustat Y
39 idiovol Idiosyncratic return volatility Ali, Hwang, Trombley 2003 CRSP M
40 ill Illiquidity Amihud 2002 CRSP M
41 indmom Industry momentum Moskowitz, Grinblatt 1999 CRSP M
42 invest Capital expenditures and inventory Chen, Zhang 2010 Compustat Y
43 lev Leverage Bhandari 1988 Compustat Y
44 lgr Gr long-term debt Richardson, Sloan, Soliman, Tuna 2005 Compustat Y
45 maxret Maximum daily return Bali, Cakici, Whitelaw 2011 CRSP M
46 mom12m 12-month momentum Jegadeesh 1990 CRSP M
47 mom1m 1-month momentum Jegadeesh, Titman 1993 CRSP M
48 mom36m 36-month momentum Jegadeesh, Titman 1993 CRSP M
49 mom6m 6-month momentum Jegadeesh, Titman 1993 CRSP M
50 ms Financial statement score Mohanram 2005 Compustat Q
51 mvel1 Size Banz 1981 CRSP M
52 mve ia Industry-adj size Asness, Porter, Stevens 2000 Compustat Y
53 nincr Number of earnings increases Barth, Elliott, Finn 1999 Compustat Q
54 operprof Operating profitability Fama, French 2015 Compustat Y
55 orgcap Organizational capital Eisfeldt, Papanikolaou 2013 Compustat Y
56 pchcapx ia Industry-adj % chg capex Abarbanell, Bushee 1998 Compustat Y
57 pchcurrat % chg current ratio Ou, Penman 1989 Compustat Y
58 pchdepr % chg depreciation Holthausen, Larcker 1992 Compustat Y
59 pchgm

pchsale
% chg gross margin - % chg sales Abarbanell, Bushee 1998 Compustat Y

60 pchquick % chg quick ratio Ou, Penman 1989 Compustat Y
61 pchsale

pchinvt
% chg sales - % chg inventory Abarbanell, Bushee 1998 Compustat Y

62 pchsale
pchrect

% chg sales - % chg receivables Abarbanell, Bushee 1998 Compustat Y

63 pchsale
pchxsga

% chg sales - % chg SG&A Abarbanell, Bushee 1998 Compustat Y
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No. Acronym Firm Characteristic Authors Source Freq.

64 pchsaleinv % chg sales-to-inventory Ou, Penman 1989 Compustat Y
65 pctacc Percent accruals Hafzalla, Lundholm, Van Winkle 2011 Compustat Y
66 pricedelay Price delay Hou, Moskowitz 2005 CRSP M
67 ps Financial statement score Piotroski 2000 Compustat Y
68 quick Quick ratio Ou, Penman 1989 Compustat Y
69 rd R&D increase Eberhart, Maxwell, Siddique 2004 Compustat Y
70 rd mve R&D to market capitalization Guo, Lev, Shi 2006 Compustat Y
71 rd sale R&D to sales Guo, Lev, Shi 2006 Compustat Y
72 realestate Real estate holdings Tuzel 2010 Compustat Y
73 retvol Return volatility Ang, Hodrick, Xing, Zhang 2006 CRSP M
74 roaq Return on assets Balakrishnan, Bartov, Faurel 2010 Compustat Q
75 roavol Earnings volatility Francis, LaFond, Olsson, Schipper 2004 Compustat Q
76 roeq Return on equity Hou, Xue, Zhang 2015 Compustat Q
77 roic Return on invested capital Brown, Rowe 2007 Compustat Y
78 rsup Revenue surprise Kama 2009 Compustat Q
79 salecash Sales to cash Ou, Penman 1989 Compustat Y
80 saleinv Sales to inventory Ou, Penman 1989 Compustat Y
81 salerec Sales to receivables Ou, Penman 1989 Compustat Y
82 secured Secured debt Valta 2016 Compustat Y
83 securedind Secured debt indicator Valta 2016 Compustat Y
84 sgr Sales gr Lakonishok, Shleifer, Vishny 1994 Compustat Y
85 sin Sin stocks Hong, Kacperczyk 2009 Compustat Y
86 sp Sales to price Barbee, Mukherji, Raines 1996 Compustat Y
87 std dolvol Volatility liquidity dollar volume Chordia, Subrahmanyam, Anshuman 2001 CRSP M
88 std turn Volatility liquidity share turnover Chordia, Subrahmanyam, Anshuman 2001 CRSP M
89 stdacc Accrual volatility Bandyopadhyay, Huang, Wirjanto 2010 Compustat Q
90 stdcf Cash flow volatility Huang 2009 Compustat Q
91 tang Debt capacity / firm tangibility Almeida, Campello 2007 Compustat Y
92 tb Tax income to book income Lev, Nissim 2004 Compustat Y
93 turn Share turnover Datar, Naik, Radcliffe 1998 CRSP M
94 zerotrade Zero trading days Liu 2006 CRSP M
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