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1 Introduction

The search and matching model of the labor market offers a compelling framework for understand-

ing unemployment fluctuations by generating involuntary unemployment through the dynamics

of job creation and destruction. Yet a long-standing challenge—known as the “unemployment

volatility puzzle”—is that standard search models fail to generate fluctuations in unemployment

of the observed magnitude (Shimer, 2005).

One proposed solution introduces rational expectations of time-varying discount rates, linking

hiring decisions to fluctuations in risk premia inferred from financial markets (Hall, 2017; Kehoe

et al., 2022). The rational expectations assumption of this approach implies that firms correctly

understand the relative importance of discount rates and cash flows when posting job vacan-

cies. However, recent work in behavioral finance suggests otherwise: deviations from rational

expectations lead investors to over-react to cash flow news, amplifying asset price fluctuations

(De La O and Myers, 2021; Bordalo et al., 2024a). While belief distortions are well-documented

in financial markets, their consequences for labor markets remain underexplored.

This paper aims to bridge that gap by showing that belief distortions about future cash

flows and discount rates can significantly affect unemployment dynamics. I develop a search and

matching model where firms’ subjective beliefs may deviate from rational expectations.1 Because

hiring is a forward-looking investment under search frictions, distortions in subjective beliefs can

meaningfully impact vacancy postings and job filling rates. From the firm’s hiring condition, I

derive a variance decomposition of the job filling rate—a key driver of unemployment fluctuations

(Shimer, 2012)—into expectations about future cash flows and discount rates. I estimate this

decomposition using survey-based measures of subjective expectations and compare them to

machine learning-based proxies for rational expectations.

A central challenge in identifying belief distortions is selecting an appropriate benchmark for

rational expectations. Traditional approaches rely on structural models or in-sample estimates

from historical data, which either impose strong parametric assumptions or use information not

available to firms at decision time (Hansen, 2007; Nagel and Xu, 2021). I address these issues

by using machine learning forecasts as an empirical benchmark for undistorted expectations

(Bianchi et al., 2022). Machine learning can flexibly process a high-dimensional set of real-time

data without imposing a particular theory of belief formation. Systematic deviations from the

machine’s predictions then reflect how subjective beliefs overweight or underweight economic

signals.

Three main findings highlight the role of belief distortions in labor market dynamics. First,

at the aggregate level, subjective expectations about cash flows account for most of variation

in job filling rates—94.9% at the five-year horizon—while subjective discount rate expectations

contribute only 1.6%. This pattern reverses under rational expectations, where discount rates

1I use the term “firms’ beliefs” as shorthand to refer to the expectations held by decision makers within firms
(Coibion et al., 2018).
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dominate. The result suggests that investors under subjective beliefs over-estimate future cash

flows during expansions when the job filling rate is low, which consistently leads to disappoint-

ment in realized cash flows in the future. Conversely, investors under-estimate the magnitude

of fluctuations in future discount rates, where realized future returns following expansions are

significantly lower than investors expected. These patterns in job filling rates carry over to unem-

ployment rate decompositions, where subjective expectations similarly amplify the role of cash

flow beliefs in driving labor market fluctuations.

Second, cross-sectional analysis at the state and firm levels show that belief distortions in

subjective cash flow expectations also drive regional variation in job filling rates, in line with the

aggregate level results. Using a Bartik shift-share instrument to isolate exogenous shocks to job

filling rates, I show that regions with more volatile subjective cash flow expectations experience

larger hiring fluctuations, explaining 62.9% of the variation in regional job filling rates at the

5-year horizon.

Third, subjective expectations of real wages and the user cost of labor are significantly more

rigid than their rational counterparts. Search models under rational expectations predict that

the user cost of labor responds strongly to business cycle conditions (Kudlyak, 2014; Basu and

House, 2016). However, survey data reveal that the user cost of labor is acyclical under subjective

expectations. This rigidity can amplify unemployment fluctuations by inducing firms to lay off

its workers following adverse shocks instead of adjusting their wages.

Together, these results suggest that belief distortions are a key contributor to unemployment

fluctuations. Rational models that emphasize time-varying discount rates may understate the role

of distorted cash flow beliefs in driving labor market volatility. The cross-sectional evidence points

to a mechanism for persistent regional differences in unemployment through regional differences

in the strength of belief distortions. Moreover, rigid wage expectations under subjective beliefs

may further amplify unemployment fluctuations by reducing firms’ willingness to hire or retain

workers during recessions.

Policy interventions targeting unemployment may benefit from addressing systematic biases

in investor expectations. During periods of heightened uncertainty, traditional monetary policy

tools that focus on adjusting the policy rate may have limited traction if firms base hiring

decisions primarily on cash flow expectations rather than discount rates. By expanding forward

guidance with clearer communication on the full set of expected economic conditions beyond

interest rates, central banks could help stabilize hiring and reduce unemployment volatility.

Related Literature This paper contributes to several strands of literature on unemployment

fluctuations, labor market behavior, and expectation formation.

A central challenge in macroeconomics is to explain why unemployment is highly volatile

relative to productivity (Shimer, 2005; Ljungqvist and Sargent, 2017). Traditional search and

matching models struggle to generate sufficient volatility in unemployment unless firms’ responses

to shocks are amplified through mechanisms such as rational expectations of time-varying dis-
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count rates (Hall, 2017; Borovickova and Borovička, 2017; Kilic and Wachter, 2018; Liu, 2021;

Belo et al., 2023; Kehoe et al., 2019; Kehoe et al., 2022; Meeuwis et al., 2023; Mitra et al., 2024).

These models assume that firms rationally process information about cash flows and discount

rates. My approach of using survey forecasts complements these rational models by introducing

subjective expectations. Belief distortions—particularly in expected cash flows—better explain

variation in job filling rates, offering an alternative resolution to the unemployment volatility

puzzle.

A growing literature embeds non-rational expectations in macro models with labor market

frictions (Acharya and Wee, 2020; Mueller et al., 2021; Menzio, 2023; Faberman et al., 2022;

Bhandari et al., 2024). Notably, Bhandari et al. (2024) show that systematic pessimism in

households and firms amplifies unemployment fluctuations. My paper complements their findings

by providing direct survey evidence on the content and cyclicality of firm expectations, showing

that firms over-react to news about earnings expectations while under-reacting to discount rates

and labor costs. Cross-sectional analysis shows that regions with more distorted firm beliefs

experience larger swings in job filling rates, adding a spatial dimension to belief-driven volatility.

The empirical analysis of this paper builds on existing survey-based evidence on the empirical

properties of firm expectations. Ben-David et al. (2013) document persistent over-optimism in

CFO forecasts. Gennaioli et al. (2016) document that extrapolative CFO expectations of earnings

growth predict corporate investment. Ma et al. (2020) link systematic biases in managerial

forecasts to distortions in firm investment. Coibion et al. (2018) and Candia et al. (2020) find

that managers’ inflation expectations adjust slowly and display substantial dispersion. My paper

builds on this work by showing how distortions in survey expectations shape labor markets.

The variance decomposition in this paper builds on recent work using survey-based expec-

tations to reassess the drivers of asset prices. De La O and Myers (2021) show that subjective

expectations of cash flow growth, rather than discount rates, explain most of the variation in

price-dividend and price-earnings ratios—challenging standard decompositions that assume ra-

tional expectations (Campbell and Shiller, 1988; Cochrane, 2007). Bordalo et al. (2024a) find that

systematic over-reaction in long-term earnings growth expectations—not time-varying discount

rates—accounts for a substantial share of aggregate and cross-sectional return predictability. My

paper extends these results to the labor market, showing that biased expectations about firm

cash flows not only drive asset prices but also shape real-side decisions such as hiring.

This contribution also relates to a broader literature on over-reaction in subjective expecta-

tions (Barberis et al., 1998; Chen et al., 2013; Bordalo et al., 2018; Afrouzi et al., 2023; Bianchi

et al., 2023). At the same time, models of inattention and bounded rationality emphasize under-

reaction to certain types of information (Mankiw and Reis, 2002; Woodford, 2001; Sims, 2003;

Gabaix, 2019). Bianchi et al. (2024b) bridge these perspectives by showing that markets may

under-react to news even when investors over-react to all perceived shocks because the over-

reaction to multiple perceived signals could offset each other in opposing directions. This insight
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is consistent with my finding that firms over-react to news about future earnings but under-react

to news about discount rates labor costs.

Informed by this literature, I adopt a machine learning approach to measure rational expec-

tations using a dynamic real-time forecasting framework developed in Bianchi et al. (2022) and

Bianchi et al. (2024b). It is based on the principle that rational expectations require agents

to efficiently use the full set of real-time information available to them. The algorithm uses

high-dimensional prediction models estimated on rolling samples of real-time data to produce a

benchmark that is free from human cognitive biases and look-ahead bias, while also addressing

overfitting and structural change. The method uses tools from machine learning by training

LSTM networks with recursive re-estimation and hyperparameter tuning (Gu et al., 2020, Cong

et al., 2020, Bybee et al., 2024). The resulting forecasts are fully ex-ante and provide high-

dimensional empirical counterparts to rational expectations for evaluating belief distortions.

The cross-sectional decomposition of this paper contributes to the literature on regional labor

market disparities (Sahin et al., 2014; Amior and Manning, 2018; Kehoe et al., 2019; Beraja et

al., 2019; Chodorow-Reich and Wieland, 2020). Beraja et al. (2019) show that regional discount

factor shocks account for much of the geographic variation in employment during the Great

Recession. Kehoe et al. (2019) build on this finding by modeling discount factor shocks as

tighter household debt constraints that suppress hiring. On the other hand, Sahin et al. (2014)

emphasize that occupational, rather than geographic, mismatch drove much of the post-crisis

unemployment rise. My paper complements this work by highlighting a behavioral channel: belief

distortions in firms’ subjective cash flow expectations can amplify regional hiring fluctuations

even absent other structural shocks. This mechanism introduces heterogeneity in expectations

as a novel driver of regional business cycles.

The results on subjective wage expectations also relate to debates about wage cyclicality and

the user cost of labor (Bils, 1985; Solon et al., 1994; Pissarides, 2009; Gertler and Trigari, 2009;

Gertler et al., 2020; Hazell and Taska, 2023). A growing literature emphasizes the user cost

of labor—the present value of expected wages to a new hire—as the relevant margin for hiring

decisions (Kudlyak, 2014; Basu and House, 2016; Bils et al., 2023). Kudlyak (2014) shows that,

under rational expectations, the user cost is far more procyclical than spot or average wages,

challenging models that rely on wage rigidity to explain unemployment volatility (Shimer, 2005;

Hall, 2005; Blanchard and Gaĺı, 2010; Christiano et al., 2016). I show that the subjective user

cost of labor is much more rigid, leading firms to expect persistently high labor costs even in

recessions. This belief-driven rigidity suppresses hiring and amplifies unemployment fluctuations

through an expectations channel distinct from contractual or institutional wage stickiness.

The rest of the paper proceeds as follows. Section 2 presents a search and matching model

with belief distortions and derives a decomposition of the job filling rate. Section 3 describes the

data used in the empirical analysis. Section 4 compares the predictive performance of machine

and survey forecasts. Section 5 presents the estimated variance decomposition. Section 6 presents
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cross-sectional evidence across U.S. states and firms, motivated by a regional extension of the

baseline model. Section 7 examines the cyclicality of real wages and the rigidity of subjective

wage expectations. Section 8 discusses model extensions and robustness checks to the main

result. Section 9 concludes.

2 Theoretical Framework

This section develops a search and matching model of the labor market in which firms’ expec-

tations about future cash flows and discount rates may be distorted, leading to fluctuations

in job filling rates and unemployment. The model builds on the Diamond (1982), Mortensen

(1982), and Pissarides (2009) framework but departs from the standard rational expectations

assumption, allowing firms’ hiring decisions to be influenced by biased subjective beliefs.2

Environment Consider a discrete time economy populated by a representative household and

a representative firm that hires workers in a frictional labor market. The firm uses labor as a

single input to production. The household’s population is normalized to one and has a continuum

of members, where a fraction Lt are employed and the rest are unemployed Ut = 1 − Lt. The

household’s intertemporal consumption decision gives rise to a stochastic discount factor Mt+1.

Each period, the firm posts job vacancies at a cost κ > 0 to maximize its cum-dividend

value of equity. We adopt a standard end-of-period matching convention (Petrosky-Nadeau et

al., 2018). At the beginning of period t, the stock of employment Lt reflects the total number of

workers carried over from the previous period, before any separations or new hires occur during

period t. During the period, a fraction δt of employed workers separate, while the firm posts

vacancies Vt to search for unemployed workers Ut.
3 Matches are formed at the end of period

t according to a matching function m(Ut, Vt), with job filling rate qt ≡ m(Ut, Vt)/Vt and job

finding rate ft ≡ m(Ut, Vt)/Ut. These new hires enter employment at the start of period t + 1,

so employment Lt evolves according to a law of motion:

Lt+1 = (1− δt)Lt + qtVt (1)

Unemployment Ut = 1− Lt evolves according to:

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (2)

where θt = Vt/Ut denotes labor market tightness, defined as the vacancy-to-unemployment ratio.

I assume that the household owns the equity of the firm and the firm pays out all of its

earnings Et as dividends (Petrosky-Nadeau et al., 2018). I assume that the firm’s manager

has access to complete markets so that the return to hiring equals the stock market return in

equilibrium (Cochrane, 1991).

2See Appendix Section B for more details.
3The job separation rate δt may be exogenous or endogenous (e.g., Fujita and Ramey, 2012) because the

variance decomposition does not require us to take a stand on the model that generates the job separation rate.
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Expectations Let Ft[·] denote expectations conditional on information available at the be-

ginning of period t, computed based on the firm manager’s potentially distorted beliefs. These

beliefs may depart from rational expectations Et[·] by misweighting information, but I restrict

to beliefs that preserve the law of iterated expectations.

Hiring Equation Under search frictions, hiring is forward-looking investment. The firm

equates the marginal cost of hiring with the expected discounted value of an additional match:

κ

qt︸︷︷︸
Cost of hiring

= Ft

[
Mt+1

(
πt+1 + (1− δt+1)

κ

qt+1

)]
︸ ︷︷ ︸

Expected discounted value of hiring

(3)

where πt = ∂Πt/∂Lt is the profit from a marginal worker.4 Subjective distortions in beliefs can

thus shift the perceived returns to hiring through Ft[·] and affect equilibrium job filling rates,

which in turn affects unemployment through its law of motion in equation (2).

Stock Price Under constant returns to scale (CRS), the firm’s equity value per worker is

proportional to the marginal value of hiring:5

κ

qt
=

Pt

Lt+1

(4)

where employment Lt+1 is determined at the end of date t under our timing convention from

equation (1).6 Take logarithms, rearrange terms, and expand the price-employment ratio Pt/Lt+1:

log qt = log κ− log

(
Pt

Et

)
+ log

(
Et+1

Et

)
− log

(
Et+1

Lt+1

)
(5)

Defining log price-earnings pet = log(Pt/Et), log earnings growth ∆et+1 = log(Et+1/Et), and log

earnings-employment elt+1 = log(Et+1/Lt+1), we obtain:

log qt = log κ− pet +∆et+1 − elt+1 (6)

Log-linear Approximation To express the price-earnings ratio pet in terms of forward-

looking variables, start by log-linearizing the price-dividend ratio pdt = log(Pt/Dt) around its

long-term average pd (Campbell and Shiller, 1988):

pdt = cpd +∆dt+1 − rt+1 + ρpdt+1 (7)

4The hiring equation is the labor market analogue of the optimality condition for physical capital in the q
theory of investment (Hayashi, 1982), where the upfront cost of hiring κ/qt is analogous to Tobin’s marginal q
and the separation rate δt+1 is analogous to the depreciation rate. See Lettau and Ludvigson (2002) and Kogan
and Papanikolaou (2012) for a similar log-linearization applied for the q theory of physical capital investment.

5See Appendix Section B for a derivation (Liu et al., 2009; Kogan and Papanikolaou, 2012).
6See Hansen et al. (2005) and Kogan and Papanikolaou (2012) for similar conventions applied for the q theory

of investment.
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where rt+1 = log((Pt+1 + Dt+1)/Pt) is the log stock return (with dividends). cpd and ρ =

exp(pd)/(1 + exp(pd)) = 0.98 are constants that arise from the log linearization. Rewrite in

terms of price-earnings by using the identity pet = pdt + det, where det is the log payout ratio:

pet = cpd +∆et+1 − rt+1 + ρpet+1 + (1− ρ)det+1 (8)

Since 1 − ρ ≈ 0 and the payout ratio det is bounded, (1 − ρ)det+1 can be approximated as a

constant (De La O et al., 2024): cpe ≈ cpd + (1− ρ)det+1

pet ≈ cpe +∆et+1 − rt+1 + ρpet+1 (9)

Recursively substitute for the next h periods:

pet =
h∑

j=1

ρj−1(cpe +∆et+j − rt+j) + ρhpet+h (10)

Decomposition of Job Filling Rates Substitute log-linearized price-earnings from (10) into

the hiring equation from (6) to obtain a decomposition of the log job filling rate:

log qt = cq +
h∑

j=1

ρj−1rt+j︸ ︷︷ ︸
rt,t+h

−

[
elt+1 +

h∑
j=2

ρj−1∆et+j

]
︸ ︷︷ ︸

et,t+h

− ρhpet+h︸ ︷︷ ︸
pet,t+h

(11)

where cq ≡ log κ − cpe(1−ρh)

1−ρ
is a constant. The equation decomposes the job filling rate into

future discount rates rt,t+h ≡
∑h

j=1 ρ
j−1rt+j, cash flows et,t+h ≡ elt+1 +

∑h
j=2 ρ

j−1∆et+j, and

price-earnings pet,t+h ≡ ρhpet+h. The cash flow component consists of one period ahead log

earnings-employment elt+1, which captures news about short-term cash flows, and j = 2, . . . , h

period ahead log earnings growth ∆et+j, which captures long-term news about cash flows.7 pet,t+h

is a terminal value that captures other long-term influences beyond h periods into the future not

already captured in discount rates and cash flows.

Since equation (11) holds both ex-ante and ex-post, it can be evaluated under either subjective

or rational expectations. The subjective decomposition replaces ex-post realizations of future

outcomes with their subjective expectations Ft[·]:

log qt = cq +
h∑

j=1

ρj−1Ft[rt+j]︸ ︷︷ ︸
Ft[rt,t+h]

−

[
Ft[elt+1] +

h∑
j=2

ρj−1Ft[∆et+j]

]
︸ ︷︷ ︸

Ft[et,t+h]

− ρhFt[pet+h]︸ ︷︷ ︸
Ft[pet,t+h]

(12)

7The earnings-employment ratio can be interpreted as a measure of the marginal product of labor under
constant returns to scale (David et al., 2022).
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Alternatively, the rational decomposition replaces ex-post realizations of future outcomes with

their rational expectations Et[·]:

log qt = cq +
h∑

j=1

ρj−1Et[rt+j]︸ ︷︷ ︸
Et[rt,t+h]

−

[
Et[elt+1] +

h∑
j=2

ρj−1Et[∆et+j]

]
︸ ︷︷ ︸

Et[et,t+h]

− ρhEt[pet+h]︸ ︷︷ ︸
Et[pet,t+h]

(13)

Comparing these decompositions can quantify how belief distortions affect the job filling rate.

Estimation The econometrician can estimate the variance decomposition using predictive re-

gressions of each expected outcome on the current job filling rate. For the subjective decompo-

sition, demean each variable in equation (12), multiply both sides by the current log job filling

rate log qt, and take the sample average:

V ar [log qt] = Cov [Ft[rt,t+h], log qt]− Cov [Ft[et,t+h], log qt]− Cov [Ft[pet,t+h], log qt] (14)

where V ar[·] and Cov[·] are sample variances and covariances based on data observed over a

historical sample. Finally, divide both sides by V ar [log qt] to decompose its variance:

1 =
Cov [Ft[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Ft[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Ft[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(15)

The left-hand side represents the full variability in job filling rates, hence is equal to one. Each

term on the right reflects the share explained by subjective expectations of discount rates, cash

flows, or price-earnings ratios. Under stationarity, the econometrician can estimate these shares

using the OLS coefficients from regressing Ft[rt,t+h], Ft[et,t+h], and Ft[pet,t+h] on the current log

job filling rate log qt, respectively.

Finally, the decomposition under rational expectations can be estimated similarly based on

equation (13) by replacing the subjective expectation Ft[·] with its rational counterpart Et[·].
This comparison allows us to assess the role of belief distortions in labor market dynamics and

determine whether firms systematically mis-perceive economic conditions when making hiring

decisions. The goal is to quantify how biases in subjective beliefs about discount rates and cash

flows contribute to fluctuations in the job filling rate.

The variance decomposition has the advantage of not requiring the researcher to take a stand

on the deep determinants of job filling rates in any given period. Rather, the evolution of discount

rates and cash flows summarize the consequences of the combination of these deep determinants.

Not needing to link fluctuations in the job filling rate to a primitive shock makes this approach

useful for studying business cycle frequency outcomes that span multiple cycles, each driven by

its own unique deep determinants.
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3 Data

This section describes the data used to estimate the variance decomposition. For each outcome

variable, I use survey forecasts to measure subjective expectations Ft[·] and machine learning

forecasts to measure rational expectations Ft[·]. The final estimation sample is quarterly and

spans 2005Q1 to 2021Q4.8

Employment Employment Lt is measured using annual total employee counts (EMP) for S&P

500 firms from the CRSP/Compustat Merged Annual Industrial Files. I interpolate this data

to a quarterly frequency by using quarterly averages of the fitted values from regressing annual

S&P 500 employment on the monthly BLS nonfarm payrolls. Subjective expectations of 1 year

ahead annual employment growth are drawn from the CFO survey from 2001Q4 to 2021Q4.

Job Filling Rate Vacancies Vt is measured using JOLTS job openings starting 2000:12 and

help-wanted index for earlier periods (Barnichon, 2010). Unemployment Ut is sourced from the

BLS unemployment series (UNEMPLOY). The job filling rate qt is defined as the share of filled

vacancies out of unemployment:

qt =
ftVt

Ut

(16)

The job finding rate ft is the share of unemployed workers that find jobs within the period:

ft = 1− Ut − U s
t

Ut−1

(17)

where U s
t is short-term unemployment less than 5 weeks (UEMPLT5). I construct the variables

at a monthly frequency, time-aggregate to quarterly averages, and detrend using an HP filter

with a smoothing parameter of 105 to ensure stationarity (Shimer, 2005).

Stock Returns Stock returns are measured using monthly Center for Research in Security

Prices (CRSP) value-weighted returns with dividends (VWRETD). Annualized cumulative h-

year log stock returns are compounded from monthly returns: rt,t+h = (1/h)
∑12h

j=1 log(1 +

VWRETDt+j/12). I use the quarterly CFO survey from 2001Q4 to 2021Q4 to construct 1 and

10 year ahead survey forecasts of annualized cumulative log S&P 500 returns. For intermediate

horizons between 1 and 10 years, I interpolate linearly between the 1 and 10 year ahead forecasts.

Earnings Quarterly earnings for the S&P 500 are sourced from S&P Global and extended back

in time with Shiller’s historical data, yielding a consistent series through 2021Q4.

To construct subjective expectations of future cash flows, I follow the approach of De La O

and Myers (2021) and Bordalo et al. (2019), using analyst forecasts from the I/B/E/S database.

8See Appendix Section D for details about data sources, and Appendix Section E for details about the machine
learning forecasts.
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The forecasts reflect the views of financial analysts who actively track firms for their investment

research. Analysts have a strong incentive to report their forecasts accurately because these

forecasts are not anonymous (Cooper et al., 2001; De La O et al., 2024). Prior research shows

that these forecasts are widely followed by market participants and are priced in by investors,

lending credibility to their use as proxies for subjective expectations (Kothari et al., 2016).

I/B/E/S provides monthly median analyst forecasts for earnings per share (EPS) at one

through four year horizons, as well as long-term growth (LTG) forecasts. The LTG forecast

represents the median expected average annual growth rate in operating earnings over the next

three to five years. One- through four-year-ahead forward annual log earnings growth forecasts

Ft[∆et+h] for h = 1, 2, 3, 4 are log differences between adjacent forecast horizons. For the five-year

horizon Ft[∆et+5], I interpret the LTG forecast as the expected log growth in earnings from year

four to five (Bianchi et al., 2024b). The sample spans 1982 to 2021 at a monthly frequency, and

the forecasts cover approximately 80% of total market capitalization, providing broad coverage

of U.S. public firms.

Price-Earnings Ratio The current price-earnings ratio PEt ≡ Pt/Et is calculated using the

end-of-quarter S&P 500 stock price index Pt and total earnings Et. Following De La O and

Myers (2021), subjective expectations of log price-earnings Ft[pet+h] are derived from the log-

linear approximation in equation (10):

Ft[pet+h] =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe + Ft[∆et+j]︸ ︷︷ ︸
Survey (IBES)

− Ft[rt+j]︸ ︷︷ ︸
Survey (CFO)

) (18)

where expected returns and earnings growth come from the CFO survey and IBES, respectively.

Earnings-Employment Ratio The current earnings-employment ratio is defined as ELt ≡
Et/Lt+1, where Et denotes quarterly total earnings for the S&P 500 and Lt+1 is the employment

stock at the beginning of period t + 1. I measure Lt+1 using end-of-period employment levels

within each quarter. This timing assumption ensures that the measures are consistent with the

timing conventions from Section B while still remaining known to firms by the end of period t.

Let elt = log(ELt) denote the log earnings-employment ratio. Subjective expectations of future

values Ft[elt+1] ≡ Ft[logEt+1 − logLt+1] are constructed as:

Ft[elt+1] = elt + Ft[∆et,t+1]︸ ︷︷ ︸
Survey (IBES)

(19)

where survey expectations of earnings growth Ft[∆et,t+h] come from IBES.

Machine Learning Forecasts For each survey forecast, I construct the corresponding ma-

chine learning forecast using a Long Short-Term Memory (LSTM) neural network:

Et[yt,t+h] = G(Xt,βh,t) (20)
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where yt,t+h denotes the outcome variable y to be predicted h periods ahead of time t. Xt is a large

input dataset of macroeconomic, financial, and textual predictors. G(Xt,βh,t) denotes predicted

values from Long Short-Term Memory (LSTM) neural networks that can be represented by a

potentially high dimensional set of finite-valued parameters βh,t. The parameters are estimated

using an algorithm that takes into account the data-rich environment in which managers operate

in (Bianchi et al., 2022 and Bianchi et al., 2024b).

Machine learning forecasts of log price-earnings Et[pet+1] and log earnings-employment Et[elt+1]

are constructed similarly to the survey counterpart by replacing the survey forecasts on the right-

hand side of equation (18) and (A.140) with the corresponding machine learning forecasts.

4 Stylized Facts

Forecasting Performance To assess whether survey respondents systematically misweight

relevant information, Table 1 evaluates the out-of-sample accuracy of survey forecasts relative

to machine learning forecasts. I measure the relative predictive performance using the ratio of

mean-square-forecast-error (MSE) of the machine (MSEE) over that of the survey (MSEF).

The out-of-sample R-squared (OOS R2) is the inverse of the MSE ratio, where a positive value

indicates better performance of the machine: 1 −MSEE/MSEF. To minimize the influence of

random errors in each forecast, the forecast errors are averaged over a sufficiently long out-of-

sample testing period spanning from 2005Q1 to 2021Q4. The variables I consider are discount

rates rt,t+h, cash flows et,t+h, and future price-earnings ratios pet,t+h, as defined in equation (11).

These variables influence the job filling rate through the firm’s optimal hiring decision.

Table 1 shows that machine learning forecasts consistently outperform survey forecasts across

all variables and horizons. MSE ratios are well below one, and out-of-sample R2 values are

positive, confirming that survey expectations systematically deviate from an unbiased machine

learning benchmark. The discrepancy grows with horizon length, indicating that belief distor-

tions in long-term forecasts are larger than those at shorter horizons. These results suggest

that subjective expectations used in hiring decisions may be biased in persistent and predictable

ways—biases that machine learning models can correct using real-time data. If survey respon-

dents were rational in forming their beliefs, their forecasts would have performed on par with

machine learning forecasts. The superior performance of the machine also highlights its abil-

ity to process a large amount of real-time data efficiently and objectively, making it a reliable

benchmark of undistorted beliefs.

Descriptive Statistics Figure 1 compares subjective and machine expectations for discount

rates and cash flows, plotted against the job filling rate. Machine expectations of discount

rates exhibit a strong positive relationship with job filling rates, particularly around the Global

Financial Crisis. Survey expectations of discount rates, by contrast, are relatively flat and

display little sensitivity to the business cycle (Nagel and Xu, 2022). For cash flows, the pattern

12



Table 1: Accuracy of Machine Learning and Survey Forecasts

Out-of-sample Testing Period: 2005Q1-2021Q4
Horizon h (Years) 1 2 3 4 5

(a) Discount Rates rt,t+h

Survey F CFO CFO CFO CFO CFO
MSEE/MSEF 0.826 0.550 0.352 0.346 0.434
OOS R2 0.174 0.450 0.648 0.654 0.566

(b) Cash Flows et,t+h

Survey F IBES IBES IBES IBES IBES
MSEE/MSEF 0.547 0.304 0.270 0.259 0.235
OOS R2 0.453 0.696 0.730 0.741 0.765

(c) Price-Earnings pet,t+h

Survey F CFO/IBES CFO/IBES CFO/IBES CFO/IBES CFO/IBES
MSEE/MSEF 0.457 0.217 0.188 0.156 0.173
OOS R2 0.543 0.783 0.812 0.844 0.827

Notes: This table shows the relative mean squared forecast errors (MSE) between machine learning forecasts and survey forecasts.
MSEE and MSEF denote machine learning and survey mean squared forecast errors, respectively. The out-of-sample R-squared,
OOS R2, is defined as 1 − MSEE/MSEF, where MSEF always denotes the MSE of the benchmark forecast. yt,t+h denotes the
variable y to be predicted h years ahead of time t. The variables to be predicted are h-year present discounted values of discount rates
rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation (11). Subjective expectations
Ft are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine learning forecasts
Et are based on a Long Short-Term Memory (LSTM) neural network G(Xt,βh,t), whose parameters βh,t are estimated in real time
using Xt, a large scale dataset of macroeconomic, financial, and textual data. The out-of-sample testing period is 2005Q1 to 2021Q4.

reverses. Survey expectations show exaggerated cyclical variation, becoming sharply pessimistic

during downturns, such as the Global Financial Crisis, when job filling rates are high. Machine

forecasts also vary cyclically but to a much lesser extent, indicating that survey respondents tend

to over-react to macroeconomic conditions when forming cash flow expectations.

Appendix Table A.1 confirms this visual comparison by summarizing the distributions of

survey forecasts and machine learning forecasts for the key components of the variance decom-

position. The most striking pattern is the contrast in volatility between survey and machine

forecasts. At the five-year horizon, survey-based expectations of discount rates Ft[rt,t+5] are

substantially less volatile than machine-based expectations Et[rt,t+5], with standard deviations

of 0.073 and 0.129, respectively. In contrast, subjective expectations of cash flows Ft[et,t+5] are

more volatile than their machine counterparts. At the 5-year horizon, survey expectations of

cash flows have a standard deviation of 0.134, compared to 0.198 for machine expectations.

5 Time-Series Decomposition of the Job Filling Rate

The superior forecasting performance of machine learning over survey forecasts suggests the

presence of systematic distortions in subjective expectations. This section quantifies how those

distortions affect hiring behavior by estimating the contribution of discount rate and cash flow
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Figure 1: Job Filling Rates, Discount Rates, and Cash Flows

Notes: Figure plots h = 5 year ahead survey forecasts Ft[·] and machine learning forecasts Et[·] of discount rates rt,t+h and cash
flows et,t+h (left axis) against the current detrended job filling rate qt (right axis). x axis denotes out-of-sample testing period of the
forecasts. The forecasts have been aligned with the job filling rate that prevailed at the time of the forecast. Subjective expectations
Ft are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are
based on machine learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose parameters βh,t
are estimated in real time using Xt, a large scale dataset of macroeconomic, financial, and textual data. The out-of-sample forecast
testing period is quarterly and spans 2005Q1 to 2021Q4. Cash flow forecasts and job filling rates have been detrend using an HP
filter with a smoothing parameter of 105 (Shimer, 2005).

expectations to fluctuations in the aggregate job filling rate.

Decomposition Framework Building on the search model from Section 2, the log job filling

rate can be written as:

log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h] (21)

where cq is a constant and Ft[·] represents subjective expectations. rt,t+h, et,t+h, and pet,t+h are

h-year present discounted values of future discount rates, cash flows, and price-earnings ratios

(terminal value), respectively, as defined in equation (11). To quantify the contribution of each

term, I estimate variance decompositions by regressing each forecasted component on log qt:
9

1 =
Cov [Ft[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Ft[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Ft[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(22)

The decomposition under rational expectations Et[·] can be estimated similarly while replacing

the survey forecast Ft[·] with its corresponding machine learning counterpart Et[·].

Rational Expectations Panel (a) of Table 2 shows that under rational expectations, discount

rate news is the dominant driver of variation in job filling rates. At the five-year horizon, rational

9The decomposition can also be estimated as a multivariate system by estimating a Vector Autoregression
(VAR) of the job filling rate and its key determinants (Table A.2). Since the time series in levels can be serially
correlated or nonstationary, I also consider a first differenced decomposition (Table A.3).
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Table 2: Time-Series Decomposition of the Job Filling Rate

Horizon h (Years) 1 2 3 4 5

(a) Rational Expectations
log qt = cq + Et[rt,t+h]− Et[et,t+h]− Et[pet,t+h]

Discount Rate 0.187∗ 0.309∗∗ 0.585∗∗∗ 0.653∗∗∗ 0.691∗∗∗

t-stat (1.655) (2.354) (2.988) (3.487) (3.329)
Cash Flow 0.035 0.097 0.123 0.207 0.258

t-stat (0.097) (0.361) (0.461) (0.785) (0.918)
Price-Earnings 0.714∗∗∗ 0.513∗∗ 0.249 0.199 0.121

t-stat (2.810) (2.161) (0.666) (0.406) (0.245)
Residual 0.064 0.081 0.043 −0.059 −0.070

t-stat (0.143) (0.212) (0.086) (−0.101) (−0.116)
N 68 68 68 68 68

(b) Subjective Expectations
log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

Discount Rate 0.018 0.018 0.042 0.050 0.016
t-stat (1.538) (0.512) (0.819) (0.826) (0.180)

Cash Flow 0.325∗∗ 0.641∗∗∗ 0.738∗∗∗ 0.856∗∗∗ 0.964∗∗∗

t-stat (1.970) (4.500) (4.192) (4.797) (7.016)
Price-Earnings 0.629∗∗∗ 0.366 0.207 0.072 0.027

t-stat (2.794) (1.410) (0.765) (0.187) (0.077)
Residual 0.027 −0.025 0.014 0.022 −0.007

t-stat (0.096) (−0.084) (0.043) (0.051) (−0.017)
N 68 68 68 68 68

Notes: This table reports variance decompositions of the aggregate job filling rate under rational expectations (panel (a)) or subjective
expectations (panel (b)). Each row reports the share of the variation in job filling rates that can be explained by h-year expected
present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as
defined in equation (11). Residual term represents the variation in job filling rates that are not captured by the other components.
Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial analysts. Rational expectations Et are based
on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. The sample is quarterly from 2005Q1 to
2021Q4. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.

discount rates explain 69.1% of the variation in job filling rates, while rational cash flow news

accounts for 25.8%.10 Consistent with the predictions of the search and matching model, higher

job filling rates predict either higher future discount rates or lower cash flows. The contribution

from terminal price-earnings ratios is small and statistically insignificant at longer horizons.

Note that the three components are estimated freely without requiring them to sum to one.

Nevertheless, the residual component remains close to zero across horizons, suggesting that the

approximations applied to derive the decompositions are reasonably accurate.

These findings align with predictions from rational search-and-matching models that empha-

size time-varying risk premia. The large contribution from discount rate news is consistent with

rational models that introduce time-varying discount rates to match unemployment fluctuations

(Hall, 2017). The increasing importance of discount rate news at longer horizons is consistent

10First-difference estimates in Table A.3 show broadly similar patterns, with rational cash flow news explaining
58.7% while rational discount rate news explaining only 15.1% of job filling rate variation.
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with models that match observed fluctuations in unemployment by modeling hiring as a risky

investment with long-duration returns (Kehoe et al., 2022). On the relative importance of risk-

free rates and risk premia, Tables A.13 and A.14 show that rational risk-free rate expectations

explain little of the variation in the job filling rate. This implies that the explanatory power of

discount rate news is driven primarily by the risk premium component, consistent with rational

models of labor markets with time-varying risk premia (Borovickova and Borovička, 2017).

Subjective Expectations Panel (b) of Table 2 reveals a striking reversal under subjective

expectations. At the five-year horizon, subjective cash flow news explains 96.4% of the variation

in job filling rates, while subjective discount rate news accounts for only 1.6%.11 The contribution

from subjective price-earnings ratios diminishes with horizon and becomes negligible by year

five. These results suggest that firms systematically overweight news about cash flows and

underweight news about discount rates. The direction of the relationship is still consistent with

the rational case from panel (a), suggesting that mistakes in subjective expectations are about

the magnitudes, not about directions.

Compared to the rational benchmark, the implied over-reaction to cash flow news is substan-

tial. Low job filling rates during expansions are associated with a significant disappointment

in future cash flows. Defining the survey bias as the difference between subjective and rational

expectations, the estimates imply that 96.4% − 25.8% = 70.6% of variation in job filling rates

can be attributed to the fact that the job filling rate predicts biases in cash flows with a signif-

icant positive relationship (Table A.12). These biases capture systematic distortions in survey

respondents’ subjective beliefs that the machine learning model could have identified ex-ante.

The residual component remains small under subjective expectations as well, suggesting that

any deviations from the model’s approximation are not significantly related to the job filling

rate. In other words, survey respondents’ expectations appear internally consistent, but they

systematically misperceive which fundamentals matter most for hiring decisions. Any remaining

deviations in the residual could be attributed to measurement errors in the survey responses (Ma

et al., 2020). The residual term is generally smaller when the decomposition is estimated under

subjective expectations, suggesting that incorporating non-rational beliefs into the estimation

could improve the ability of the model to explain fluctuations in job filling rates.

Discussion Although the decomposition does not necessarily measure causal relationships, it

is useful for quantifying possible sources of variation in the job filling rate. A large estimate

for subjective cash flow news means that, whatever shock drives variation in the job filling rate

must have a larger impact on subjective cash flow growth expectations than subjective return

expectations. Under rational expectations, by contrast, firms correctly interpret those same

fluctuations as signals about future risk compensation or discount rates.

11First-difference estimates in Table A.3 show similar results, with subjective cash flow news explaining 83.5%
and subjective discount rates explaining only 5.4% of the job filling rate.
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This divergence points to a distortion in belief formation: firms over-react to perceived shifts

in cash flows while largely ignoring the intertemporal pricing of risk. The result aligns with

survey evidence showing that subjective return expectations are acyclical (Nagel and Xu, 2022)

or even procyclical (Greenwood and Shleifer, 2014), contrary to the countercyclical discount rate

variation implied by rational models (Cochrane, 2017). My findings extend this evidence to labor

markets, where hiring decisions appear similarly detached from rational risk-based incentives.

On the other hand, the importance of subjective long-horizon cash flow news in shaping

hiring decisions is consistent with models that introduce non-rational expectations about long-

term earnings growth to account for fluctuations in asset prices (Bordalo et al., 2024a) and

the business cycle (Bordalo et al., 2024b). Specifically, the result is consistent with investor

over-reaction to fluctuations in the payout share of output (Bianchi et al., 2024b). My results

suggest that firms exhibit similar behavior when hiring: they respond primarily to exaggerated

expectations about future earnings, not shifts in discount rates. The increasing importance of

subjective cash flow news at longer horizons is consistent with behavioral models in which over-

reaction increases with the horizon of the survey forecast (Bordalo et al., 2020; Bianchi et al.,

2024a; Augenblick et al., 2024).

While this paper focuses on publicly listed firms, preliminary evidence suggest that similar

patterns emerge among smaller private businesses. A 2010 report from the National Federation

of Independent Business (NFIB) on small business credit during the recession shows that hiring

decisions were primarily driven by pessimism about future sales rather than financing constraints.

At the time, 51% of small employers cited weak sales expectations as their top concern, compared

to just 8% who cited access to credit Dennis, 2010. This suggests that subjective beliefs about

future cash flows—not discount rates—also shape employment decisions in the small business

sector.

These belief distortions offer a new explanation for unemployment volatility. Firms that

misinterpret hiring conditions as news about cash flows—rather than changes in risk—may cut

vacancies excessively in downturns, amplifying labor market fluctuations beyond what ratio-

nal models predict. The next section quantifies this mechanism by directly decomposing the

unemployment rate.

Implications for Unemployment Fluctuations To complement the decomposition of the

job filling rate, this section analyzes the unemployment rate directly. While the job filling rate

captures the proximate drivers of employment dynamics in search models, the unemployment

rate is the key macroeconomic outcome of interest and the direct target of policy.

A direct decomposition of unemployment offers three advantages. First, it provides a more

interpretable measure of the macroeconomic significance of belief distortions. Second, it cap-

tures how these distortions propagate through the nonlinear law of motion for unemployment,

which also depends on job separations and labor market tightness. Third, it links observed

unemployment fluctuations to distortions in the underlying expectations.
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Start from the unemployment accumulation equation:

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (23)

For some variable Xt, denote the steady state values without time subscripts X, and define

log deviations from steady state as X̂t = log(Xt) − log(X). Log-linearize the unemployment

accumulation equation around the steady state (See Appendix Section C for a derivation):

Ût+1 ≈ qθδ̂t + (1− δ − qθ)Ût − qθq̂t − qθθ̂t (24)

Finally, substitute in equation (11), which is a decomposition of the job filling rate q̂t into

discount rate, cash flow, and future price-earnings components:

Ût+1 ≈ − qθ · r̂t,t+h︸ ︷︷ ︸
Discount Rate

+ qθ · êt,t+h︸ ︷︷ ︸
Cash Flow

+ qθ · p̂et,t+h︸ ︷︷ ︸
Future Price-Earning

+(1− δ − qθ) · Ût − qθ · θ̂t + qθ · δ̂t︸ ︷︷ ︸
Lag Unemployment, Tightness, Separations

(25)

This equation can be evaluated using either subjective Ft[·] or rational Ft[·] expectations. I

estimate it using regressions in first differences to ensure stationarity and identify the relative

contributions of each component to observed unemployment fluctuations.

Figure 2 plots the actual annual change in unemployment against its model-implied decom-

position using both subjective and rational expectations. Under subjective beliefs, fluctuations

in unemployment closely track the component attributed to expected cash flow news. The model

captures the sharp rise and fall in unemployment during the COVID-19 crisis with considerable

precision. The fit of the model in terms of R2 is notably better under subjective expectations

than under rational expectations, indicating that incorporating belief distortions improves the

model’s explanatory power.

This finding underscores that belief distortions can have macroeconomically meaningful con-

sequences. Systematic misperceptions about future cash flows—rather than discount rates or

job separations—can significantly influence firms’ hiring behavior and, in turn, unemployment

dynamics. The resulting gap between unemployment predicted under rational versus subjec-

tive expectations can be interpreted as a reduced-form belief-driven unemployment wedge. This

wedge provides a novel empirical counterpart to theoretical mechanisms in existing behavioral

models where non-rational beliefs amplify business cycle volatility (Bordalo et al., 2021; Bianchi

et al., 2023). By propagating through forward-looking hiring behavior, belief distortions lead not

just to forecast errors, but to real fluctuations in labor market outcomes.

6 Cross-Sectional Evidence

The aggregate analysis in Section 5 shows that belief distortions in subjective expectations play

an important role in explaining hiring fluctuations. This section extends that analysis by ex-

ploiting cross-sectional variation in firm- and region-level data to strengthen identification and

test whether the theoretical mechanism generalizes beyond aggregate dynamics.
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Figure 2: Time-Series Decomposition of the Unemployment Rate

Notes: Figure plots decompositions of log annual growth in the unemployment rate from equation (25), under subjective (left panel) or
rational (right panel) expectations. Labor market factors include lagged unemployment, labor market tightness and job separations.
Residual term represents the variation in job filling rates that are not captured by the other components. Subjective expectations
Ft are based on survey forecasts from CFOs and IBES financial analysts. Rational expectations Et are based on machine learning
forecasts from Long Short-Term Memory (LSTM) neural networks. NBER recessions are shown with gray shaded bars.

Overview While the aggregate-level variance decompositions are informative, they cannot

establish causality, and the limited number of business cycles in the time series restricts inference

(Chodorow-Reich and Wieland, 2020). This section addresses these challenges by extending the

aggregate model to a regional framework. In estimating the regional model, I introduce a Bartik

shift-share instrument for the job filling rate to address endogeneity challenges in identifying the

relative importance of subjective discount rate and cash flow expectations.

Specifically, I investigate whether regional labor markets characterized by more distorted

subjective cash flow expectations experience larger swings in job filling rates. This analysis is

motivated by empirical evidence of substantial geographic variation in unemployment dynamics,

especially during crises (Beraja et al., 2019, Kehoe et al., 2019; Chodorow-Reich and Wieland,

2020). While existing work studies these regional differences under a rational expectations frame-

work, regional heterogeneity in subjective beliefs may also be an important explanatory factor.

Regional Model To guide the empirical strategy, I extend the baseline search model to a

multi-region, multi-sector environment, building from the models in Kehoe et al. (2019) and

Chodorow-Reich and Wieland (2020). The economy consists of a continuum of islands indexed

by s. Each island produces a differentiated variety of tradable goods that is consumed everywhere

and a nontradable good. Both of these goods are produced using intermediate goods. Each

consumer is endowed with one of two types of skills which are used in different intensities in
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the nontradable and tradable goods sectors. Labor is immobile across islands but can switch

sectors.12 Consumers receive utility from a composite consumption good that is either purchased

in the market or produced at home. Consumers and firms are ex-ante homogeneous and share

the same subjective expectation Ft[·]. The islands only differ in the shocks that hit them.

In this environment, the hiring decision for a firm producing intermediate good i in island s

satisfies a regional analog of the aggregate hiring equation:13

κ

qs,i,t
= Ft

[
Ms,t,t+1

(
πs,i,t+1 + (1− δs,i,t+1)

κ

qs,i,t+1

)]
(26)

where qs,i,t is the regional job filling rate, κ is the vacancy posting cost, δ is the job separation

rate, Ms,t,t+1 is the stochastic discount factor, and πs,i,t+1 is the marginal profit of a new hire.

Decomposition of Regional Job Filling Rates Taking logs and applying the decomposition

developed in Section 2, the job filling rate can be written as:

log qs,i,t = cq +
h∑

j=1

ρj−1rs,i,t+j︸ ︷︷ ︸
rs,i,t,t+h

−

[
els,i,t+1 +

h∑
j=2

ρj−1∆es,i,t+j

]
︸ ︷︷ ︸

es,i,t,t+h

− ρhpes,i,t+h︸ ︷︷ ︸
pes,i,t,t+h

(27)

where cq is a constant. This regional decomposition mirrors the aggregate decomposition from

equation (11). The equation implies that if firms form distorted beliefs about future returns or

earnings, those distortions should influence hiring decisions at the regional level as well. Since

the decomposition holds both ex-ante and ex-post, I consider an ex-ante decomposition under

subjective expectations Ft[·]:

log qs,i,t = cq + Ft[rs,i,t,t+h]− Ft[es,i,t,t+h]− Ft[pes,i,t,t+h] (28)

where Ft[xs,i,t,t+h] denotes the h period ahead time t subjective expectations of variable x for

a firm producing intermediate good i in island s. Equation (28) implies the following variance

decomposition of the regional job filling rate:

1 =
Cov [Ft[rs,i,t,t+h], log qs,i,t]

V ar [log qs,i,t]︸ ︷︷ ︸
Discount Rate News

− Cov [Ft[es,i,t,t+h], log qs,i,t]

V ar [log qs,i,t]︸ ︷︷ ︸
Cash Flow News

− Cov [Ft[pes,i,t,t+h], log qs,i,t]

V ar [log qs,i,t]︸ ︷︷ ︸
Future Price-Earnings News

(29)

where V ar[·] and Cov[·] are sample variances and covariances based on data observed over a his-

torical sample. The left-hand side represents the full variability in regional job filling rates, hence

is equal to one. Each term on the right reflects the share explained by subjective expectations of

discount rates, cash flows, or price-earnings ratios. Under stationarity, the econometrician can

estimate these shares from regressing Ft[rs,i,t,t+h], Ft[es,i,t,t+h], and Fs,i,t[pet,t+h] on the current

log regional job filling rate log qs,i,t, respectively. Since the regional panel data can be serially

correlated or nonstationary in levels, I also consider a first differenced decomposition.

12This assumption aligns with empirical evidence indicating that labor markets are predominantly local in
nature (Manning and Petrongolo, 2017).

13See Section C.1 for a derivation.
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Empirical Specification: OLS The goal of the regional decomposition is to assess whether

perceived shocks to discount rates or cash flows drive variation in job filling rates at the local labor

market level. I begin by estimating the relationship between firm-level subjective expectations

and a direct measure of state-level job filling rates. The job filling rate in state s is computed as

a vacancy-weighted average across industries:

qs,t =
∑
i

(
Vs,i,t∑
i′ Vs,i′,t

)
qs,i,t (30)

where s is measured as U.S. states, time t is measured at monthly frequency, i = 1, . . . , I are

2-digit NAICS industries. Vs,i,t and qs,i,t denote vacancies and job filling rates in island s and

industry i, respectively. I use JOLTS data to construct regional job filling rates qs,t as the ratio

of total hires to job openings at the state level (Leduc and Liu, 2020). Using this measure, I

estimate the following firm-level regression:

Ft [yf,s,t,t+5] = β · qs,t + αf + αt + γ′Xf,s,t + εf,s,t, y = r, e, pe (31)

for firm f , state s, and time t. Following Korniotis (2008), each firm is mapped to the state in

which the firm has its headquarter. The parameter of interest β captures the share of variation in

the measure of job filling rate that can be explained by h = 5 year ahead subjective expectations

about discount rates r, cash flows e, or future price-earnings pe. αf are firm fixed effects, and

αt are time fixed effects. Xf,s,t is a vector of controls including decile dummies for firm size

measured by number of employees at the time of the survey forecast and a linear trend.

Empirical Specification: Bartik Shift-Share Instrument A key challenge in estimating

the variance decomposition is that subjective expectations and job filling rates may be jointly

determined—for example, if firms revise expectations in response to local conditions. I address

the challenge by constructing a Bartik shift-share instrument q̃i,t which provides an exogenous

source of shocks to the regional labor market:

q̃s,t =
∑
i∈I

ωs,i,tqi,t, ωs,i,t =
Ls,i,t∑
i′ Ls,i′,t

(32)

where time t is measured at monthly frequency, and i = 1, . . . , I are 2-digit NAICS industries

(excluding public administration). ωs,i,t is the employment share of industry i in state s in the

year prior to time t, sourced from the BLS Quarterly Census of Employment andWages (QCEW).

I measure industry-wide job filling rates qi,t as the ratio between total hires and job vacancies at

the industry level, both from JOLTS (Leduc and Liu, 2020). The summation over i aggregates

these industry-level job filling rates using each state’s industry weights. The instrument exploits

national industry-level demand shocks that differentially affect regional labor markets based on

their industry composition.
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Using the Bartik instrument for regional labor market tightness, I estimate the following

regression at the firm-level:

Ft [yf,s,t,t+5] = β · q̃s,t + αf + αt + γ′Xf,s,t + εf,s,t, y = r, e, pe (33)

where q̃s,t is the Bartik shift-share instrument for regional job filling rates from equation (32),

and the other terms are the same as in the OLS specification from (31). The parameter of

interest β captures the share of variation in the shift-share instrumented job filling rate that can

be explained by h = 5 year ahead subjective expectations about discount rates r, cash flows e,

or future price-earnings pe.

Identification Assumptions Compared to the direct OLS approach, the Bartik specification

provides more credible identification for two reasons. First, state-level hiring and vacancy data

may suffer from measurement error. Second, subjective expectations and observed labor market

conditions may be endogenously linked. If firms revise beliefs in response to local shocks, the

OLS coefficient may reflect a feedback loop that overstates the role of beliefs in driving hiring.

The shift-share instrument helps isolate plausibly exogenous variation by using industry-level

trends that are predetermined with respect to firm-level expectations. Since the instrument

aggregates national industry trends, it is predetermined with respect to firm-level expectations

formed at time t. The use of aggregate industry-level variation can also control for the possibility

that firms in each region have private information that affect their hiring decisions. The identify-

ing assumption is that conditional on fixed effects and controls, there are no omitted factors that

simultaneously affect both the national industry hiring trends and the subjective expectations

of firms located in states more exposed to those industries.

While the shift-share approach strengthens causal interpretation, it is not immune to potential

threats. A leading concern is the possibility of differential pre-trends. States with industry

mixes that make them more exposed to national shocks may have had systematically different

trajectories even before the shock occurred. To mitigate this concern, I include a comprehensive

set of controls. Because larger firms tend to pay higher wages, controlling for firm size helps

account for differences in human capital and wage premia across firms (Oi and Idson, 1999;

Elsby and Michaels, 2013). Firm fixed effects αf absorb time-invariant characteristics such as

productivity (Acemoglu and Hawkins, 2014) and matching rates (Kaas and Kircher, 2015). Time

fixed effects αt account for aggregate shocks, national policy changes, and long-run expectations

that are common across regions (Gavazza et al., 2018; Hazell et al., 2022).

Cross-Sectional Decomposition of Regional Job Filling Rates Table 3 reports the es-

timated decompositions. The raw regression coefficients reported in the table can be converted

into a variance decomposition by taking the negative of the coefficients for cash flow and price-

earnings expectations, since the negative sign on these coefficients reflect the inverse relationship

with job filling rates in the search model.

22



Table 3: Cross-Sectional Decomposition of the Job Filling Rate

(a) Subjective Expectations: Baseline
Ft [yf,s,t,t+5] = β · qs,t + αf + εf,s,t, y = r, e, pe

(1) (2) (3) (4) (5) (6)

Discount
Rate

Cash
Flow

Price
Earning

Discount
Rate

Cash
Flow

Price
Earning

Job Filling Rate 0.1623∗∗∗ -0.6290∗∗∗ -0.2172∗∗∗ 0.1002 -0.7090∗∗∗ -0.1938∗∗

(0.0415) (0.0609) (0.0631) (0.0988) (0.1030) (0.0703)

Observations 611,636 611,636 611,636 549,513 549,513 549,513
Adj. R2 0.49 0.90 0.48 0.03 0.09 0.06
Specification Levels Levels Levels Differences Differences Differences
Instrument OLS OLS OLS OLS OLS OLS
Controls No No No No No No
Firm FE Yes Yes Yes Yes Yes Yes
Time FE No No No No No No

(b) Subjective Expectations: Time Fixed Effects
Ft [yf,s,t,t+5] = β · qs,t + αf + αt + γ′Xf,s,t + εf,s,t, y = r, e, pe

(1) (2) (3) (4) (5) (6)

Discount
Rate

Cash
Flow

Price
Earning

Discount
Rate

Cash
Flow

Price
Earning

Job Filling Rate 0.0603 -0.5644∗∗∗ -0.0527 0.1164 -0.5478∗∗∗ -0.0269
(0.3296) (0.1469) (0.1997) (0.1124) (0.1397) (0.0553)

Observations 611,636 611,636 611,636 549,513 549,513 549,513
Adj. R2 0.52 0.91 0.49 0.02 0.12 0.00
Specification Levels Levels Levels Differences Differences Differences
Instrument OLS OLS OLS OLS OLS OLS
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes

(c) Subjective Expectations: Bartik Instrument
Ft [yf,s,t,t+5] = β · q̃s,t + αf + αt + γ′Xf,s,t + εf,s,t, y = r, e, pe

(1) (2) (3) (4) (5) (6)

Discount
Rate

Cash
Flow

Price
Earning

Discount
Rate

Cash
Flow

Price
Earning

Job Filling Rate 0.0241 -0.3764∗∗∗ -0.0180 0.0457 -0.3227∗∗∗ -0.0019
(0.2090) (0.1307) (0.0463) (0.0687) (0.0939) (0.0306)

Observations 611,636 611,636 611,636 549,513 549,513 549,513
Adj. R2 0.52 0.91 0.91 0.02 0.12 0.01
Specification Levels Levels Levels Differences Differences Differences
Instrument Bartik Bartik Bartik Bartik Bartik Bartik
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes

Notes: This table estimates the firm-level relationship between subjective expectations of discount rate r, cash flow e, or price-earnings
pe against regional job filling rates for the state in which the firm has its headquarter. Columns (1)–(3) present estimates in levels.
Columns (4)–(6) present estimates in first differences. Panel (a) reports OLS regressions with no other controls. Panel (b) introduces
firm-level controls and time fixed effects. Panel (c) reports results using a Bartik shift-share instrument q̃s,t, which interacts state-level
employment shares in 2-digit NAICS industries with national industry-specific job filling rate fluctuations. Subjective expectations
Ft are based on survey forecasts of CFOs and IBES financial analysts. Xf,s,t is a vector of controls including decile dummies for firm
size and a linear trend. Sample is monthly from 2001M1 to 2021M12. Observations are weighted by each firm’s market capitalization.
Standard errors clustered by state are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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Panel (a) presents baseline OLS results. At the five-year horizon, subjective cash flow expec-

tations account for 62.9% of the variation in regional job filling rates, while subjective discount

rates and price-earnings expectations explain 16.2% and 21.7%, respectively. Results using first

differences yield similar patterns. Panel (b) includes time fixed effects and additional controls.

Although the contribution of subjective cash flow expectations declines slightly to 56.4%, it re-

mains the dominant driver. Panel (c) uses the Bartik shift-share instrument for job filling rates.

Even under this stricter identification, subjective cash flow expectations explain 37.6% of the

variation in levels and 32.3% in differences. The shift-share estimates are likely smaller than

their OLS counterpart because the instrument only captures only the shocks that are exogenous

to the regional labor market. The muted estimate from using the instrument suggests that state

specific factors such as shifts in regional labor supply could amplify the role of subjective beliefs,

since the larger estimates from using the OLS specification capture these alternative channels.

Discussion The results suggest that distorted cash flow expectations are an important driver of

regional labor market volatility. The strong regional co-movement between cash flow expectations

and job filling rates remains robust when instrumented using a Bartik shift-share, supporting a

causal interpretation. Regions where firms over-react more strongly to cash flow news experience

deeper hiring cuts during downturns and over-hiring during expansions, amplifying the volatility

of regional business cycles. These findings suggest that persistent differences in unemployment

across regions may reflect not only structural factors—such as industry composition or labor

supply—but also variation in how firms form and act on expectations.

The variance share attributed to cash flow beliefs is somewhat smaller in the cross-section

than in the aggregate time series. The large aggregate estimate on subjective cash flow news is

consistent with models of heterogenous firms where the dispersion in the marginal product of

capital or labor amplify fluctuations in aggregate total factor productivity (Ma et al., 2020; David

et al., 2022; Ropele et al., 2024). When MPL dispersion increases, resources are misallocated,

lowering aggregate output per unit of labor. Such dispersion can influence aggregate output

because search frictions in the labor market or wage rigidity prevents workers from adjusting

immediately to the shock by moving across regions or industries. Consistent with the model’s

predictions, Figure A.1 shows a strong counter-cyclicality of the cross-sectional dispersion in

subjective cash flow expectations.

7 Cyclicality of the Subjective User Cost of Labor

Overview The previous sections show that firms’ hiring decisions are heavily influenced by

subjective cash flow expectations. This section examines whether expectations about the user

cost of labor also contribute to hiring behavior, since it is a key component of the firm’s cash

flows. Using survey data, I show that subjective wage expectations are significantly less cyclical

than realized wages, implying that firms perceive labor costs as more rigid than they actually are.
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To account for the possibility that wages depend on the economic conditions at the start of the

job, I use survey expectations from the SCE to measure the user cost of labor under subjective

expectations.14

In the search and matching model, the user cost of labor is the difference in the expected

present value of wages between two firm-worker matches that are formed in two consecutive

periods. Existing work assumes full information rational expectations and show that this user

cost is more cyclical than flow wages, as workers hired in recessions earn lower wages both when

hired and over time (Kudlyak, 2014; Bils et al., 2023). This section relaxes that assumption by

using survey-based measures of subjective wage expectations. If firms and workers perceive the

future path of wages as rigid, the subjective user cost of labor may remain high even during

recessions, dampening hiring and amplifying unemployment fluctuations.

Time-series evidence Figure 3 compares realized real wage growth with 1-year-ahead subjec-

tive wage growth forecasts from three sources: the Livingston Survey, the CFO Survey, and the

Survey of Consumer Expectations (SCE). Actual wage growth is clearly cyclical, with declines

during downturns and strong rebounds during recoveries. In contrast, subjective wage forecasts

are far more stable over time. Even during major shocks, such as the 2008 financial crisis and

the COVID-19 recession, survey respondents anticipated only modest wage adjustments. Fore-

cast errors are persistent and systematically biased: wage growth forecasts overestimate during

downturns and underestimate during expansions.

To formally assess the cyclicality of real wage growth, Table 4 panel (a) compares the rela-

tionship between changes in the unemployment rate and real wage growth across rational and

subjective expectations. As a rational expectations benchmark, I use historical data on ac-

tual real wage growth to estimate the following regression, replicating existing estimates in the

literature (e.g., Bils, 1985; Solon et al., 1994; Gertler et al., 2020):

∆ logwt = β0 + β1∆ut + εt (34)

where ∆ logwt represents the actual annual log growth rate of real wages, ∆ut is the annual

change in the unemployment rate, and εt is the error term. β1 is the coefficient of interest and

captures the cyclicality of real wage growth.

Under subjective expectations, I use survey data on expected real wage growth to estimate:

Ft−1[∆ logwt] = β0 + β1Ft−1[∆ut] + εt (35)

where Ft−1[∆ logwt] is the median survey forecast for the annual log growth rate of real wages,

where the surveys are either from Livingston, CFO, or SCE. Ft−1[∆ut] is the median survey fore-

cast of the annual change in the unemployment rate from the Survey of Professional Forecasters

(SPF). The coefficient of interest β1 measures the cyclicality of expected real wage growth as

perceived by survey respondents.

14See Section D for more details about its measurement.
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Figure 3: Real Wage Growth: Actual vs. Subjective Expectations

Notes: This figure plots ex-post realized outcomes (Actual) and 1-year ahead subjective expectations (Survey) of real wage growth.
x axis denotes the date on which actual values were realized and the period on which the survey forecast is made, making the vertical
distance between the actual and survey lines the forecast error. Subjective expectations Ft are based on survey forecasts. Left panel
compares actual values of annual log real wage growth against the median consensus forecasts from the Livingston survey, where
wages are measured using average weekly earnings of production and nonsupervisory employees, manufacturing (CES3000000030).
Right panel compares annual log real wage growth against median consensus forecasts from the CFO survey and the subjective user
cost of labor measured from the Survey of Consumer Expectations (SCE), where wages are measured using average hourly earnings
of production and nonsupervisory employees, total private (CEU0500000008). Actual values are deflated using the Consumer Price
Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of nominal wage growth are deflated using median consensus
forecasts of CPI inflation from the Livingston, SPF, and SCE surveys, respectively. The sample period for Livingston is semi-annual
spanning 1961S1 to 2022S2, CFO survey is quarterly spanning 2001Q4 to 2022Q4, SCE is monthly spanning 2015M5 to 2022M12.
NBER recessions are shown with gray shaded bars.

Table 4 panel (a) reports the estimates. Under rational expectations, actual real wage growth

is clearly cyclical since it is significantly negatively related to changes in unemployment rates.

The magnitude of the estimate is also consistent with prior estimates in the literature, with

elasticities ranging from -3.05 to -3.46 depending on the sample period (Solon et al., 1994). In

contrast, subjective wage growth expectations are acyclical, with small and statistically insignif-

icant coefficients across all survey sources and sample periods. Notably, the magnitude of the

estimated elasticity is an order of magnitude smaller, ranging from -0.20 to -0.97 depending on

the survey measure and sample period.

Cross-Sectional evidence To explore these patterns at the individual level, I use microdata

from the SCE to estimate subjective wage cyclicality separately for new hires and incumbents.

The regression specification relaxes the rational expectations assumption from Gertler et al.

(2020) and includes an interaction between expected unemployment growth and the probability

of being a new hire:

Ft−1[∆ logwi,t] = β0 + β1Ft−1[∆ut] + Ft−1[I{Ni,t = 1}] · [β2 + β3Ft−1[∆ut]] + εi,t (36)

where Ft−1[∆ logwi,t] represents the time t− 1 subjective expectation of wage growth for worker

i at time t. Ft−1[∆ut] is the survey-based expectation of aggregate unemployment growth. The
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Table 4: Cyclicality of Real Wage Growth: Actual vs. Subjective Expectations

(a) Aggregate Time-Series
Actual: ∆ logwt = β0 + β1∆ut + εt

Subjective: Ft−1[∆ logwt] = β0 + β1Ft−1[∆ut] + εt

1961S1-2022S2 2001Q4-2022Q4 2015M5-2022M12

Actual

Survey
Median
(Liv) Actual

Survey
Median
(CFO) Actual

Survey
User Cost
(SCE)

(1) (2) (3) (4) (5) (6)

Unemployment Rate −0.0340∗∗∗ −0.0020 −0.0305∗∗∗ 0.0006 −0.0346∗∗∗ −0.0086
t-stat (−3.8684) (−0.1568) (−4.2477) (0.0800) (−6.6994) (−1.6332)

Adj. R2 0.1021 0.0003 0.2557 0.0001 0.4719 0.0498
N 124 124 85 85 92 92
Frequency SA SA Q Q M M
Sector Mfg Mfg Pvt Pvt Pvt Pvt

(b) Worker-Level New Hire Effect
Subjective: Ft−1[∆ logwi,t] = β0 + β1Ft−1[∆ut] + Ft−1[I{Ni,t = 1}] · [β2 + β3Ft−1[∆ut]] + εi,t

2015M5-2022M12

Survey
(SCE)

Survey
(SCE)

(1) (2)

First
Difference

Fixed
Effects

Unemployment Rate -0.0048 -0.0028
(0.0029) (0.0026)

New Hire 0.0036∗∗∗ 0.0003
(0.0009) (0.0013)

Unemployment Rate × New Hire -0.0026 -0.0059
(0.0020) (0.0035)

Adj. R2 0.0011 0.0036
N 39,832 39,832
Frequency M M
Sector Pvt Pvt

Notes: Table reports estimates from time-series and worker-level regressions of annual log real wage growth on unemployment
growth. Subjective expectations Ft are based on survey forecasts. Panel (a) reports estimates from time-series regressions using
the aggregate series. Panel (a) Columns (1)-(2) compare actual values of annual log real wage growth against the median consensus
forecasts from the Livingston survey, where wages are measured using average weekly earnings of production and nonsupervisory
employees, manufacturing (CES3000000030). Panel (a) Columns (3)-(6) compare compares annual log real wage growth against
median consensus forecasts from the CFO survey and the subjective user cost of labor measured from the Survey of Consumer
Expectations (SCE), where wages are measured using average hourly earnings of production and nonsupervisory employees, total
private (CEU0500000008). Panel (b) reports worker-level estimates from regressions of SCE survey expectations of wage growth on
survey expectations of unemployment growth, an indicator of whether the worker is a new hire, and the interaction between the two.
Actual wage growth is deflated using the Consumer Price Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of
nominal wage growth are deflated using median consensus forecasts of CPI inflation from the Livingston, SPF, and SCE surveys,
respectively. Subjective expectations of unemployment rates are from 1-year ahead consensus median forecasts from the SPF. The
sample period for Livingston is semi-annual spanning 1961S1 to 2022S2, CFO survey is quarterly spanning 2001Q4 to 2022Q4, SCE
is monthly spanning 2015M5 to 2022M12. Panel (a): Newey-West corrected t-statistics with lags 2 (semi-annual), 4 (quarterly), 12
(monthly) are reported in parentheses; Panel (b): Standard errors clustered by worker are reported in parentheses. ∗sig. at 10%.
∗∗sig. at 5%. ∗∗∗sig. at 1%.
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indicator variable I{Ni,t = 1} equals one if the worker is newly hired and zero otherwise. Its

expectation Ft−1[I{Ni,t = 1}] is thus the subjective perceived probability that the worker will

be newly hired next period. The interaction term Ft−1[I{Ni,t = 1}] · Ft−1[∆ut] captures the

differential sensitivity of expected wage growth to unemployment changes for new hires relative

to incumbents. The error term εi,t accounts for individual-level deviations in expectations.

The coefficient β1 captures the overall cyclicality of subjective wage expectations, reflecting

how much workers expect wages to change in response to shifts in aggregate unemployment. The

coefficient β2 measures the baseline difference in expected wage growth between new hires and

existing workers. The interaction term β3 determines whether new hires expect wages to be more

sensitive to unemployment fluctuations than incumbents do.

The results in Table 4 panel (b) column (1) show that, even after controlling for differences

between job stayers and new hires, subjective wage expectations are highly rigid and exhibit

weak cyclicality. The coefficient β1 is negative but small, confirming the aggregate result in

panel (a) that workers that are not new hires expect only mild wage adjustments in response

to unemployment fluctuations. The estimate for β2 is positive, suggesting that, on average, new

hires expect higher wage growth than job stayers. The interaction term β3 is negative but small

in magnitude, implying that new hires do not expect substantially greater cyclicality in wages

compared to incumbents. Column (2) extends column (1) by including worker fixed effects to

find similar results. These findings extend the results from aggregate regressions by showing

that subjective wage expectations are highly rigid even at the individual level, regardless of job

transitions. Both new hires and incumbents perceive only weak cyclical variation in wages.

Implications for macroeconomic models These findings could have important implications

for macroeconomic models of unemployment fluctuations. If firms do not expect wages to fall

during downturns, then the subjective user cost of labor remains high even as demand declines,

suppressing job creation. This mechanism is consistent with models that rely on wage rigidity

to explain labor market volatility (Shimer, 2005; Hall, 2005; Christiano et al., 2016). These

results suggest that it could be reasonable for macroeconomists to introduce rigid wages under

subjective expectations to explain the volatility of business cycle fluctuations.

Moreover, the persistence of subjective wage expectations may reflect underlying frictions in

information processing. Survey data on wage expectations can help distinguish between alter-

native theories of wage formation. Unlike rational models where the timing of wage payments

is irrelevant (Barro, 1977), models with sticky or inattentive expectations—such as those in

Mankiw and Reis (2002) or Coibion and Gorodnichenko (2015)—can be better suited to capture

the persistent behavior of expected wages.

Finally, the finding that subjective cost of labor is rigid suggests that volatile subjective cash

flow expectations are unlikely to be driven by fluctuations in the user cost of labor. Instead,

firms may be over-reacting to other components of profitability, such as revenue expectations or

perceived demand conditions, rather than expected changes in labor costs.
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8 Robustness Checks and Extensions

This section presents additional results that reinforce the main finding. Across multiple ro-

bustness checks, the evidence consistently shows that firms overweight expected cash flows and

underweight discount rates under subjective expectations.

Model vs. Data Model simulations suggest that the large role of subjective cash flow news

poses a quantitative challenge for existing search models formulated under rational expectations,

which have emphasized time-varying discount rates to match the volatility of unemployment

fluctuations. Table 5 compares the empirical variance decomposition from Table 2 with those

implied by benchmark search-and-matching models. For each model, I set a sample length of

20 years, produce 1,000 simulations, estimate a variance decomposition of the job filling rate

according to equation (13), and report the average across the simulated runs. All parameter

values in the calibration use estimates from the original papers.

The Diamond-Mortensen-Pisarides and Hall (2017) models predict that discount rate fluctu-

ations should explain more than 75% of the variance of job filling rates. The Kehoe et al. (2022)

(KLMP) model predicts a more balanced decomposition, attributing 54% to discount rates and

32% to cash flows, consistent with consistent with the model’s amplification mechanism based on

human capital accumulation. In contrast, the empirical decomposition using survey data shows

that subjective expectations assign just 1.6% of the variation to discount rates, and 96.4% to

cash flows. These results highlight a discrepancy between the predictions of rational models and

observed survey expectations, underscoring the importance of belief distortions.

Decreasing Returns to Scale and Compositional Effects Stock market valuations reflect

average profits, while hiring decisions depend on marginal profits (Borovickova and Borovička,

2017). Decreasing returns to scale can amplify unemployment fluctuations even under a ratio-

nal framework by making the marginal value of hiring more sensitive to productivity shocks,

prompting firms to adjust vacancies more aggressively in response (Elsby and Michaels, 2013;

Kaas and Kircher, 2015). Allowing for decreasing returns to scale introduces the notion of firm

size. Changes in the equilibrium firm size distribution over the business cycle can introduce a

compositional effect that also contributes to fluctuations in the job filling rate.

This section relaxes the constant returns to scale (CRS) assumption by allowing for decreasing

returns to scale (DRS) in the production function. Assume that Yt = F (Lt) = AtL
α
t , where At

is an exogenous productivity process with 0 < α < 1. This introduces a “DRS wedge” between

marginal and average profits:

πtLt − κVt = αAtL
α
t −WtLt − κVt = Et − (1− α)Yt (37)

where Et ≡ Πt − κVt is the firm’s earnings, Πt ≡ Yt −WtLt = AtL
α
t −WtLt is the total profit

before wages WtLt and vacancy posting costs κVt, and πt = ∂Πt

∂Lt
is the marginal profit from
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Table 5: Time-Series Decomposition of the Job Filling Rate: Model vs. Data

Dep. Var. Discount Rate (-) Cash Flow (-) Price-Earnings Residual
Horizon h (Years) 5 5 5 5

Subjective Expectations
log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

Data (Survey) 0.016 0.964∗∗∗ 0.027 −0.007
t-stat (0.180) (7.016) (0.077)

Rational Expectations
log qt = cq + Et[rt,t+h]− Et[et,t+h]− Et[pet,t+h]

Data (Machine) 0.511∗∗∗ 0.181∗∗∗ 0.291 0.017
t-stat (2.765) (2.651) (1.249)

Model (DMP) 0.782∗∗∗ 0.017∗∗ 0.201∗∗∗ 0.000
t-stat (12.334) (1.992) (47.883)

Model (Hall) 0.838∗∗∗ 0.073 0.088 0.000
t-stat (12.000) (1.387) (1.074)

Model (KLMP) 0.543∗∗∗ 0.319 0.138∗∗∗ 0.000
t-stat (4.484) (0.937) (16.392)

Notes: Table compares the variance decomposition estimated from the data (Table 2) against the implied decomposition from
simulations of alternative search-and-matching models. The models are simulated over 20 year samples, and all parameter values in
the calibration use estimates from the original papers. DMP: Diamond-Mortensen-Pissarides Model; Hall: Hall (2017); KLMP: Kehoe
et al. (2022). Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial analysts. Rational expectations Et

are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. Newey-West corrected t-statistics
with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.

hiring. The second term (1−α)Yt is a “DRS wedge” that captures the gap between the average

profit and marginal profit. Under DRS, the firm’s hiring condition becomes:

κ

qt
= Ft

[
∞∑
j=1

1

Rt,t+j

(
Et+j

Lt+1

− (1− α)
Yt+j

Lt+1

)]
(38)

Express aggregate earning-employment and output-employment ratios as the employment-weighted

average of firm-level ratios

κ

qt
= Ft

[∑
i

∞∑
j=1

1

Rt,t+j

( Ei,t+j

Li,t+1

− (1− α)
Yi,t+j

Li,t+1

) Li,t+1

Lt+1

]
(39)

Define Si,t+1 ≡ Li,t+1

Lt+1
as the employment share, ELi,t+j ≡ Ei,t+j/Li,t+1 the earnings-employment

ratio, and Y Li,t+j ≡ Yi,t+j/Li,t+1 the output-employment ratio of firm i. Log linearize the

expression around the steady state

log qt =
∞∑
j=1

∑
i

[
Ft [ρr,i,jrt,t+j]︸ ︷︷ ︸
Discount Rate

− Ft [ρel,i,jeli,t+j]︸ ︷︷ ︸
Cash Flow

(Earnings-Employment)

+ Ft [ρyl,i,jyli,t+j]︸ ︷︷ ︸
Cash Flow

(Output-Employment)

− Ft [ρs,i,jsi,t+1]︸ ︷︷ ︸
Employment Share

]
(40)

where rt,t+j, eli,t+j, yli,t+j, and si,t+1 denote log deviations of Rt,t+j, ELi,t+j, Y Li,t+j, and Si,t+1

from the steady state state, respectively. The coefficients ρr,i,j = ρs,i,j ≡ q
κ
(ELi+(1−α)Y Li)·Si

R
j ,
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ρel,i,j ≡ q
κ
ELi·Si

R
j , and ρyl,i,j ≡ (1−α) q

κ
Y Li·Si

R
j are functions of steady-state values and linearization

constants. α = 0.72 comes from the labor share, κ = 0.133 comes from the flow vacancy cost

(Elsby and Michaels, 2013). q = 0.631, R = 1.04, EL = 0.014, Y L = 0.074 are long-run sample

averages. Finally, approximate the infinite sum by truncating up to h periods.

The expected output-employment ratio Ft[yli,t+j] captures the DRS wedge, and the employ-

ment share si,t+1 captures compositional effects of changes in the firm size distribution. I measure

the expected output-employment ratio Ft[yli,t+j] by using IBES sales forecasts. Figure 4 shows

that under subjective expectations, the output-employment term accounts for roughly 40% of the

variation in the job filling rate, while the earnings-employment term explains slightly less than

60%. The compositional term is small. These results confirm that even under DRS, subjective

cash flow expectations—whether expressed in average or marginal terms—remain the dominant

driver of hiring fluctuations.

Figure 4: Time-Series Decomposition of the Job Filling Rate: Decreasing Returns to Scale
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Notes: This figure illustrates the components of the time-series decomposition of aggregate job filling rate under decreasing returns
to scale, based on equation (40). The components of the decomposition are expected present discounted values of discount rate,
earnings-employment ratio, output-employment ratio, and the employment share. The light bars show the contributions to the job
filling rate obtained under rational expectations. The dark bars show the contributions to the time-series variation in the job filling
rate obtained in subjective expectations. Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial
analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks.
The sample is quarterly from 2005Q1 to 2021Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.

Predictability of Survey Forecast Errors and Bias To assess whether survey expectations

systematically deviate from rational expectations, panel (a) of Table 6 estimates Coibion and

Gorodnichenko (2015) regressions of forecast errors and bias on forecast revisions:

yt,t+h − Ft[yt,t+h] = βFE,0 + βFE,1[Ft[yt,t+h]− Ft−1[yt,t+h]] + βFE,2Ft−1[yt,t+h] + εFE,t (41)

The negative estimate on the forecast revision (βFE,1 < 0) confirms that an upward revision in

the forecast is an over-reaction that in turn predicts a negative forecast error, in which the survey

forecast is above its ex-post realized value. The over-reaction persists for multiple periods until

the upward revision eventually predicts a negative forecast error.
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To assess how much of the over-reaction from panel (a) is driven by systematic ex-ante biases

in survey expectations, panel (b) of Table 6 estimates regressions of the survey bias on the survey

forecast revisions:

Et[yt,t+h]− Ft[yt,t+h] = βB,0 + βB,1[Ft[yt,t+h]− Ft−1[yt,t+h]] + βB,2Ft−1[yt,t+h] + εB,t (42)

The negative estimate on the forecast revision (βB,1 < 0) suggests that the bias component of

the survey expectation over-reacts to news. The estimates become increasingly negative with

the forecast horizon, suggesting that the over-reaction is stronger for survey expectations over

longer horizons. The substantial size of the estimates compared to panel (a) highlights that a

substantial share of the over-reaction can be attributed to biases in survey expectations that

could have been identified ex-ante. At the 5 year horizon, about −0.735/− 1.014 = 72.4% of the

over-reaction identified from survey forecast errors can be attributed to ex-ante biases in survey

expectations.

Table 6: Predictability of Survey Forecast Errors and Bias

Horizon h (Years) 1 2 3 4 5

(a) Survey Forecast Errors
yt,t+h − Ft[yt,t+h] = βFE,0 + βFE,1[Ft[yt,t+h]− Ft−1[yt,t+h]] + βFE,2Ft−1[yt,t+h] + εFE,t

Discount Rate −1.473 −2.211∗∗ −2.257∗∗∗ −2.638∗∗∗ −3.191∗∗∗

t-stat (−1.020) (−2.476) (−2.730) (−4.448) (−6.020)
Cash Flow −0.550∗∗ −0.685∗∗∗ −0.942∗∗∗ −0.916∗∗∗ −1.014∗∗∗

t-stat (−2.461) (−4.745) (−9.548) (−8.119) (−7.380)
Price-Earnings −0.574∗∗∗ −0.006 −0.313∗∗ −0.475∗∗∗ −0.885∗∗∗

t-stat (−2.924) (−0.034) (−2.348) (−4.314) (−6.154)
N 68 68 68 68 68

(b) Survey Bias
Et[yt,t+h]− Ft[yt,t+h] = βB,0 + βB,1[Ft[yt,t+h]− Ft−1[yt,t+h]] + βB,2Ft−1[yt,t+h] + εB,t

Discount Rate −1.521∗∗∗ −1.187∗∗∗ −1.373∗∗∗ −0.958∗∗∗ −1.065∗∗∗

t-stat (−4.470) (−2.997) (−2.930) (−2.849) (−3.705)
Cash Flow −0.227 −0.302∗∗∗ −0.632∗∗∗ −0.641∗∗∗ −0.735∗∗∗

t-stat (−1.599) (−2.641) (−6.438) (−5.659) (−7.077)
Price-Earnings −0.547∗∗∗ −0.273∗∗∗ −0.739∗∗∗ −0.503∗∗∗ −0.858∗∗∗

t-stat (−5.813) (−3.928) (−2.614) (−2.614) (−6.835)
N 68 68 68 68 68

Notes: Table reports slope coefficients βFE,1 and βB,1 from regressions of the survey forecast error and its bias on the survey forecast
revisions. yt,t+h denotes the variable y to be predicted h years ahead of time t: h year present discounted values of discount rates
(rt,t+h), cash flows (et,t+h), and log price-earnings ratios (pet,t+h). Subjective expectations Ft are based on survey forecasts of
CFOs and IBES financial analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory
(LSTM) neural networks. The survey bias is defined as ex-ante deviations of the survey forecast from its machine learning benchmark:
Et[yt,t+h]−Ft[yt,t+h]. The sample is quarterly from 2005Q1 to 2021Q4. Newey-West corrected t-statistics with lags = 4 are reported
in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.

Additional Results Appendix Section A presents the following supplementary results. Table

A.1 reports summary statistics for each variable used in the empirical analysis. Variance de-

compositions based on a vector autoregression (VAR) (Table A.2) confirm that under subjective
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expectations, cash flows account for nearly all variation in job filling rates, while under rational

expectations, discount rates dominate. The terminal value captured by future price-earnings

ratio diminishes to near zero by the 5-year horizon, consistent with the main results.

The results are robust to alternative specifications, including first-differences (Table A.3),

conditioning on control variables such as lagged job filling rates and survey forecasts (Table

A.4), and alternative survey sources such as the Bloomberg and CFO surveys (Tables A.5, A.6,

and A.7). Cross-sectional results continue to hold when constructing Bartik instruments for

subjective discount rate and cash flow expectations (Table A.8).

The following results validate the search model from Section 2 to ensure that it provides a

reasonable description of labor market fluctuations. Job filling rates are closely linked to forward-

looking price-employment (Table A.9) and price-earnings ratios (Table A.10). Estimating a

similar decomposition for labor market tightness assuming a constant returns to scale matching

function (Table A.11) shows that subjective earnings expectations account for nearly all variation,

while rational models emphasize discount rates, echoing the findings for job filling rates.

The job filling rate strongly predicts survey biases, defined as the deviation of subjective

expectations from a rational expectations benchmark (Table A.12). Predictable deviations from

rational expectations can explain a substantial share of job filling rate variation. Decompositions

under risk-neutral expectations show that risk-free rates do not play a significant role in explain-

ing job filling rates (Tables A.13 and A.14). The risk-neutral estimates continue to show that

subjective expectations to overweight long-horizon cash flows. Ex-post decompositions confirm

that realized discount rate news—not cash flows—drive hiring outcomes, aligning with machine

learning measures of rational expectations (Table A.15).

9 Conclusion

This paper examines how belief distortions affect unemployment fluctuations by comparing

survey-based subjective expectations with machine learning forecasts that proxy for rational

beliefs. Using a decomposition of the job filling rate grounded in a search-and-matching model,

I show that firms’ hiring decisions under subjective expectations are driven almost entirely by

expected future cash flows, with little role for discount rates. In contrast, rational expectations

assign a dominant role to discount rate variation. Cross-sectional evidence using firm and state

level data reinforces this mechanism: states where firms exhibit stronger distortions in cash flow

expectations experience larger swings in job filling rates. Additionally, I find that subjective

wage expectations are far less cyclical than observed wages, both for new hires and continuing

workers. This perceived rigidity keeps the user cost of labor persistently elevated in recessions,

amplifying unemployment fluctuations by reducing firms’ willingness to hire workers.

These findings suggest that incorporating subjective expectations into existing models can en-

hance our understanding of labor market dynamics. While standard rational models imply that

agents correctly understand the relative importance of discount rates and cash flows, belief dis-
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tortions provide a complementary channel through which non-rational beliefs can influence hiring

and unemployment volatility. This study opens several directions for future research. Investi-

gating how firms update their expectations based on their size, industry, or financial constraints

could help refine the microfoundations for their belief-driven hiring behavior. The subjective

beliefs disciplined by survey forecasts can also be embedded into quantitative search and match-

ing models of the labor market, allowing for counterfactual simulations that can test how labor

markets would behave under alternative belief formation mechanisms or policy interventions.
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A Appendix: Additional Results

A.1 Additional Stylized Facts

Table A.1: Summary statistics

Panel (a): Aggregate U.S.
Obs Mean St.

Dev.
Min p25 Median p75 Max

rt,t+5 68 0.351 0.321 -0.221 0.095 0.379 0.653 0.906
Ft[rt,t+5] 68 0.194 0.073 0.062 0.149 0.183 0.216 0.371
Et[rt,t+5] 68 0.301 0.129 -0.003 0.234 0.315 0.374 0.661
et,t+5 68 1.389 0.301 0.032 1.362 1.460 1.543 1.911
Ft[et,t+5] 68 1.872 0.134 1.593 1.767 1.901 2.000 2.068
Et[et,t+5] 68 1.399 0.198 1.074 1.231 1.399 1.587 1.765
pet+5 68 2.227 0.314 1.784 1.995 2.240 2.347 3.294
Ft[pet,t+5] 68 1.683 0.228 1.286 1.515 1.685 1.763 2.228
Ft[pet,t+5] 68 2.273 0.279 1.686 2.089 2.197 2.444 2.916
qt 68 0.616 0.228 0.211 0.436 0.603 0.738 1.202

Panel (b): State-Level
Obs Mean St.

Dev.
Min p25 Median p75 Max

qi,t 16,302 0.141 0.219 -0.882 0.032 0.141 0.271 1.153
q̃i,t 16,302 0.167 0.216 -0.346 0.062 0.167 0.298 0.681

Panel (c): Firm-Level
Obs Mean St.

Dev.
Min p25 Median p75 Max

Ft[rf,i,t,t+5] 611,636 0.262 0.312 -0.477 0.091 0.185 0.330 3.399
Ft[ef,i,t,t+5] 611,636 0.078 2.196 -8.561 -1.366 -0.014 1.505 7.410
Ft[pef,i,t,t+5] 611,636 2.583 0.715 -2.263 2.262 2.531 2.832 8.204
∆Ft[rf,i,t,t+5] 549,513 -0.010 0.233 -1.531 -0.115 -0.006 0.100 1.460
∆Ft[ef,i,t,t+5] 549,513 0.014 0.458 -2.668 -0.162 0.007 0.190 2.589
∆Ft[pef,i,t,t+5] 549,513 -0.004 0.405 -2.286 -0.171 0.002 0.170 2.304

Notes: This table reports summary statistics for ex-post realized outcomes (Actual), subjective expectations (Survey), and machine
expectations (Machine) of key dependent variables used in the variance decomposition. Panel (a) reports aggregate U.S. statistics,
Panel (b) shows state-level statistics, and Panel (c) presents firm-level statistics. The dependent variables are h = 5 year present
discounted values of discount rates rt,t+h, cash flows et,t+h, and price-earnings ratios pet,t+h, as defined in equation (11). Aggregate
labor market variables include the job filling rate qt. State-level job filling rate is measured in two ways: (1) a direct measure
calculated as the ratio of JOLTS total hires to job vacancies qi,t, and (2) a Bartik shift-share instrument q̃i,t that interacts state-level
employment shares in 2-digit NAICS industries with national industry-specific job filling rate fluctuations. Subjective expectations
Ft are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are
based on machine learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose parameters βh,t
are estimated in real time using Xt, a large scale dataset of macroeconomic, financial, and textual data. The out-of-sample testing
period for aggregate-level survey and machine forecasts is quarterly and spans 2005Q1 to 2021Q4. The sample for state and firm-level
data are monthly and spans 2001M1 to 2021M12.
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A.2 Variance Decomposition: VAR Estimates

To further validate the robustness of the variance decomposition in Table 2, I estimate a Vector

Autoregression (VAR) model of the job filling rate and its key determinants under both subjective

and rational expectations. The estimated system follows a VAR(1) specification:

Xt+1 = AXt + εt+1 (A.1)

where the state vector Xt consists of the present discounted values of discount rates, cash flows,

log price-earnings ratios, and the log job filling rate.

Table A.2 reports the estimates. Under rational expectations, discount rate fluctuations

explain a moderate but significant share of the variance in job filling rates, rising from 36% at

the one-year horizon to 62% at the 5-year horizon. Under subjective expectations, cash flow

expectations overwhelmingly dominate, accounting for 59% at the one-year horizon and rising

to 96% at the 5-year horizon. Subjective discount rate fluctuations play an insignificant role,

remaining close to zero across all horizons. These findings confirm the main results in Table 2:

Managers using subjective expectations place disproportionate weight on cash flow expectations,

whereas models with rational expectations emphasize the role of discount rate fluctuations.

Table A.2: Variance Decomposition of Job Filling Rate: VAR(1)

Horizon h (Years) 1 2 3 4 5

Rational Expectations
Xt = [Et[rt,t+1],Et[et,t+1],Et[pet,t+1], log qt]

′

Discount Rate 0.19 0.37 0.57 0.69 0.74
(-) Cash Flow 0.07 0.12 0.19 0.23 0.25
(-) Price-Earnings 0.74 0.51 0.24 0.07 0.02
Residual 0.00 0.00 0.00 0.00 0.00

Subjective Expectations
Xt = [Ft[rt,t+1],Ft[et,t+1],Ft[pet,t+1], log qt]

′

Discount Rate 0.02 0.03 0.05 0.05 0.05
(-) Cash Flow 0.34 0.58 0.79 0.90 0.94
(-) Price-Earnings 0.64 0.39 0.16 0.05 0.01
Residual 0.00 0.00 0.00 0.00 0.00

Notes: Table reports variance decompositions based on a Vector Autoregression (VAR) model of the job filling rate and its key
determinants under both subjective and rational expectations. The estimated system follows a VAR(1) specification Xt+1 = AXt +
εt+1, where the state vector Xt consists of the present discounted values of discount rates, cash flows, log price-earnings ratios, and
the log job filling rate. Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial analysts. Rational
expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. The sample is
quarterly from 2005Q1 to 2021Q4.
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A.3 Variance Decomposition: First Differences

Table A.3: Variance Decomposition of Aggregate Job Filling Rates: First Differences

Horizon h (Years) 1 2 3 4 5

(a) Rational Expectations: First Differences
∆ log qt = ∆Et[rt,t+h]−∆Et[et,t+h]−∆Et[pet,t+h]

Discount Rate 0.343∗ 0.479∗∗ 0.521∗∗ 0.551∗∗∗ 0.587∗∗∗

t-stat (1.877) (2.251) (2.493) (2.856) (3.013)
(-) Cash Flow 0.001 0.027 0.108 0.138 0.151

t-stat (0.013) (0.230) (0.954) (1.344) (1.337)
(-) Price-Earnings 0.708∗∗ 0.554∗∗ 0.448∗ 0.239 0.218

t-stat (2.398) (2.165) (1.918) (0.959) (0.893)
Residual −0.051 −0.059 −0.077 0.072 0.045

t-stat (−0.146) (−0.168) (−0.232) (0.217) (0.136)
N 68 68 68 68 68

(b) Subjective Expectations: First Differences
∆ log qt = ∆Ft[rt,t+h]−∆Ft[et,t+h]−∆Ft[pet,t+h]

Discount Rate 0.028 0.033 0.045 0.074 0.054
t-stat (1.068) (0.592) (0.620) (0.833) (0.568)

(-) Cash Flow 0.286∗ 0.420∗∗ 0.601∗∗∗ 0.746∗∗∗ 0.835∗∗∗

t-stat (1.779) (2.517) (3.443) (3.884) (4.346)
(-) Price-Earnings 0.710∗∗∗ 0.529∗∗∗ 0.371 0.204 0.133

t-stat (2.789) (2.680) (1.640) (0.872) (0.536)
Residual −0.023 0.019 −0.016 −0.024 −0.023

t-stat (−0.076) (0.071) (−0.054) (−0.077) (−0.070)
N 68 68 68 68 68

Notes: Table reports variance decompositions of the aggregate job filling rate under subjective expectations (panel (a)) or rational
expectations (panel (b)). Each row reports the share of the variation in job filling rates that can be explained by h-year present
discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h. Residual rep-
resents the variation in job filling rates that are not captured by the other components. Subjective expectations Ft are based on
survey forecasts of CFOs and IBES financial analysts. Rational expectations Et are based on machine learning forecasts from Long
Short-Term Memory (LSTM) neural networks. The sample is quarterly from 2005Q1 to 2021Q4. Newey-West corrected t-statistics
with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.4 Subjective Decomposition: Additional Controls

The large contribution from subjective long-term cash flow expectations CFF,h in explaining the

job filling rate is robust to conditioning on additional variables that could distort the relation-

ship between long-term cash flow expectations and job filling rates. Table A.4 re-estimates the

subjective variance decomposition at the 5 year horizon with additional control variables on the

right-hand side of the regression: 1 year lag of the log job filling rate, 1 year lag of the depen-

dent variable, and the 1 year ahead survey forecast of the same variable. Controlling for the

short-term expectation Ft[yt+1] accounts for the possibility that survey respondents’ long-term

forecasts could be influenced by the short-term component of cash flows (Nagel and Xu, 2021).

Table A.4: Variance Decomposition under Subjective Expectations: Additional Controls

Regression: Ft[yt,t+h] = β0,F + β1,F log qt + β2,F log qt−1 + β3,FFt−1[yt+h−1] + β4,FFt[yt+1] + εt,F

Dep Var yt,t+h Discount Rate Cash Flow Price-Earnings

Survey Ft CFO/IBES CFO/IBES CFO/IBES

Horizon h (Years) 5 5 5

β0 0.035∗∗ 0.587∗∗∗ 0.463∗∗

t-stat (2.495) (3.051) (2.329)
β1 −0.007 −0.734∗∗∗ 0.057
t-stat (−0.108) (−3.942) (0.556)

Adj. R2 0.456 0.550 0.462
N 68 64 64

Notes: Table reports variance decompositions of the job filling rate under subjective expectations Ft implied by survey forecasts.
yt,t+h denotes the dependent variable of type j to be predicted h = 5 years ahead of time t: h year present discounted values of discount

rates (rt,t+h =
∑h

j=1 ρ
j−1rt+j), cash flows (et,t+h = elt+1 +

∑h
j=2 ρ

j−1∆et+j), and log price-earnings ratios (pet,t+h = ρhpet+h).
Subjective expectations Ft are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. The
sample is quarterly over 2005Q1 to 2019Q3. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at
10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.5 Subjective Cash Flow Expectations from Bloomberg Survey

The large role played by subjective cash flow expectations CFF,h in explaining the job filling

rate holds more generally across alternative survey forecasts of earnings growth. Table A.5 re-

estimates the subjective variance decomposition while replacing IBES survey forecasts of earnings

growth with the corresponding forecast from the Bloomberg (BBG) survey.

Table A.5: Bloomberg (BBG) Survey Earnings Expectations

Horizon h (Years) 1 2 3 4 5

Subjective Expectations Ft[·]
log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

Discount Rate 0.012 −0.005 0.010 0.037 0.009
t-stat (0.974) (−0.130) (0.192) (0.566) (0.180)

(-) Cash Flow 0.586∗∗∗ 0.830∗∗∗ 0.851∗∗∗ 0.896∗∗∗ 0.949∗∗∗

t-stat (8.476) (8.317) (7.213) (5.288) (4.541)
(-) Price-Earnings 0.389∗∗∗ 0.202∗∗∗ 0.154∗∗∗ 0.093∗∗∗ 0.081∗∗

t-stat (6.008) (6.386) (4.712) (3.998) (2.422)
Residual 0.028 0.024 0.015 0.039 0.014

t-stat (0.440) (0.415) (0.178) (0.337) (0.063)

Notes: Table reports variance decompositions of the job filling rate while replacing IBES earnings growth forecast with BBG survey
as measures of subjective cash flows. The sample is quarterly from 2006Q1 to 2022Q4. Newey-West corrected t-statistics with lags
= 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.6 Alternative Survey Expectations of Cash Flows: CFO Survey

The large role played by subjective cash flow expectations CFF,h in explaining the job filling

rate holds more generally across alternative survey forecasts of earnings growth. Table A.6

re-estimates the subjective variance decomposition while replacing 1 year ahead IBES survey

forecasts of earnings growth with the corresponding forecast from the CFO survey. The estimates

suggest a significant negative relationship between subjective cash expectations and the job filling

rate.

Subjective expectations of log price-earnings Ft[pet+h] combine the current log price-earnings

ratio pet with subjective expectations of the stock returns Ft[rt+h] and earnings growth Ft[∆et+h],

both from the same set of respondents to the CFO survey.

Ft[pet+h] =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe + Ft[∆et+j]︸ ︷︷ ︸
Survey (CFO)

− Ft[rt+j]︸ ︷︷ ︸
Survey (CFO)

) (A.2)

Subjective expectations of log earnings-employment Ft[elt+1] combine the current log earnings-

employment ratio elt with subjective CFO expectations of earnings growth Ft[∆et,t+h]:

Ft[elt+1] = elt + Ft[∆et,t+1]︸ ︷︷ ︸
Survey (CFO)

(A.3)

The forecast horizon has been limited to h = 1 year ahead and the sample covers a shorter period

over 2005Q1 to 2019Q3 due to missing earnings growth forecasts in the CFO survey.

Table A.6: Variance Decomposition under Subjective Expectations: CFO Survey

Regression: Ft[yt,t+h] = β0,F + β1,F log qt + εt,F

Dep Var yt,t+h Discount Rate Cash Flow Price-Earnings

Survey Ft CFO CFO CFO

Horizon h (Years) 1 1 1

β0 0.034∗∗∗ 1.302∗∗∗ 2.117∗∗∗

t-stat (9.917) (10.000) (20.583)
β1 0.007 −0.637∗ −0.373∗∗

t-stat (0.325) (−1.934) (−2.467)
Adj. R2 0.002 0.081 0.097
N 59 59 59

Notes: Table reports variance decompositions of the job filling rate under subjective expectations Ft implied by survey forecasts
from the CFO survey. yt,t+h denotes the dependent variable of type j to be predicted h = 1 years ahead of time t: h year present

discounted values of discount rates (rt,t+h =
∑h

j=1 ρ
j−1rt+j), cash flows (et,t+h = elt+1+

∑h
j=2 ρ

j−1∆et+j), and log price-earnings

ratios (pet,t+h = ρhpet+h). The sample is quarterly over 2005Q1 to 2019Q3. Newey-West corrected t-statistics with lags = 4 are
reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.7 Alternative Survey Expectations of Stock Returns

The small role played by subjective discount rate expectations in explaining the job filling rate

holds more generally across alternative survey forecasts of stock returns. Table A.7 reports

estimates from regressing 1 year ahead survey expectations of stock returns Ft[rt,t+h] on the log

job filling rate qt under alternative survey forecasts of stock returns. In all survey measures, the

estimates suggest a weak relationship between subjective stock return expectations Fs
t [rt,t+h] and

the job filling rate qt.

rt,t+h denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from

time t to t + h, depending on the concept that survey respondents are asked to predict: log

stock returns for CB, SOC, Gallup/UBS, and CFO; log price growth for Livingston. Fs
t [rt,t+h]

denotes subjective expectations of stock returns or price growth from survey s. CoC and Hurdle

denotes corporate cost of capital and hurdle rates constructed in Gormsen and Huber (2023).

The forecast horizon has been limited to 1 year ahead due to limited data availability in the

alternative surveys. The sample is quarterly over 2005Q1 to 2021Q4 when considering the NX,

CB, SOC, and CFO surveys, 2005Q1 to 2007Q4 for Gallup/UBS, and semi-annual over 2005Q1

to 2021Q4 from Q2 and Q4 of each calendar year for Livingston.

Table A.7: The Role of Subjective Discount Rates: Alternative Surveys

Regression: Fs
t [rt,t+h] = β0,F + β1,F log qt + εt,F

Dep Var Discount
Rate

Discount
Rate

Discount
Rate

Discount
Rate

Discount
Rate

Discount
Rate

Discount
Rate

Discount
Rate

Survey s CFO NX CB SOC Gallup Liv CoC Hurdle

Horizon h (Years) 1 1 1 1 1 1 1 1

β0 0.034∗∗∗ 0.061∗∗∗ 0.041∗∗∗ 0.042∗∗∗ 0.062∗∗∗ 0.048∗∗∗ 0.060∗∗∗ 0.083∗∗∗

t-stat (20.053) (38.202) (33.273) (43.401) (30.778) (6.397) (58.887) (145.982)
β1 0.013 −0.011 0.026∗∗ 0.002 −0.065∗∗∗ 0.067 0.024∗∗∗ 0.013∗∗

t-stat (1.039) (−0.995) (2.015) (0.414) (−3.688) (0.722) (2.936) (2.087)
Adj. R2 0.029 0.012 0.069 0.009 0.216 0.045 0.232 0.154
N 68 68 68 68 16 34 68 68

Notes: Table reports intercept (β0) and slope (β1) estimates from regressing h = 1 year ahead survey expectations of stock returns
Ft[rt,t+h] on the log job filling rate qt. rt,t+h denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from
time t to t+ h, depending on the concept that survey respondents are asked to predict: log stock returns for CB, SOC, Gallup/UBS,
and CFO; log price growth for Livingston. Fs

t [rt,t+h] denotes subjective expectations of stock returns or price growth from survey
s. CoC and Hurdle denotes corporate cost of capital and hurdle rates constructed in Gormsen and Huber (2023). The sample is
quarterly over 2005Q1 to 2021Q4 when considering the NX, CB, SOC, and CFO surveys, 2005Q1 to 2007Q4 for Gallup/UBS, and
semi-annual over 2005Q1 to 2021Q4 from Q2 and Q4 of each calendar year for Livingston. Newey-West corrected t-statistics with
lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.8 Bartik Instrument for Subjective Beliefs

A key challenge in estimating the regional decomposition is that regional labor market tightness

and subjective beliefs are endogenously determined jointly, which likely overstates the estimated

effect of subjective beliefs on cash flows. Another issue is the limited availability of subjective

expectations data at a regional level, as firms in the data could operate across multiple regions.

I address these challenges by constructing a Bartik shift-share instrument F̃s,t[·] to proxy for

regional subjective expectations Ft[·]:

F̃s,t[ys,t,t+h] =
∑
i∈I

ss,i,tFt[yi,t,t+h], y = r, e, pe (A.4)

where time t is measured quarterly, and ss,i,t is the employment share of industry i in region

s, sourced from the BLS Quarterly Census of Employment and Wages (QCEW). I measure

industries as 2-digit NAICS sectors and regions as U.S. states.

Ft[yi,t,t+h] denotes aggregate subjective expectations for variable y in industry i, where the

variables are either discount rates, cash flows, or price-earnings ratios. I construct these industry-

level expectations by aggregating the firm-level expectations across all firms in industry i from the

IBES database. I construct earnings growth using earnings per share (EPS) forecasts, discount

rates from price target forecasts, and employment growth by projecting the firm’s past realized

employment growth onto the subjective forecast from the CFO survey. I measure regional labor

market tightness at the state level as the vacancy-to-unemployment ratio, where vacancies use

data from the Job Openings and Labor Turnover Survey (JOLTS) and unemployment uses data

from the Local Area Unemployment Statistics (LAUS).

Using this Bartik instrument, I estimate the following regression:

θs,t = β · F̃t [ys,t,t+1] + αs + αt + εt, y = r, e, pe (A.5)

where F̃t [ys,t,t+1] is the Bartik shift-share instrument for subjective expectations from equation

(A.4), αi are region fixed effects, and αt are time fixed effects. The region fixed effects αs can

absorb regional differences in vacancy posting cost cθ,s, and time fixed effects αt can absorb

long-run inflation expectations common across regions within a common monetary union (Hazell

et al., 2022). The identification of the parameter β hinges on the quasi-random assignment of

industry-level shocks, implying that these shocks are, in expectation, uncorrelated with relevant

unobservables. However, identification could be threatened if preexisting trends in labor market

tightness were more prevalent in states with industry mixes that would make them more or less

susceptible to the shock.

The estimates in panel (a) columns (4)-(6) of Table A.8 suggest that regional labor mar-

ket tightness is primarily driven by subjective cash flow news rather than discount rate news.

Discount rate expectations play a smaller but still sizeable role. At the one-year horizon, sub-

jective cash flow news accounts for 58.8% of the variation, while discount rate news contributes

2.7%. These estimates are in line with the aggregate estimates from Table 2. The sign of the
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relationship to labor market tightness is also consistent with predictions from the search model.

Based on the regional model, higher labor market tightness predicts lower discount rates, higher

cash flows, or both. Panel (b) columns (4)-(6) condition on time and region fixed effects to find

that cash flow news plays an even stronger role in explaining regional labor market fluctuations.

At the one-year horizon, subjective cash flow news accounts for 97.8% of the variation, while

discount rate news contributes 1.1%.

Table A.8: Determinants of Regional Labor Market Tightness: Bartik Instrument for Subjective
Beliefs

θs,t = β · F̃t [ys,t,t+1] + αs + αt + εt, y = r, e, pe

(1) (2) (3) (4) (5) (6)

Discount
Rate

Cash
Flow

Price
Earning

Discount
Rate

Cash
Flow

Price
Earning

βF,y -0.0705∗∗ 0.4496∗∗∗ 0.5153∗∗∗ 0.0270 0.5884∗∗∗ 0.4578∗∗∗

(0.0301) (0.0299) (0.0341) (0.0299) (0.0301) (0.0130)

Observations 12,291 12,291 12,291 12,291 12,291 12,291
R2 0.98 0.24 0.19 0.97 0.30 0.22
Specification OLS OLS OLS Bartik Bartik Bartik
Region FE Yes Yes Yes Yes Yes Yes
Time FE No No No No No No

Notes: Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial analysts. Rational expectations Et are
based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. The sample is quarterly from 2005Q1
to 2022Q4. Observations weighted by size of labor force in each state. Standard errors clustered by state are reported in parentheses:
∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.9 Price-Employment Ratios and Job Filling Rates

The job filling rate in the search model is closely related to price-employment ratio. Under

constant returns to scale, the hiring equation directly relates the job filling rate with the price-

employment ratio:

Cov [plt, log qt]

V ar [log qt]
≈ −1

where plt is the log stock price to employment ratio. Table A.9 tests this prediction by regressing

log price-employment on log job filling rate:

plt = α + β log qt + εt

The estimates show that β not significantly different from -1, and the R2 of the regression is

relatively high, consistent with predictions of the model.

Table A.9: Role of Price-Employment Ratios

Dep. Var. Log Price-Employment plt
Specification Levels First Differences

Share of job filling rate variation (β) −0.988 −0.977
t-stat (0.204) (0.203)

Adj. R2 0.895 0.780
N 76 76

Notes: Table reports slope coefficient from regressing the aggregate log price-employment ratio on the aggregate log job filling rate.
The sample is quarterly from 2002Q1 to 2020Q4. Newey-West corrected t-statistics for a two-sided t-test of H0 : β = −1 with lags
= 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.10 Price-Earnings Ratios and Job Filling Rates

To examine the role of price-earnings ratios (PE ratios) directly, I decompose the job filling

rate using equation (6), before applying the Campbell and Shiller (1988) decomposition of the

price-earnings ratio pet:

log qt = log κ− pet +∆et+1 − elt+1

Table A.10 reports the estimates. Under rational expectations, PE ratios explain nearly all the

variation in job filling rates (101.9%), earnings growth is positively related to the job filling rate.

Under subjective expectations, the role of earnings growth becomes negative, suggesting that

survey respondents systematically over-react to news about cash flows. These findings confirm

that observed hiring decisions reflect and over-weighting of cash flow expectations, distorting the

relationship between labor market fluctuations and firm fundamentals.

Table A.10: Role of Price-Earnings Ratios

Dep. Var.
Price-

Earnings
Earnings
Growth

Earnings-
Employment Residual

Horizon h (Years) 1 1 1 1

Rational Expectations
log qt = log κ− pet + Et[∆et+1]− Et[elt+1]

Share of job filling rate variation −1.019∗∗∗ 0.250∗∗∗ −0.253∗∗∗ −0.022
t-stat (−3.569) (8.189) (−8.141) (−0.221)

Subjective Expectations
log qt = log κ− pet + Ft[∆et+1]− Ft[elt+1]

Share of job filling rate variation −1.019∗∗∗ 0.644∗∗∗ −0.586∗∗∗ 0.039
t-stat (−3.569) (8.842) (−8.476) (0.418)

Notes: Table decomposes the job filling rate using equation (6), before applying the Campbell and Shiller (1988) decomposition of
the price-earnings ratio pet. Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial analysts. Rational
expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. The sample is
quarterly from 2005Q1 to 2021Q4. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig.
at 5%. ∗∗∗sig. at 1%.
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A.11 Variance Decomposition of Aggregate Labor Market Tightness

Table A.11 estimates a variance decomposition of aggregate labor market tightness (θt), defined

as the ratio of vacancies to unemployment, under subjective expectations and rational expecta-

tions. Under rational expectations, discount rates and cash flows both contribute to fluctuations

in labor market tightness. Under subjective expectations, cash flow news dominates, explain-

ing nearly 80% of the variation in labor market tightness. Fluctuations in subjective discount

rates play no significant role. These results suggest that belief distortions in cash flow expecta-

tions are a primary driver of aggregate labor market dynamics, leading to excessive volatility in

unemployment and hiring decisions.

Table A.11: Variance Decomposition of Labor Market Tightness

Horizon h (Years) 1 2 3 4 5

Rational Expectations
θt = cθ − Et [rt,t+h] + Et [et,t+h] + Et [pet,t+h]

(-) Discount Rate 0.131∗∗∗ 0.275∗∗∗ 0.435∗∗∗ 0.475∗∗∗ 0.515∗∗∗

t-stat (3.478) (3.577) (3.793) (3.045) (2.678)
Cash Flow 0.060 0.133 0.149 0.159 0.171∗

t-stat (1.331) (1.560) (1.376) (0.836) (1.722)
Price-Earnings 0.795∗∗∗ 0.617∗∗∗ 0.450 0.371 0.288

t-stat (4.452) (2.751) (1.168) (0.935) (0.555)
Residual 0.013 −0.025 −0.033 −0.006 0.026

t-stat (0.069) (−0.099) (−0.080) (−0.013) (0.045)
N 68 68 68 68 68

Subjective Expectations
θt = cθ − Ft [rt,t+h] + Ft [et,t+h] + Ft [pet,t+h]

(-) Discount Rate 0.015 0.018 0.033 −0.006 −0.094
t-stat (1.128) (0.771) (0.940) (−0.090) (−1.060)

Cash Flow 0.688∗∗∗ 0.698∗∗∗ 0.666∗∗∗ 0.737∗∗∗ 0.772∗∗∗

t-stat (5.599) (5.772) (4.586) (4.182) (4.623)
Price-Earnings 0.331∗∗ 0.253 0.287 0.237 0.322

t-stat (2.044) (1.420) (0.882) (0.726) (1.124)
Residual −0.034 0.032 0.014 0.032 0.001

t-stat (−0.165) (0.146) (0.038) (0.086) (0.002)
N 68 68 68 68 68

Notes: Table reports variance decompositions of aggregate labor market tightness, defined as the ratio of vacancies to unemployment,
under subjective expectations or rational expectations. Subjective expectations Ft are based on survey forecasts of CFOs and
IBES financial analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM)
neural networks. The sample is quarterly from 2005Q1 to 2021Q4. Newey-West corrected t-statistics with lags = 4 are reported in
parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.12 Biases in Subjective Beliefs

To directly quantify the importance of biases in subjective beliefs, I consider predictive regressions

of biases in subjective expectations of discount rates, cash flows, and price-earnings ratios on the

job filling rate. I define the bias as the difference between subjective and machine expectations.

Table A.12 reports estimates β1,B from regressing biases in subjective discount rate, cash flow,

and log price-earnings expectations on the job filling rate:

Biast[yt,t+h] = β0,B + β1,B log qt + εt,B, y = r, e, pe (A.6)

where the Biast[yt,t+h] ≡ Ft[yt,t+h]−Et[yt,t+h] is defined as the difference between subjective and

machine expectations of the same variable.

The results indicate that biases in survey forecasts are important contributors to fluctuations

in job filling rates, especially at longer horizons. At the 5-year horizon, biases in cash flow

expectations lead survey respondents to over-weight 70.5% of the variation in job filling rates to

the cash flow component. This mis-perception is counteracted by biases in subjective discount

rate expectations, which leads survey respondents to under-weight 67.5% of the variation in the

job filling rate. These findings emphasize the importance of belief distortions in driving labor

market fluctuations. The profile of the response across forecast horizons is broadly consistent

with the profile of the MSE ratios across horizons in Table 1. For discount rate and cash flow

expectations, the machine outperformed the survey by a wider margin over longer horizons,

suggesting that the bias in survey responses likely play a bigger role over these longer horizons.

Table A.12: Biases in Subjective Beliefs and the Job Filling Rate

Horizon h (Years) 1 2 3 4 5

Biases in Subjective Expectations
Ft[yt,t+h]− Et[yt,t+h] = β0,B + β1,B log qt + εt,B , y = r, e, pe

Discount Rate −0.169 −0.291∗∗ −0.543∗∗ −0.603∗∗∗ −0.675∗∗∗

t-stat (−1.474) (−1.992) (−2.505) (−2.734) (−2.876)
(-) Cash Flow 0.291 0.543∗∗∗ 0.615∗∗∗ 0.649∗∗∗ 0.705∗∗∗

t-stat (1.162) (3.064) (4.053) (4.025) (3.553)
(-) Price-Earnings −0.084 −0.146 −0.043 −0.127 −0.094

t-stat (−0.246) (−1.311) (−0.195) (−0.439) (−0.295)
Residual 0.037 0.106 0.029 −0.081 −0.063

t-stat (0.085) (0.416) (0.085) (−0.204) (−0.143)
N 68 68 68 68 68

Notes: This table reports estimates β1,B from regressing the survey bias Ft[yt,t+h] − Et[yt,t+h] on the job filling rate qt. yt,t+h

denotes the dependent variable of type j to be predicted h years ahead of time t. The components of the decomposition are h-year
present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h. The
residual term captures variation in the bias that cannot be explained by the three components. Subjective expectations Ft are based
on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are based on machine
learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose parameters βh,t are estimated in
real time using Xt, a large scale dataset of macroeconomic, financial, and textual data. The bias is defined as the difference between
subjective and machine expectations: Biast = Ft − Et. The sample is quarterly from 2005Q1 to 2021Q4. Newey-West corrected
t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.13 Risk-Neutral Measure

Table A.13 estimates the variance decomposition ob job filling rates under risk-neutral probabil-

ities, defined as:

Et[Mt+1Xt+1] =
1

Rf,t

EQ
t [Xt+1] (A.7)

Ft[Mt+1Xt+1] =
1

Rf,t

FQ
t [Xt+1] (A.8)

where EQ
t [·] and FQ

t [·] denote rational and subjective expectations computed under risk-neutral

probabilities. I measure risk-free rates Rf,t using the 3-month Treasury bill rate.

Under rational expectations, risk-neutral discount rate fluctuations explain an insignificant

share (0.1%) of the job filling rate, while the terminal value from future price-earnings ratios

account for 80.7%. Under subjective expectations, the weight on cash flows increases even further

(97.7%) with virtually no role for discount rates. These results reinforce the idea that cash flow

over-reaction is a key feature of subjective expectations and lead to excessive volatility in job

filling rates.

Table A.13: Risk-Neutral Expectations

Dep. Var. Discount Rate (-) Cash Flow (-) Price-Earnings Residual
Horizon h (Years) 5 5 5 5

Risk-Neutral Expectations (Rational) Et[Mt+1Xt+1] =
1

Rf,t
EQ
t [Xt+1]

log qt = cq + EQ
t [rt,t+h]− EQ

t [et,t+h]− EQ
t [pet,t+h]

Share of V ar[log qt] 0.001 0.203∗∗∗ 0.807∗∗ −0.010
t-stat (0.040) (2.834) (2.493)

Risk-Neutral Expectations (Subjective) Ft[Mt+1Xt+1] =
1

Rf,t
FQ
t [Xt+1]

log qt = cq + FQ
t [rt,t+h]− FQ

t [et,t+h]− FQ
t [pet,t+h]

Share of V ar[log qt] −0.004 0.977∗∗∗ −0.023∗∗∗ 0.050
t-stat (−0.378) (5.075) (3.596)

Notes: Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial analysts. Rational expectations Et are
based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. Risk-free rates are measured Rf,t

using the 3-month Treasury bill rate. The sample is quarterly from 2016Q1 to 2022Q4. Newey-West corrected t-statistics with lags
= 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.14 Subjective Risk-Neutral Measure from Dividend Futures

To validate the robustness of the risk-neutral results, I construct risk-neutral cash flow expecta-

tions by using dividend futures following Gormsen and Koijen (2020).

The estimates in Table A.14 show that subjective cash flow news remains the dominant

driver of the job filling rate. Compared to survey-based subjective expectations, the subjective

risk-neutral expectation places more weight on long-horizon cash flows, since the price-earnings

ratio component (terminal value) is larger than in Table A.13. Risk-free rates play a minimal

role, suggesting that fluctuations in job filling rates are more closely tied to belief distortions

about earnings growth rather than movements in risk premia. These findings support the view

that managerial expectations about future earnings are systematically distorted, with significant

over-reaction to long-term cash flow news.

Table A.14: Subjective Risk-Neutral Expectations from Dividend Futures

Dep. Var. Discount Rate (-) Cash Flow (-) Price-Earnings Residual
Horizon h (Years) 1 1 1 1

Risk-Neutral Expectations FQ
t [·]

log qt = cq + FQ
t [rt,t+h]− FQ

t [et,t+h]− FQ
t [pet,t+h]

Share of V ar[log qt] −0.003 0.430∗∗∗ 0.553∗∗∗ 0.019
t-stat (−1.583) (10.338) (4.704) (0.101)

Notes: Risk-neutral expectations FQ
t about discount rates are based on the 3-month Treasury bill rate. Risk-neutral expectations FQ

t
about cash flows are based on dividend futures following Gormsen and Koijen (2020), which are fitted values from regressing realized
1-year dividend growth ∆dh,t on the S&P 500 on the 1-year equity yield eh,t of the same index: ∆dh,t = β0 + β1eh,t + ϵt where t
is measured in quarters, h is the horizon of the expectation, the coefficients are estimated recursively using expanding samples up
to the time of each observation. The equity yield is defined as eh,t = (1/h) log(Dt/Fh,t), where Dt is the quarterly dividend on the
S&P 500 and Fh,t is the price of 1-year ahead dividend futures from Bloomberg. The sample is quarterly from 2016Q1 to 2022Q4.
Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.15 Ex-post Decomposition

Since the log-linear decomposition of the job filling rate holds both ex-ante and ex-post, a variance

decomposition of the job filling rate can also be estimated using ex-post realized data, under the

assumption of the manager’s perfect foresight:

1 ≈ Cov [rt,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate news

− Cov [et,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [pet,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

Table A.15 reports the estimates. Ex-post discount rate news is the main driver of fluctuations

in job filling rates, with ex-post cash flow news playing only a minor role. At the 5 year horizon,

79.4% of the variation in the job filling rate is driven by discount rate news. In contrast, cash

flow news has a smaller effect, contributing only 10.3% over the same period. The ex-post

decomposition differs from both rational and subjective decompositions, suggesting that survey

respondents not only need to learn about the true data generating process of the economy (when

compared against rational expectations), but also hold significant distortions in their beliefs

about them (when compared against subjective expectations).

Table A.15: Ex-Post Variance Decomposition of the Job Filling Rate

Horizon h (Years) 1 2 3 4 5

Ex-Post Decomposition (Full Information Rational Expectations)
log qt = cq + rt,t+h − et,t+h − pet,t+h

Discount Rate 0.445 0.675∗∗ 0.705∗∗∗ 0.780∗∗∗ 0.794∗∗∗

t-stat (1.220) (2.429) (2.816) (3.850) (3.439)
(-) Cash Flow −0.017 0.047 0.083 0.080 0.103

t-stat (−0.191) (0.567) (0.996) (1.026) (1.206)
(-) Price-Earnings 0.572∗∗∗ 0.273∗∗∗ 0.208∗∗∗ 0.123 0.074

t-stat (7.423) (5.965) (4.037) (1.468) (0.671)
Residual −0.000 0.005 0.003 0.016 0.028

t-stat (−0.001) (0.031) (0.017) (0.089) (0.137)
N 68 68 68 68 68

Notes: Table reports variance decompositions of the job filling rate from equation using ex-post realized outcomes. The components
of the decomposition are present discounted values of discount rates rt,t+h, cash flows et,t+h, and log price-earnings ratios pet,t+h.
Residual represents the variation in job filling rates that are not captured by the other components. The sample is quarterly from
2005Q1 to 2021Q4. Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig.
at 1%.
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A.16 Counter-Cyclical Dispersion in Subjective Expectations

Figure A.1: Counter-Cyclical Dispersion in Subjective Expectations

Notes: This figure plots the cross-sectional dispersion of subjective expectations (Survey) for each outcome that decomposes the
job filling rate (left axis), against the current detrended job filling rate qt (right axis). The dispersion is calculated as the standard
deviation of each outcome across firms covered in the IBES database, weighted by the firm’s market capitalization. The components
of the decomposition are h = 5 year present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative)
price-earnings ratios pet,t+h. x axis denotes the date on which actual values and job filling rates were realized, and the vertical
distance between the actual line and each forecast is the forecast error. Subjective expectations Ft are based on survey forecasts from
the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are based on machine learning forecasts Et

from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose parameters βh,t are estimated in real time using Xt, a
large scale dataset of macroeconomic, financial, and textual data. The out-of-sample testing period for survey and machine forecasts
is quarterly and spans 2005Q1 to 2021Q4. NBER recessions are shown with gray shaded bars.
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B Model Details

B.1 Representative Agent Model

In this section, I present a search and matching model based on Diamond (1982), Mortensen

(1982), and Pissarides (2009). The model introduces subjective beliefs that may depart from ra-

tional expectations, thereby capturing the impact of belief distortions on labor market dynamics.

See Petrosky-Nadeau et al. (2018) for a standard search and matching model formulated under

rational expectations.

Environment Consider a discrete time economy populated by a representative household and

a representative firm that uses labor as a single input to production.

Representative Household The household has a continuum of mass 1 members who are

either employed Lt or unemployed Ut at any point in time. The population is normalized to 1,

i.e., Lt + Ut = 1, meaning that Lt and Ut are also the rates of employment and unemployment,

respectively. The household’s consumption decision implies a stochastic discount factor Mt+1.

The household pools the income of all members before making its consumption decision. Assume

that the household’s members have access to complete contingent claims against aggregate risk.

Assume that the household has perfect consumption insurance. Risk sharing implies each member

consumes the same amount regardless of idiosyncratic shocks.

Search and Matching We adopt a standard end-of-period matching convention (Petrosky-

Nadeau et al., 2018). At the start of period t, the employment stock Lt reflects the total number

of workers carried over from the previous period before any separations or new hires in period t.

A fraction δt of these workers separate during the period, so the number of continuing employees

becomes (1− δt)Lt.

The representative firm posts job vacancies Vt and engage in search over the course of the

period to attract unemployed workers Ut. Matches are formed at the end of period t according to a

matching function m(Ut, Vt), where qt ≡ m(Ut, Vt)/Vt is the job filling rate, and ft ≡ m(Ut, Vt)/Ut

is the job finding rate. These new matches become part of the workforce starting in period t+1,

so employment evolves according to the employment accumulation equation:

Lt+1 = (1− δt)Lt + qtVt (A.9)

The job filling rate qt maps vacancy posting decisions made during period t into employment

outcomes observed at the beginning of period t+1. The variance decomposition does not require

specifying the functional form of the matching function m. As explained in Section D, I measure

the number of matches directly from the data using changes in unemployment and the number

of short-term unemployed (Shimer, 2012). Posting a vacancy costs the firm κ > 0 per period,
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reflecting fixed hiring costs such as training and administrative setup. Jobs are destroyed at a

time-varying job separation rate δt. Unemployment Ut = 1− Lt evolves according to:

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (A.10)

where θt = Vt/Ut denotes labor market tightness, defined as the vacancy-to-unemployment ratio.

Representative Firm The firm has access to a production function F which uses labor Lt as

an input to produce output Yt = F (Lt). Dividends to the firm’s shareholders Et are defined as

Et ≡ Πt−κVt, where Πt ≡ Yt−WtLt is the total profit before vacancy posting costs κVt and Wt is

the wage rate. As in Petrosky-Nadeau et al. (2018), I assume that the representative household

owns the equity of the firm, and that the firm pays out all of its earnings as dividends. I also

assume that firms have the same unconstrained access to financing as investors in the financial

market. The firm posts the optimal number of vacancies to maximize the cum-dividend market

value of equity St:

St = max
{Vt+j ,Lt+j}∞j=0

Ft

[
∞∑
j=0

Mt,t+jEt+j

]
(A.11)

subject to the employment accumulation equation (??). The firm takes the wage rate Wt,

household’s stochastic discount factor Mt,t+j =
∏j

s=1Mt+s, and job filling rate qt as given.

Expectations Let Ft[·] denote expectations conditional on information available at the be-

ginning of period t, computed based on the manager’s possibly distorted beliefs. I allow for

departures from rational expectations Et[·], but restrict to beliefs that preserve the law of iter-

ated expectations.

Hiring Equation The firm’s optimal hiring decision implies the hiring equation, which equates

the expected discounted value of hiring a marginal worker with its marginal cost. Rewrite the

infinite-horizon value-maximization problem of the firm into recursive form:

St = max
Vt,Lt+1

Πt − κVt + Ft [Mt+1St+1] (A.12)

s.t. Lt+1 = (1− δt)Lt + qtVt (A.13)

The first-order condition with respect to Vt is:

∂St

∂Vt

= −κ+ Ft

[
Mt+1

∂St+1

∂Lt+1

∂Lt+1

∂Vt

]
= 0 (A.14)

Substitute ∂Lt+1

∂Vt
= qt and

∂Lt+1

∂Lt
= (1− δt) from the employment accumulation equation (A.13),

and rearrange (A.14) in terms of the marginal cost of hiring κ/qt:

κ

qt
= Ft

[
Mt+1

∂St+1

∂Lt+1

]
(A.15)

19



Next, differentiate St with respect to Lt:

∂St

∂Lt

=
∂Πt

∂Lt

+ Ft

[
Mt+1

∂St+1

∂Lt+1

∂Lt+1

∂Lt

]
(A.16)

Substitute ∂Lt+1

∂Lt
= (1− δt) from the employment accumulation equation (A.13):

∂St

∂Lt

=
∂Πt

∂Lt

+ (1− δt)Ft

[
Mt+1

∂St+1

∂Lt+1

]
(A.17)

Substitute equation (A.17) for period t+ 1 into equation (A.15):

κ

qt
= Ft

[
Mt+1

(
∂Πt+1

∂Lt+1

+ (1− δt+1)Ft+1

[
Mt+2

∂St+2

∂Lt+2

])]
(A.18)

Finally, substitute in (A.15) for period t+ 1 to arrive at the hiring equation:

κ

qt︸︷︷︸
Cost of hiring

= Ft

[
Mt+1

(
πt+1 + (1− δt+1)

κ

qt+1

)]
︸ ︷︷ ︸

Expected discounted value of hiring

(A.19)

where πt ≡ ∂Πt

∂Lt
is the profit flow from the marginal hired worker.

The hiring equation relates the marginal cost of hiring κ
qt

with the expected marginal value

of hiring to the firm, which equals the future expected marginal benefits of hiring discounted to

present value with the stochastic discount factor Mt+1. The future marginal benefits of hiring

include πt+1, the future marginal product of labor net of the wage rate, plus the future marginal

value of hiring, which equals the future marginal cost of hiring κ
qt+1

net of separation (1− δt+1).

During recessions, job filling rates qt are high, which makes the cost of hiring κ/qt low. The low

cost of hiring must be rationalized by either low expected discounted profit flows Ft[Mt+1πt+1]

or low future value of hiring (1− δt+1)
κ

qt+1
.

The hiring equation is the labor market analogue of the optimality condition for physical

capital in the q theory of investment (Hayashi, 1982), where κ/qt is the upfront cost of investment

analogous to Tobin’s marginal q and δt+1 is the depreciation rate.

Stock Price Next, I derive the firm’s stock price implied by the optimal hiring decision (Liu

et al. (2009), Belo et al. (2023)). Assume a constant returns to scale (CRS) production function

so that marginal profits equal average profits:

πt+1Lt+1 =
∂Πt+1

∂Lt+1

Lt+1 = Πt+1 (A.20)

Multiply both sides of the hiring equation by the number of employees Lt+1:

κ

qt
Lt+1 = Ft

[
Mt+1

(
πt+1Lt+1 + (1− δt+1)

κ

qt+1

Lt+1

)]
(A.21)
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Substitute in the employment accumulation equation (A.13) and rearrange terms:

κ

qt
Lt+1 = Ft

[
Mt+1

(
πt+1Lt+1 +

κ

qt+1

(Lt+2 − qt+1Vt+1)

)]
(A.22)

= Ft

[
Mt+1

(
πt+1Lt+1 − κVt+1 +

κ

qt+1

Lt+2

)]
(A.23)

Use the constant returns to scale assumption to simplify πt+1Lt+1−κVt+1 = Πt+1−κVt+1 = Et+1:

κ

qt
Lt+1 = Ft

[
Mt+1

(
Et+1 +

κ

qt+1

Lt+2

)]
(A.24)

Substitute the equation recursively and apply the law of iterated expectations for Ft[·]:

κ

qt
Lt+1 = Ft

[
∞∑
j=1

Mt,t+jEt+j

]
+ lim

T→∞
Ft

[
Mt,t+T

κ

qt+T

Lt+T+1

]
(A.25)

The first term on the right-hand side is the firm’s stock price Pt ≡ St − Et, which is the firm’s

ex-dividend equity value. Take the second term to zero by applying a transversality condition to

arrive at an equation that relates the total cost of hiring with the firm’s stock price:

κ

qt
Lt+1 = Pt (A.26)

where employment Lt+1 is determined at the end of date t under our timing convention from

equation (A.9).

Log-linear Approximation Take logarithms of both sides of the firm’s stock price equation

(A.26) and rearrange terms:

log κ− log qt = log
Pt

Lt+1

(A.27)

= log
Pt

Et

− log
Et+1

Et

+ log
Et+1

Lt+1

(A.28)

≡ pet −∆et+1 + elt+1 (A.29)

where I define pet ≡ log Pt

Et
, ∆et+1 ≡ log Et+1

Et
, and elt+1 ≡ log Et+1

Lt+1
for notational convenience. To

express the price-earnings ratio pet in terms of forward-looking variables, start by log-linearizing

the price-dividend ratio pdt = log(Pt/Dt) around its long-term average pd (Campbell and Shiller,

1988):

pdt = cpd +∆dt+1 − rt+1 + ρpdt+1 (A.30)

where cpd is a linearization constant, rt+1 ≡ log(Pt+1+Dt+1

Pt
) is the log stock return (with dividends),

and ρ ≡ exp(pd)

1+exp(pd)
= 0.98 is a persistence parameter that arises from the log linearization. Rewrite
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the equation in terms of log price-earnings instead of log price-dividends by using the identity

pet = pdt + det, where det log payout ratio:

pet = cpd +∆et+1 − rt+1 + ρpet+1 + (1− ρ)det+1 (A.31)

Since 1 − ρ ≈ 0 and the payout ratio det is bounded, (1 − ρ)det+1 can be approximated as a

constant, i.e., cpe ≈ cpd + (1− ρ)det+1 (De La O et al., 2024):

pet ≈ cpe +∆et+1 − rt+1 + ρpet+1 (A.32)

Recursively substitute for the next h periods

pet =
h∑

j=1

ρj−1(cpe +∆et+j − rt+j) + ρhpet+h (A.33)

Decomposition of Job Filling Rates Substitute the log-linearized price-earnings ratio in

equation (A.33) into the log stock price in equation (A.29):

log qt = log κ− pet +∆et+1 − elt+1 (A.34)

= log κ−

[
h∑

j=1

ρj−1(cpe +∆et+j − rt+j) + ρhpet+h

]
+∆et+1 − elt+1 (A.35)

Rearrange and collect terms to obtain an ex-post decomposition of the job filling rate:

log qt = cq +
h∑

j=1

ρj−1rt+j︸ ︷︷ ︸
rt,t+h

−

[
elt+1 +

h∑
j=2

ρj−1∆et+j

]
︸ ︷︷ ︸

et,t+h

− ρhpet+h︸ ︷︷ ︸
pet,t+h

(A.36)

where cq ≡ log κ − cpe(1−ρh)

1−ρ
is a constant. The equation decomposes the job filling rate into

future discount rates rt,t+h ≡
∑h

j=1 ρ
j−1rt+j, cash flows et,t+h ≡ elt+1 +

∑h
j=2 ρ

j−1∆et+j, and

price-earnings pet,t+h ≡ ρhpet+h. The cash flow component consists of one period ahead log

earnings-employment elt+1, which captures news about short-term cash flows, and j = 2, . . . , h

period ahead log earnings growth ∆et+j, which captures long-term news about cash flows.1 pet,t+h

is a terminal value that captures other long-term influences beyond h periods into the future not

already captured in discount rates and cash flows.

Since equation (A.36) holds both ex-ante and ex-post, it can be evaluated under either sub-

jective or rational expectations. The subjective decomposition replaces ex-post realizations of

future outcomes with their subjective expectations Ft[·]:

log qt = cq +
h∑

j=1

ρj−1Ft[rt+j]︸ ︷︷ ︸
Ft[rt,t+h]

−

[
Ft[elt+1] +

h∑
j=2

ρj−1Ft[∆et+j]

]
︸ ︷︷ ︸

Ft[et,t+h]

− ρhFt[pet+h]︸ ︷︷ ︸
Ft[pet,t+h]

(A.37)

1The earnings-employment ratio can be interpreted as a measure of the marginal product of labor under
constant returns to scale (David et al., 2022).
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Alternatively, the rational decomposition replaces ex-post realizations of future outcomes with

their rational expectations Et[·]:

log qt = cq +
h∑

j=1

ρj−1Et[rt+j]︸ ︷︷ ︸
Et[rt,t+h]

−

[
Et[elt+1] +

h∑
j=2

ρj−1Et[∆et+j]

]
︸ ︷︷ ︸

Et[et,t+h]

− ρhEt[pet+h]︸ ︷︷ ︸
Et[pet,t+h]

(A.38)

Comparing these decompositions can quantify how belief distortions affect the job filling rate.

Estimation The econometrician can estimate the variance decomposition using predictive re-

gressions of each expected outcome on the current job filling rate. For the subjective decomposi-

tion, demean each variable in equation (A.37), multiply both sides by the current log job filling

rate log qt, and take the sample average:

V ar [log qt] = Cov [Ft[rt,t+h], log qt]− Cov [Ft[et,t+h], log qt]− Cov [Ft[pet,t+h], log qt] (A.39)

where V ar[·] and Cov[·] are sample variances and covariances based on data observed over a

historical sample. Finally, divide both sides by V ar [log qt] to decompose its variance:

1 =
Cov [Ft[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Ft[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Ft[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(A.40)

The left-hand side represents the full variability in job filling rates, hence is equal to one. Each

term on the right reflects the share explained by subjective expectations of discount rates, cash

flows, or price-earnings ratios. Under stationarity, the econometrician can estimate these shares

using the OLS coefficients from regressing Ft[rt,t+h], Ft[et,t+h], and Ft[pet,t+h] on the current log

job filling rate log qt, respectively.

Finally, the decomposition under rational expectations can be estimated similarly based on

equation (A.38) by replacing the subjective expectation Ft[·] with its rational counterpart Et[·]:

1 =
Cov [Et[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Et[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Et[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(A.41)

Under stationarity, the econometrician can estimate these shares using the OLS coefficients from

regressing Et[rt,t+h], Et[et,t+h], and Et[pet,t+h] on the current log job filling rate log qt, respectively.

C Time-Series Decomposition of the Unemployment Rate

I derive a decomposition of the unemployment rate by log linearizing the unemployment accu-

mulation equation from equation (2):

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (A.42)
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Denote the steady state values without time subscripts: U , δ, q, and θ. In steady state:

U = δ(1− U) + (1− qθ)U (A.43)

Define log deviations from steady state as X̂t = log(Xt) − log(X) for some variable X. Log-

linearizing the accumulation equation around the steady state involves taking a first-order Taylor

approximation:

UeÛt+1 ≈ δeδ̂t(1− UeÛt) + (1− qθeq̂t+θ̂t)UeÛt (A.44)

Use the approximation Xext ≈ X(1 + xt), expand, and simplify:

U(1 + Ût+1) ≈ δ(1 + δ̂t)(1− U(1 + Ût)) + (1− qθ(1 + q̂t + θ̂t))U(1 + Ût) (A.45)

or equivalently

U + UÛt+1 ≈ δ(1 + δ̂t)(1− U − UÛt) + (1− qθ − qθq̂t − qθθ̂t)U(1 + Ût) (A.46)

Use the steady state equation and collect terms with log deviations:

UÛt+1 ≈ δ(1− U)δ̂t − δUÛt − qθUq̂t − qθUθ̂t + U(1− qθ)Ût (A.47)

Divide both sides by U :

Ût+1 ≈
δ(1− U)

U
δ̂t − δÛt − qθq̂t − qθθ̂t + (1− qθ)Ût (A.48)

or equivalently:

Ût+1 ≈
δ(1− U)

U
δ̂t + (1− δ − qθ)Ût − qθq̂t − qθθ̂t (A.49)

The steady state relationship δ(1− U) = qθU implies:

δ(1− U)

U
= qθ (A.50)

Substitute this back into our equation:

Ût+1 ≈ qθδ̂t + (1− δ − qθ)Ût − qθq̂t − qθθ̂t (A.51)

The result is a linear relationship between a decomposition of the log job filling rate and the

log-linearized unemployment accumulation equation.

Finally, substitute in equation (11), which is a decomposition of the job filling rate q̂t into

discount rate, cash flow, and future price-earnings components:

Ût+1 ≈ − qθ · r̂t,t+h︸ ︷︷ ︸
Discount Rate

+ qθ · êt,t+h︸ ︷︷ ︸
Cash Flow

+ qθ · p̂et,t+h︸ ︷︷ ︸
Future Price-Earning

+(1− δ − qθ) · Ût − qθ · θ̂t + qθ · δ̂t︸ ︷︷ ︸
Lag Unemployment, Tightness, Separations

(A.52)

The equation holds both ex-ante and ex-post. Therefore, I compare results from evaluating

the equation under subjective Ft[·] or rational Et[·] expectations. The decomposition can be

estimated using regressions of the log unemployment rate on each of the components shown in

the equation. To make sure all variables in the regression are stationary, I estimate the regressions

in first differences.
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C.1 Regional Model

Model Setup This section presents a multi-area, multi-sector search-and-matching model with

imperfect mobility across sectors, building from the models in Kehoe et al. (2019) and Chodorow-

Reich and Wieland (2020). The economy consists of a continuum of islands indexed by s.

Each island produces a differentiated variety of tradable goods that is consumed everywhere

and a nontradable good. Both of these goods are produced using intermediate goods. Each

consumer is endowed with one of two types of skills which are used in different intensities in

the nontradable and tradable goods sectors. Labor is immobile across islands but can switch

sectors.2 Consumers receive utility from a composite consumption good that is either purchased

in the market or produced at home. Consumers and firms are ex-ante homogeneous and share

the same subjective expectation Ft[·]. The islands only differ in the shocks that hit them.

Preferences and demand The composite consumption good on island s is produced from

nontradable goods Xs,N,t and tradable goods Xs,T,t

Xs,t =
[
τ

1
µ (Xs,N,t)

1− 1
µ + (1− τ)

1
µ (Xs,T,t)

1− 1
µ

] µ
µ−1

(A.53)

where µ is the elasticity of substitution between tradable and nontradable goods. The demand

for nontradable and tradable goods on island s is

Xs,N,t = τ

(
Ps,N,t

Ps,t

)−µ

Xs,t, Xs,T,t = (1− τ)

(
Ps,T,t

Ps,t

)−µ

Xs,t (A.54)

where Ps,N,t is the price of the nontradable good and Ps,T,t is the world price of the composite

tradable good. The price of the composite consumption good on island s is

Ps,t =
[
τP 1−µ

s,N,t + (1− τ)P 1−µ
s,T,t

] 1
1−µ (A.55)

The tradable good is a composite of varieties of differentiated tradable goods produced in all

islands s′

Xs,T,t =

[∫
Xs,T,t,s′

µT−1

µT ds′
] µT

µT−1

(A.56)

where Xs,T,t,s′ is the amount of the variety of tradable good produced on island s′ and consumed

on island s. µT is the elasticity of substitution between varieties produced on different islands.

Let Ps′,T,t be the price of tradable variety produced on island s′. Assume that there are no costs

of shipping goods from one island to another, so that the law of one price holds and all islands

purchase the variety s at the common price Ps,T,t. The price of the composite tradable good is

common to all islands

PT,t =

[∫
P 1−µT

s,T,t ds

] 1
1−µT

(A.57)

2This assumption aligns with empirical evidence indicating that labor markets are predominantly regional in
nature (Manning and Petrongolo, 2017).
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The demand on island s′ for a tradable variety produced on island s is therefore

Xs′,T,t,s =

[
Ps,T,t

PT,t

]−µT

Xs′,T,t (A.58)

so that the world demand for tradable goods produced by island s is

Ys,T,t =

∫
Xs′,T,t,sds

′ =

[
Ps,T,t

PT,t

]−µT

YT,t (A.59)

where YT,t =
∫
Xs′,T,tds

′ is the world demand for the composite tradable good. Since any

individual island is of measure zero, shocks to an individual island do not affect either the world

aggregate price of tradables PT,t or the world demand for tradables YT,t. Normalize the constant

world price of the composite tradable good PT,t to one so that the composite tradable good is

the numeraire.

Family’s problem Each family of workers on island s chooses sequences for consumption

{Cs,t} and assets {As,t+1} to maximize the present discounted value of consumption

max
Cs,t,As,t+1

∞∑
t=0

βtu(Cs,t) (A.60)

where the family’s consumption Cs,t = Xs,t+bs,t is the sum of goods purchased in the marketXs,t,

and produced at home bs,t which can be consumed only by that family. The budget constraint is

Ps,tXs,t + qAAs,t+1 = Ys,t + Es,t + As,t (A.61)

where Ps,t is the price of the composite consumption good on the island, As,t are the family’s

assets, and the family saves or borrows at a constant world bond price qA > β. Ys,t is the income

of the family’s workers in the form of wages

Ys,t ≡
∑

i∈{N ,T }

ws,i,tLs,i,t (A.62)

and Es,t are profits from the firms the family owns on island s

Es,t ≡
∑

i∈{N ,T }

Es,i,t =
∑

i∈{N ,T }

[(zs,i,t − ws,i,t)Ls,i,t − κVs,i,t] (A.63)

where zs,i,t is a sectoral labor productivity shock, ws,i,t is the wage of an employed worker, Ls,i,t is

the measure of employed workers, and Vs,i,t is the measure of vacancies for producing intermediate

goods of type i on island s.

From the first-order condition for the family’s problem, we can derive the shadow price of the

composite consumption good at date t in units of the composite consumption good at date 0 on

island s as

Ms,t = βt u
′(Cs,t)/Ps,t

u′(Cs,0)/Ps,0

(A.64)
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Technology Nontradable and tradable goods are produced with locally produced intermediate

goods. These intermediate goods are used by the nontradable and tradable sectors in different

proportions. This setup effectively introduces costs of sectoral reallocations of workers because

it implies a curved production possibility frontier between nontradable and tradable goods.

The economy has two types of intermediate goods: TypeN and type T goods. The technology

for producing nontradable goods disproportionately uses type N goods, whereas the technology

for producing tradable goods disproportionately uses type T goods according to the production

technologies

Ys,N,t = A(Y N
s,N,t)

ν(Y T
s,N,t)

1−ν , Ys,T,t = A(Y N
s,T,t)

1−ν(Y T
s,T,t)

ν (A.65)

with ν ≥ 1/2. Y N
s,N,t and Y N

s,T,t denote the use of intermediate inputs of typeN in the production of

nontradable and tradable goods, whereas Y T
s,N,t and Y T

s,T,t denote the use of intermediate inputs of

type T in the production of nontradable and tradable goods. Both nontradable goods producers

and tradable goods producers are competitive and take as given the price of their goods, Ps,N,t

and Ps,T,t. The demands for intermediate inputs in the nontradable goods sector are

Y N
s,N,t = ν

(
P T
s,t

PN
s,t

)1−ν

Ys,N,t, Y T
s,N,t = (1− ν)

(
PN
s,t

P T
s,t

)ν

Ys,N,t (A.66)

where PN
s,t and P T

s,t are prices of the intermediate goods N and T . The equation was derived

under the normalization A = ν−ν(1 − ν)1−ν . Likewise, the demands for intermediate inputs in

the tradable goods sector are

Y N
s,T,t = (1− ν)

(
PN
s,t

P T
s,t

)ν

Ys,T,t, Y T
s,T,t = ν

(
P T
s,t

PN
s,t

)1−ν

Ys,T,t (A.67)

Adding up the demands for each type of intermediate good by the two sectors gives the total

demand on island s for intermediate goods of type i

Y i
s,t = Y i

s,N,t + Y i
s,T,t (A.68)

Production of these intermediate goods is given by

Y i
s,t = zs,i,t · Ls,i,t (A.69)

where Ls,i,t is the measure of employed workers producing intermediate goods of type i on island

s. zs,i,t represents exogenous labor productivity for producing intermediate goods of type i on

island s. Zero profit conditions in nontradable and tradable goods sectors imply

Ps,N,t = (PN
s,t)

ν(P T
s,t)

1−ν , Ps,T,t = (PN
s,t)

1−ν(P T
s,t)

ν (A.70)

Assume that there are measures of consumers πN and πT = 1−πN in occuprations N and T who

supply labor to produce the two types of intermediate goods N and T , respectively. Consumers
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in occupation N can produce good N , and consumers in occupation T can produce good T .

Consumers are hired by intermediate goods firms that produce intermediate goods of either type

N or T . These goods are then sold at competitive prices PN
s,t and P T

s,t to firms in the nontradable

and tradable goods sectors.3

This setup captures in a simple way the idea that switching sectors is relatively easy, whereas

switching occupations is difficult. Note that any individual consumer faces no cost of switching

sectors. But if a positive measure of consumer moves from one sector to the other, then the

marginal revenue product of the consumers in the new sector falls and so do wages. This reduction

in marginal revenue products acts like a switching cost in the aggregate.

Labor market Firms that produce intermediate good i ∈ {N , T } post vacancies for consumers

in occupation i, who produce intermediate good i when matched. Assume that consumers cannot

switch occupations, so the measure of consumers in each occupation is fixed. The values of

consumers in occupation i of island s are

W̃s,i,t(zs,i,t) = ws,i,t(zs,i,t) (A.71)

+ (1− δ)Ft[Ms,t,t+1W̃s,i,t+1(zs,i,t+1)] (A.72)

+ δFt[Ms,t,t+1Ũs,i,t+1(zs,i,t+1)] (A.73)

for employed consumers, and

Ũs,i,t(zs,i,t) = Ptbs,t(zs,i,t) (A.74)

+ Ft[Ms,t,t+1fs,i,t(zs,i,t)W̃s,i,t+1(zs,i,t+1)] (A.75)

+ Ft[Ms,t,t+1(1− fs,i,t(zs,i,t))Ũs,i,t+1(zs,i,t+1)] (A.76)

for nonemployed consumers. ws,i,t(zs,i,t) is the wage received by a consumer in occupation i.

fs,i,t(zs,i,t) is the job-finding probability of a consumer in occupation i. bs,t(zs,i,t) is the output of

a consumer when not employed. δ is an exogenous separation probability. Subjective expectations

Ft[·] are with respect to next period’s productivity zs,i,t+1.

The value of a firm producing intermediate good i matched with a consumer in occupation i

with productivity zs,i,t is

J̃s,i,t(zs,i,t) = Ps,i,tzs,i,t − ws,i,t(zs,i,t) + (1− δ)Ft[Ms,t,t+1J̃s,i,t+1(zs,i,t+1)] (A.77)

At date t a consumer in occupation i matched with a firm in intermediate good sector i produces

zs,i,t units of good i, which sells for Ps,i,tzs,i,t, and the firm pays the consumer ws,i,t(zs,i,t). The

3It is equivalent to think that the consumers in each occupation work in the sector that purchases the goods
they produce. Under this interpretation, we can think of consumers in occupation T as being employed in sectors
N and T and consumers in occupation N as also being employed in sectors N and T in different proportions.
Sector N employs consumers in occupation N relatively more intensively, whereas sector T employs consumers
in occupation T relatively more intensely.
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cost of posting a vacancy is κ units of the composite tradable good. Free entry for intermediate

goods producers in the labor market for workers in occupation i implies

κ = qs,i,t(zs,i,t) · Ft[Ms,t,t+1J̃s,i,t+1(zs,i,t+1)] (A.78)

The matches of firms that produce intermediate good i with consumers are

Ls,i,t(zs,i,t) =
Us,i,t(zs,i,t)Vs,i,t(zs,i,t)

[Us,i,t(zs,i,t)η + Vs,i,t(zs,i,t)η]1/η
(A.79)

where Us,i,t(zs,i,t) is the measure of nonemployed consumers and Vs,i,t(zs,i,t) is the measure of

posted vacancies to attract such consumers. The parameter η governs the sensitivity of fs,i,t(zs,i,t)

to θs,i,t. The worker job-finding rate fs,i,t(zs,i,t) and firm job-filling rate qs,i,t(zs,i,t) are

fs,i,t(zs,i,t) =
Ls,i,t(zs,i,t)

Us,i,t(zs,i,t)
=

θs,i,t(zs,i,t)

[1 + θs,i,t(zs,i,t)η]1/η
(A.80)

qs,i,t(zs,i,t) =
Ls,i,t(zs,i,t)

Vs,i,t(zs,i,t)
=

1

[1 + θs,i,t(zs,i,t)η]1/η
(A.81)

where θs,i,t(zs,i,t) = Vs,i,t(zs,i,t)/Us,i,t(zs,i,t) is the vacancy to nonemployment ratio.

The Nash bargaining problem determines the wage ws,i,t(zs,i,t) in any given match

max
w

[W̃s,i,t(zs,i,t)− Ũs,i,t(zs,i,t)]
γJ̃s,i,t(zs,i,t)

1−γ (A.82)

where γ is a consumer’s bargaining weight. Defining the surplus of a match between a firm and

a consumer as S̃s,i,t(zs,i,t) = W̃s,i,t(zs,i,t)− Ũs,i,t(zs,i,t) + J̃s,i,t(zs,i,t), Nash bargaining implies that

firms and consumers split this surplus according to

W̃s,i,t(zs,i,t)− Ũs,i,t(zs,i,t) = γS̃s,i,t(zs,i,t), J̃s,i,t(zs,i,t) = (1− γ)S̃s,i,t(zs,i,t) (A.83)

Equilibrium Consider now the market-clearing conditions. Market clearing for the two types

of intermediate goods requires that

Ys,i,t = zs,i,t · Ls,i,t = Y i
s,N,t + Y i

s,T,t, i ∈ {N , T } (A.84)

the left side of this equation is the total amount of intermediate goods of type i produced by

employed workers in occupation i on island s, Ls,i,t. The right side is the total amount of these

intermediate goods used by firms in the nontradable and tradable goods sectors on that island.

Employment in the nontradable goods sector on island s is

Y N
s,N,t

Y N
s,t

Ls,N ,t +
Y T
s,N,t

Y T
s,t

Ls,T ,t (A.85)

Employment in the tradable goods sector on island s is

Y N
s,T,t

Y N
s,t

Ls,N ,t +
Y T
s,T,t

Y T
s,t

Ls,T ,t (A.86)

29



The relative demand effect on employment in the two sectors captures the idea that, since

Y i
s,N,t/Ys,i,t + Y i

s,T,t/Ys,i,t = 1 for i ∈ {N , T }, any shift in demand from the nontradable goods

sector on an island, holding fixed total employment on the island, decreases employment in the

nontradable goods sector and increases it in the tradable goods sector on the island.

Market clearning for nontradable goods requires that the demand for nontradable goods on

island s equal the amount on nontradable goods produced on island s

Xs,N,t = A(Y N
s,N,t)

ν(Y T
s,N,t)

1−ν (A.87)

Similarly, market clearing for tradable goods requires that the world demand for tradable goods

produced from island s equal the amount of tradable goods produced on island s

Ys,T,t = A(Y N
s,T,t)

1−ν(Y T
s,T,t)

ν (A.88)

Decomposition of Regional Job Filling Rates Combine the value of the worker to the

firm with the zero-profit condition for entering firms, substitute recursively, and apply the law

of iterated expectations

κ

qs,i,t
= Ft[Ms,t,t+1J̃s,i,t+1] (A.89)

= Ft[Ms,t,t+1(Ps,i,t+1zs,i,t+1 − ws,i,t+1 + (1− δ)Ft+1[Ms,t+1,t+2J̃s,i,t+2])] (A.90)

= Ft

[
Ms,t,t+1

(
Ps,i,t+1zs,i,t+1 − ws,i,t+1 + (1− δ)

κ

qs,i,t+1

)]
(A.91)

Multiply both sides by the level of employment in sector i island s

κ

qs,i,t
Ls,i,t+1 = Ft

[
Ms,t,t+1

(
(Ps,i,t+1zs,i,t+1 − ws,i,t+1)Ls,i,t+1 + (1− δ)

κ

qs,i,t+1

Ls,i,t+1

)]
(A.92)

Substitute in the law of motion for employment Ls,i,t+1 = (1− δ)Ls,i,t + qs,i,tVs,i,t

κ

qs,i,t
Ls,i,t+1 = Ft

[
Ms,t,t+1

(
(Ps,i,t+1zs,i,t+1 − ws,i,t+1)Ls,i,t+1 − κVs,i,t+1 +

κ

qs,i,t+1

Ls,i,t+2

)]
(A.93)

Define the firm’s total earnings as profits after vacancy posting costs Es,i,t ≡ (Ps,i,tzs,i,t −
ws,i,t)Ls,i,t − κVs,i,t. Substitute recursively and apply the law of iterated expectations

κ

qs,i,t
Ls,i,t+1 = Ft

[
T−1∑
j=1

(
j∏

k=1

Ms,t+k−1,t+k

)
Es,i,t+j

]
+ Ft

[
Ms,t+T−1,t+T

κ

qs,i,t+T

Ls,i,t+T+1

]
(A.94)

Take limits as T → ∞ while applying a transversality condition to rule out bubbles

κ

qs,i,t
Ls,i,t+1 = Ft

[
∞∑
j=1

(
j∏

k=1

Ms,t+k−1,t+k

)
Es,i,t+j

]
≡ PE

s,i,t (A.95)
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where PE
s,i,t is the firm’s ex-dividend equity value. Take logarithms on both sides and expand the

price-employment ratio PE
s,i,t/Ls,i,t+1

log qs,i,t = log κ− log(PE
s,i,t/Ls,i,t+1) (A.96)

= log κ− log(PE
s,i,t/Es,i,t) + log(Es,i,t+1/Es,i,t)− log(Es,i,t+1/Ls,i,t+1) (A.97)

≡ log κ− pes,i,t +∆es,i,t+1 − els,i,t+1 (A.98)

where pes,i,t ≡ log(PE
s,i,t/Es,i,t) is the log price-earnings ratio, ∆es,i,t+1 ≡ log(Es,i,t+1/Es,i,t) is log

earnings growth, and els,i,t+1 ≡ log(Es,i,t+1/Ls,i,t+1) is the log earnings-employment ratio.

Next, we log-linearize the price-earnings ratio by first log-linearizing the price-dividend ratio

pds,i,t around its long-term average pd (Campbell and Shiller, 1988):

pds,i,t = cpd +∆ds,i,t+1 − rs,i,t+1 + ρpds,i,t+1 (A.99)

where cpd is a linearization constant, rs,i,t+1 ≡ log(
PE
s,i,t+1+Ds,i,t+1

PE
s,i,t

) is the log stock return (with

dividends), and ρ ≡ exp(pd)

1+exp(pd)
= 0.98 is a persistence parameter that arises from the log lineariza-

tion. Rewrite the equation in terms of log price-earnings instead of log price-dividends by using

the identity pes,i,t = pds,i,t + des,i,t, where des,i,t log payout ratio:

pes,i,t = cpd +∆es,i,t+1 − rs,i,t+1 + ρpes,i,t+1 + (1− ρ)des,i,t+1 (A.100)

Since 1− ρ ≈ 0 and the payout ratio des,i,t is bounded, (1− ρ)des,i,t+1 can be approximated as a

constant, i.e., cpe ≈ cpd + (1− ρ)des,i,t+1 (De La O et al., 2024):

pes,i,t ≈ cpe +∆es,i,t+1 − rs,i,t+1 + ρpes,i,t+1 (A.101)

Recursively substitute for the next h periods

pes,i,t =
h∑

j=1

ρj−1(cpe +∆es,i,t+j − rs,i,t+j) + ρhpes,i,t+h (A.102)

Substitute log-linearized price-earnings into the hiring equation to obtain a decomposition of the

log job filling rate. In this environment, the intermediate good producer’s optimal hiring decision

satisfies a regional analog of the aggregate hiring equation (see Section C.1 for details)

κ

qs,i,t
= Ft

[
Ms,t,t+1

(
πs,i,t+1 + (1− δ)

κ

qs,i,t+1

)]
(A.103)

for a firm in island s that produces intermediate good i at time t. Then the job filling rate qs,i,t

in island i can be decomposed as

log qs,i,t = cq +
h∑

j=1

ρj−1rs,i,t+j︸ ︷︷ ︸
rs,i,t,t+h

−

[
els,i,t+1 +

h∑
j=2

ρj−1∆es,i,t+j

]
︸ ︷︷ ︸

es,i,t,t+h

− ρhpes,i,t+h︸ ︷︷ ︸
pes,i,t,t+h

(A.104)
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where cq ≡ log κ − cpe(1−ρh)

1−ρ
is a constant. rs,i,t,t+h captures news about discount rates. es,i,t,t+h

captures news about cash flows, where the one year ahead log earnings-employment ratio els,i,t+1

captures news about short-term cash flows and j = 2, . . . , h year ahead log earnings growth

∆es,i,t+j capture long-term news about cash flows. pes,i,t,t+h is a terminal value that captures

other long-term influences beyond h years into the future that is not already captured in discount

rates and cash flows. The decomposition above holds both ex-ante and ex-post. I consider ex-ante

decompositions under subjective expectations Ft[·]:

log qs,i,t = cq + Ft[rs,i,t,t+h]− Ft[es,i,t,t+h]− Ft[pes,i,t,t+h] (A.105)

where Ft[xs,i,t,t+h] denotes the h period ahead subjective expectations of variable x for the firm

producing intermediate good i in island s under the time t information set.

D Data Details

This section describes the data sources used in the estimation. I use quarterly data on the

macroeconomic and financial series represented in the decomposition from equations (A.37) and

(A.38): employment Lt, unemployment Ut, job filling rates qt, stock returns rt,t+h, earnings

growth ∆et,t+h, price-earnings ratio pet+h, and earnings-employment ratio elt+h. For each depen-

dent variable of the decomposition, I also construct their corresponding survey expectations Ft

and machine expectations Et.

D.1 Employment

D.1.1 Realized Employment

For realized values of employment, I first construct an annual series for the aggregate number of

employees (EMP) of the S&P 500 constituents by using accounting information from the CRSP

and Compustat Merged Annual Industrial Files. The data spans 1970 to 2022 and was down-

loaded from WRDS on July 26, 2023. I interpolate the annual series to a monthly frequency by

using the fitted values from real-time regressions of log annual Compustat employment series on

the log monthly BLS series for total nonfarm payrolls (PAYEMS). The regressions are estimated

over recursively expanding samples from an initial monthly sample that begins on 1970:01 and

ends on the month of the data release for each month’s total nonfarm payrolls. To ensure that

the fitted values do not use future information not available on each data release, I align each

monthly BLS nonfarm payroll release with the annual Compustat S&P 500 employment series

from the previous calendar year. To obtain a measure of employment Lt+1 at the beginning

of period t + 1, I convert the monthly interpolated values to a quarterly frequency by taking

the value of the series as of the last month of each calendar quarter. This timing assumption

ensures that the measures are consistent with the timing conventions from Section B while still

remaining known to firms by the end of period t. Data on nonfarm payrolls was downloaded

through FRED on May 15, 2024.

32



D.1.2 Survey Expectations of Employment

For subjective expectations about employment growth, I use mean point forecasts from the CFO

survey, obtained from https://www.richmondfed.org/-/media/RichmondFedOrg/research/

national_economy/cfo_survey/current_historical_cfo_data.xlsx. Prior to 2020Q1, the

survey asks respondents about their expectations for their company’s annual employment growth

during the next 12 months: “Relative to the previous 12 months, what will be your company’s

PERCENTAGE CHANGE during the next 12 months? (e.g., +3%, 0%,−2%, etc.) [Leave blank

if not applicable].” I interpret the survey to be asking about Ft[100×(Lt+1/Lt−1)], the annual net

simple employment growth between the survey month at period t and the same month one year

later at period t+ 1. To obtain survey expectations of annual log employment growth Ft[∆lt+1]

from a survey expectation of annual net simple employment growth, I use the approximation

Ft[∆lt+1] ≈ log(1 + Ft[100× (Lt+1/Lt − 1)]/100) if t < 2020Q1 (A.106)

After 2020Q1, the survey asks respondents about their expectations for their company’s

employment level for the current and next calendar years: “What number of employees do you

expect to have at the end of calendar years 2021 and 2022? We will assume a value of 0 if left

blank.” Since the reference periods for these forecasts are at the end of the calendar year, I follow

De La O and Myers (2021) by interpolating across the end of current and next year expectations

to obtain rolling 12-month ahead expectations. For example, if the fiscal year of firm XYZ ends

nine months after the survey date, the end of current year expectation has a forecast horizon

of 9 months, and the end of next year expectation has a forecast horizon of 21 months. I then

obtain the 12-month ahead forecast by interpolating these two forecasts as follows:

Ft[Lt+1] =
9

12
Ft[Lt+9/12] +

3

12
Ft[Lt+21/12] if t ≥ 2020Q1 (A.107)

The survey also asks respondents about the current number of employees at the time of the

survey: “What is your current number of employees? Precise values are preferred. We will

assume a value of 0 if left blank.” I convert the level forecasts to one-year growth forecasts

by constructing the log difference of the level forecasts one-year ahead relative to the current

number of employees:

Ft[∆lt+1] ≡ Ft[∆ logLt+1] ≈ log(Ft[Lt+1])− log(Lt) if t ≥ 2020Q1 (A.108)

To obtain long-horizon survey expectations of annualized long-horizon log employment growth

for h > 1 years ahead, I assume that survey respondents expect employment growth to revert back

to its historical mean over the next 10 years. Specifically, I interpolate the h year ahead forecast

between the 1 year ahead forecast and the historical mean annual log employment growth, with

a relative weight on the 1 year ahead forecast that decays linearly over the next 10 years:

Ft[∆lt+h] =
10− h

10− 1
Ft[∆lt+1] +

h− 1

10− 1
Ft[∆lt+10], h = 1, 2, . . . , 10 (A.109)
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where Ft[∆lt+10] is the historical mean of the realized log annual employment growth up to the

time of the forecast.

The CFO survey panel includes firms that range from small operations to Fortune 500 com-

panies across all major industries. Respondents include chief financial officers, owner-operators,

vice presidents and directors of finance, and others with financial decision-making roles. The

CFO panel has 1,600 members as of December 2022. I take a stand on the information set

of respondents when each forecast was made, and I assume that respondents could have used

all data released before they completed the survey. Because the CFO survey releases quarterly

forecasts at the end of each quarter, I conservatively set the response deadline for the machine

forecast to be the first day of the last month of each quarter (e.g., March 1st).

The data spans the periods 2001Q4 to 2021Q1 and were downloaded on August 8th, 2022.

The forecast is not available in 2019Q1, 2019Q4, 2020Q1, and 2020Q2. I impute the missing

forecast for 2019Q1 by linearly interpolating between the available forecasts from 2018Q4 and

2019Q2. I impute the missing forecasts for 2019Q4, 2020Q1, and 2020Q2 by interpolating with

the nearest available forecast between 2019Q3 and 2020Q3.

D.2 Job Filling Rate

I construct a monthly series for the number of vacancies Vt following Barnichon (2010), by using

JOLTS job openings starting 2000:12 (JTS00000000JOL) and extending the series back in time

using the help-wanted index before 2000:12. The vacancies data has been downloaded from

available on the author’s website on May 19, 2024. For realized values of unemployment Ut, I

use the BLS monthly series for the unemployment level (UNEMPLOY), downloaded through

FRED on May 15, 2024. Labor market tightness θt = Vt/Ut is the ratio between vacancies and

unemployment.

I follow Shimer (2012) in constructing the job separation rate δt, job finding rate ft, and job

filling rate qt. Job separation rate is the share of short-term unemployed out of total employ-

ment δt = U s
t /Lt, where U s

t is the BLS series for the number of unemployed less than 5 weeks

(UEMPLT5) that was downloaded through FRED on May 15, 2024. The job finding rate is:

ft = 1− Ut − U s
t

Ut−1

(A.110)

The expression for the job finding rate follows from the unemployment accumulation equation:

Ut = (1− ft)Ut−1 + U s
t (A.111)

which states that unemployment Ut consists of either the previously unemployed Ut−1 who did

not find a job (1−ft), or the short-term unemployed U s
t that lost a job during the current period.

The job filling rate is defined as the share of filled vacancies ftVt out of unemployment Ut:

qt =
ft
θt

=
ftVt

Ut

(A.112)
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I first construct the job filling rate qt at the monthly frequency. To remove high-frequency

fluctuations that likely reflect measurement errors, I time-aggregate the monthly series to a

quarterly frequency by taking a 3-month trailing average that ends on the first month of each

calendar quarter. This timing assumption ensures that the survey and machine expectations

in the variance decomposition do not use advance information about job filling rates that were

not published at the time of each forecast. To ensure that all variables used in the variance

decomposition are stationary, I follow Shimer (2012) by detrending the quarterly job filling rate

qt using an HP filter with a smoothing parameter of 105.

D.3 Wages

To assess the cyclicality of subjective wage expectations, I use publicly available survey and

macroeconomic data to construct measures of actual real wage growth, subjective wage expecta-

tions, and unemployment rate changes. The Livingston Survey (semi-annual, 1961S1–2022S2),

the CFO Survey (quarterly, 2001Q4–2022Q4), and the Survey of Consumer Expectations (SCE)

(monthly, 2015M5–2022M12) provide the necessary data.

I derive subjective wage growth expectations from median consensus forecasts of nominal

wage growth in these surveys. The Livingston Survey forecasts are deflated using its own median

CPI inflation forecast, while the CFO and SCE survey forecasts are deflated using CPI inflation

expectations from the Survey of Professional Forecasters (SPF).

To account for the possibility that wages depend on the economic conditions at the start

of the job, I use survey expectations from the SCE to measure the user cost of labor UCW
t

under subjective expectations. In the search and matching model, the user cost of labor is the

difference in the present value of wages between two firm-worker matches that are formed in

two consecutive periods. Existing work measures the user cost of labor under full information

rational expectations and finds that the user cost is more cyclical than the flow wage, suggesting

that workers hired in recessions earn lower wages not only when hired but also in subsequent

periods (Kudlyak, 2014; Bils et al., 2023). The survey-based measure this this paper relaxes the

rational expectations assumption maintained in existing work. Consider the free-entry condition

in the search and matching model:

κ

qt
= Jt,t (A.113)

where a firm must pay a per vacancy cost of κ and vacancies are filled with probability qt. Jt,τ

is the value of a firm with a worker at time τ such that the productive match started at time t:

Jt,τ ≡ zt − wt,t +
∞∑

τ=t+1

(β(1− δ))τ−tFt[zτ − wt,τ ] (A.114)

where Ft[·] denotes subjective expectations based on survey data. β = 0.9569 is a discount

factor and δ = 0.295 is the probability that a employment relationship is terminated, both from

Kudlyak (2014). Each period τ , a firm-worker match produces a per period output of zτ and
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an employed worker received wage wt,τ where t is the period when the worker is hired. wt,t is

the new-hire wage. Note that the free entry condition is only required to hold for newly created

matches for τ = t. The expected difference between the firm’s value of a newly created match in

time t and the discounted value of a newly created match in period t+ 1 is

Jt,t − β(1− δ)Ft[Jt+1,t+1] = zt − wt,t +
∞∑

τ=t+1

(β(1− δ))τ−tFt[zτ − wt,τ ] (A.115)

− β(1− δ)Ft

[
zt+1 − wt+1,t+1 +

∞∑
τ=t+2

(β(1− δ))τ−(t+1)Ft+1[zτ − wt+1,τ ]

]
(A.116)

Apply the Law of Iterated Expectations and collect terms

Jt,t − β(1− δ)Ft[Jt+1,t+1] = zt − wt,t −
∞∑

τ=t+1

(β(1− δ))τ−tFt[wt,τ − wt+1,τ ] (A.117)

Substitute the free-entry condition to the left-hand side

κ

qt
− β(1− δ)Ft

[
κ

qt+1

]
︸ ︷︷ ︸

Non-wage component of user cost UCV
t

= zt︸︷︷︸
Benefit

−

[
wt,t +

∞∑
τ=t+1

(β(1− δ))τ−tFt[wt,τ − wt+1,τ ]

]
︸ ︷︷ ︸

Wage component of user cost UCW
t

(A.118)

The equation shows that the firm faces two sources of costs from a match: wage payments to

a worker UCW
t and vacancy opening costs UCV

t . The firm creates jobs as long as the marginal

benefit from adding a worker exceeds the user cost of labor. It is worth noting that the wage

component of the user cost of labor UCW
t , not the wage wt,t, is the allocative price of labor.

I use worker-level data from the Survey of Consumer Expectations (SCE) to construct the user

cost of labor UCW
t under the survey respondents’ subjective expectations. The SCE asks respon-

dents about: the month and year on which their current employment relationship started (i.e., t

in wt,τ ); “annual earnings, before taxes and other deductions, on your [current/main] job” (wt,τ );

short-term expectations on what their “annual earnings will be in 4 months” (Ft[wt,t+ 4
12
]) and

long-term expectations on “annual earnings to be at your current job in 10 years” (Ft[wt,t+10]).

I obtain survey expectations about medium-term earnings between 4 months to 10 years by

linearly interpolating between the two horizons:

Ft[wt,t+h] =
10− h

10− 4
12

Ft[wt,t+ 4
12
] +

h− 4
12

10− 4
12

Ft[wt,t+10], h = 1, 2, . . . , 10 (A.119)

The user cost of labor formulation assumes infinitely lived firms and workers, while empirical

data are inherently finite. I truncate the horizon at 10 years given the availability of the survey

data. Longer horizons reduce the weight of future terms due to discounting and job separations.

In addition, if unemployment follows a mean-reverting process, wages in long-term employment

relationships will eventually converge to the long-term mean, which after discounting would limit

the size of very long-term influences (Kudlyak, 2014).
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I measure actual real wage growth using two BLS wage series. The Livingston Survey fore-

casts target annual log real wage growth based on average weekly earnings of production and

nonsupervisory employees in manufacturing (CES3000000030). The CFO and SCE surveys tar-

get annual log real wage growth based on average hourly earnings of private-sector employees

(CEU0500000008). I deflate nominal wages using the Consumer Price Index (CPIAUCSL) to

adjust for purchasing power.

For unemployment rates used to assess the cyclicality of wages, I use both actual data and

subjective forecasts. The actual seasonally adjusted U.S. unemployment rate (UNRATE) comes

from the BLS Current Population Survey (CPS), while subjective unemployment expectations

are derived from median consensus SPF forecasts of future unemployment rates.

D.4 Stock Returns

D.4.1 Realized Stock Returns

To measure stock market returns, I use monthly data on CRSP value-weighted returns including

dividends (VWRETD) from the Center for Research in Security Prices (CRSP). I compute an-

nualized log stock returns by compounding the monthly returns using rt+h ≡ (1/h)
∑12h

j=1 log(1+

VWRETDt+j/12). The data was downloaded from WRDS on February 12, 2023. When evalu-

ating the MSE ratios of the machine relative to that of a benchmark survey, I compute machine

forecasts for either annual CRSP returns or S&P 500 price growth depending on which value

most closely aligns with the concept that survey respondents are asked to predict. To measure

one-year stock market price growth, I use the one-year log cumulative growth rate of the S&P

500 index, ∆pt+1 ≡ log (Pt+1/Pt). The monthly S&P index series spans the period 1957:03 to

2022:12 and was downloaded from WRDS on January 24, 2024 from the Annual Update data of

the Index File on the S&P 500.

D.4.2 Survey Expectations of Stock Returns

CFO Survey I use survey forecasts of S&P 500 stock returns from the CFO survey to mea-

sure subjective return expectations. The CFO survey is a quarterly survey that asks respondents

about their expectations for the S&P 500 return over the next 12 months and 10 years ahead, ob-

tained from https://www.richmondfed.org/-/media/RichmondFedOrg/research/national_

economy/cfo_survey/current_historical_cfo_data.xlsx. I use the mean point forecast for

the value of the “most likely” future stock return in the estimation. More specifically, the survey

asks the respondent “over the next 12 months, I expect the average annual S&P 500 return will

be: Most Likely: I expect the return to be: %”. The survey question for stock return expecta-

tions 10 years ahead is “over the next 10 years, I expect the average annual S&P 500 return will

be: Most Likely: I expect the return to be: %”.

The CFO survey panel includes firms that range from small operations to Fortune 500 com-

panies across all major industries. Respondents include chief financial officers, owner-operators,
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vice presidents and directors of finance, and others with financial decision-making roles. The

CFO panel has 1,600 members as of December 2022.

I take a stand on the information set of respondents when each forecast was made, and I

assume that respondents could have used all data released before they completed the survey.

Because the CFO survey releases quarterly forecasts at the end of each quarter, I conservatively

set the response deadline for the machine forecast to be the first day of the last month of each

quarter (e.g., March 1st).

The data spans the periods 2001Q4 to 2021Q1 and were downloaded on August 8th, 2022.

Mean point forecasts before 2020Q3 are available in column sp 1 exp of sheet through Q1 2020;

mean point forecasts from 2020Q3 and onwards are available in column sp 12moexp 2 of sheet

CFO SP500. The forecast is not available in 2019Q1, 2019Q4, 2020Q1, and 2020Q2. I impute the

missing forecast for 2019Q1 by linearly interpolating between the available forecasts from 2018Q4

and 2019Q2. I impute the missing forecasts for 2019Q4, 2020Q1, and 2020Q2 by interpolating

with the nearest available forecast between 2019Q3 and 2020Q3.

Following Nagel and Xu (2022), I assume that the forecasted S&P 500 return includes div-

idends and capture expectations about annualized cumulative simple net returns compounded

from time t to t+h, i.e., Ft[Rt,t+h]. To obtain survey expectations of log returns Ft[log(1+rt,t+h)]

from a survey expectation of net simple returns Ft[Rt,t+h], I use the approximation Ft[log(1 +

rt,t+h)] ≈ log(1 + Ft[Rt,t+h]).

To obtain long-horizon survey expectations of annualized cumulative log S&P 500 returns

over the next 1 < h < 10 years, I interpolate the forecasts across annualized 1 year and 10 year

cumulative log return expectations:

Ft[rt,t+h] =
10− h

10− 1
Ft[rt,t+1] +

h− 1

10− 1
Ft[rt,t+10], h = 1, 2, . . . , 10 (A.120)

Finally, I use the difference between the cumulative annualized long-horizon log return ex-

pectations between adjacent years (i.e., Ft[rt,t+h−1] and Ft[rt,t+h]) to obtain Ft[rt+h], the time t

survey expectation of forward one-year log stock returns h years ahead:

Ft[rt+h] = h× Ft[rt,t+h]− (h− 1)× Ft[rt,t+h−1], h = 1, 2, . . . , 10 (A.121)

Gallup/UBS Survey The UBS/Gallup is a monthly survey of one-year-ahead stock market

return expectations. I use the mean point forecast in our estimation and compare these to

machine forecasts of the annual CRSP return. Gallup conducted 1,000 interviews of investors

during the first two weeks of every month and results were reported on the last Monday of the

month. The first survey was conducted on 1998:05. Until 1992:02, the survey was conducted

quarterly on 1998:05, 1998:09, and 1998:11. The data on 1998:06, 1998:07, 1998:08, 1998:10,

1998:12, 1999:01, and 2006:01 are missing because the survey was not conducted on these months.

I follow Adam et al. (2021) in starting the sample after 1999:02 due to missing values at the

beginning of the sample.
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For each month when the survey was conducted, respondents are asked about the return

they expect on their own portfolio. The survey question is “What overall rate of return do you

expect to get on your portfolio in the next twelve months?” Before 2003:05, respondents are also

asked about the return they expect from an investment in the stock market during the next 12

months. The survey question is “Thinking about the stock market more generally, what overall

rate of return do you think the stock market will provide investors during the coming twelve

months?” For each month, I calculate the average expectations of returns on their own portfolio

and returns on the market index. When calculating the average, survey respondents are weighted

by the weight factor provided in the survey. I exclude extreme observations where a respondent

reported expected returns higher than 95% or lower than -95% on either their own portfolio or

the market index.

In order to construct a consistent measure of stock market return expectations over the

entire sample period, I impute missing market return expectations using the fitted values from

two regressions. First, I impute missing values during 1999:02-2005:12 and 2006:02-2007:10

with the fitted value from regressing expected market returns on own portfolio expectations

contemporaneously, where the regression is estimated using the part of the sample where both are

available. Second, I impute the one missing observation in both market and own portfolio return

expectations for 2006:01 with the fitted value from regressing the market return expectations

on the lagged own portfolio return expectations, where the coefficients are estimated using part

of the sample where both are available, and the fitted value combines the estimated coefficients

with lagged own portfolio expectations data from 2005:12.

Following Nagel and Xu (2022), I assume that the forecasted stock market return includes

dividends and capture expectations about annual simple net stock returns Ft[Rt+1]. To obtain

survey expectations of annual log returns Ft[log(1 + rt+1)] from a survey expectation of annual

net simple returns Ft[Rt+1], I use the approximation Ft[log(1 + rt+1)] ≈ log(1 + Ft[Rt+1]). After

applying all the procedures, the Gallup market return expectations series spans the periods

1999:02 to 2007:10. The data were downloaded on August 1st, 2024 from Roper iPoll: http:

//ropercenter.cornell.edu/ubs-index-investor-optimism/.

I take a stand on the information set of respondents when each forecast was made, and I

assume that respondents could have used all data released before they completed the survey.

Since interviews are in the first two weeks of a month (e.g., February), I conservatively set the

response deadline for the machine forecast to be the first day of the survey month (e.g., February

1st), implying that I allow the machine to use information only up through the end of the previous

month (e.g., through January 31st). This ensures that the machine only sees information that

would have been available to all UBS/Gallup respondents for that survey month (February). This

approach is conservative in the sense that it handicaps the machine, since all survey respondents

who are being interviewed during the next month would have access to more timely information

than the machine. Since the survey asks about the “one-year-ahead” I interpret the question to

be asking about the forecast period spanning from the current survey month to the same month
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one year ahead.

Michigan Survey of Consumers (SOC) The SOC contains approximately 50 core questions,

and a minimum of 500 interviews are conducted by telephone over the course of the entire month,

each month. Table 20 of the SOC reports the probability of an increase in stock market in next

year. The survey question was “The next question is about investing in the stock market. Please

think about the type of mutual fund known as a diversified stock fund. This type of mutual fund

holds stock in many different companies engaged in a wide variety of business activities. Suppose

that tomorrow someone were to invest one thousand dollars in such a mutual fund. Please think

about how much money this investment would be worth one year from now. What do you think

the percent chance that this one thousand dollar investment will increase in value in the year

ahead, so that it is worth more than one thousand dollars one year from now?”

When I use this survey forecast to compare to machine forecasts, I impute a point forecast for

stock market returns using the method described in Section D.4.2 below. I compare the imputed

point forecast to machine forecasts of CRSP returns.

For the SOC, interviews are conducted monthly typically over the course of an entire month.

(In rare cases, interviews may commence at the end of the previous month, as in February

2018 when interviews began on January 31st 2018.) I take a stand on the information set of

respondents when each forecast was made, and I assume that respondents could have used all

data released before they completed the survey. Since interviews are almost always conducted

over the course of an entire month (e.g., February), I conservatively set the response deadline

for the machine forecast to be the first day of the survey month (e.g., February 1st), implying

that I allow the machine to use information only up through the end of the previous month

(e.g., through January 31st). This ensures that the machine only sees information that would

have been available to all respondents for that survey month (February). This approach is

conservative in the sense that it handicaps the machine, since all survey respondents who are

being interviewed during the next month would have access to more timely information than the

machine. Since the survey asks about the “year ahead” I interpret the question to be asking

about the forecast period spanning the period running from the current survey month to the same

month one year ahead. The data spans 2002:06 to 2021:12. The SOC responses were obtained

from https://data.sca.isr.umich.edu/data-archive/mine.php and downloaded on August

13th, 2022.

Livingston Survey Stock Price Forecast I obtain the Livingston Survey S&P 500 index

forecast (SPIF) from the Federal Reserve Bank of Philadelphia, URL: https://www.philadelphiafed.

org/surveys-and-data/real-time-data-research/livingston-historical-data, and use the mean val-

ues in our structural and forecasting models. I compare the one-year growth in these forecasts to

machine forecasts of S&P 500 price growth. Our sample spans 1947:06 to 2021:06. The forecast

series were downloaded on September 20, 2021.
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The survey provides semi-annual forecasts on the level of the S&P 500 index. Participants

are asked to provide forecasts for the level of the S&P 500 index for the end of the current survey

month, 6 months ahead, and 12 months ahead. I use the mean of the respondents’ forecasts each

period, where the sample is based on about 50 observations. Most of the survey participants are

professional forecasters with “formal and advanced training in economic theory and forecasting

and use econometric models to generate their forecasts.”

Participants receive questionnaires for the survey in May and November, after the Consumer

Price Index (CPI) data release for the previous month. All forecasts are typically submitted by

the end of the respective month of May and November. The results of the survey are released

near the end of the following month, on June and December of each calendar year. The exact

release dates are available on the Philadelphia Fed website, at the header of each news release. I

take a stand on the information set of the respondents when each forecast was made by assuming

that respondents could have used all data released before they completed the survey. Since all

forecasts are typically submitted by the end of May and November of each calendar year, I set

the response deadline for the machine forecast to be the first day of the last month of June and

December, implying that I allow the machine to use information only up through the end of the

May and November.

I follow Nagel and Xu (2021) in constructing one-year stock price growth expectations from

the level forecasts. Starting from June 1992, I use the ratio between the 12-month level forecast

(SPIF 12Mt) and 0-month level nowcasts (SPIF ZMt) of the S&P 500 index. Before June 1992, the

0-month nowcast is not available. Therefore I use the annualized ratio between the 12-month

(spi12t) and 6-month (spi6t) level forecast of the S&P 500 index

F(Liv)
t

[
Pt+1

Pt

]
≈


F(Liv)
t [Pt+1]

F(Liv)
t [Pt]

= SPIF 12Mt
SPIF ZMt

if t ≥ 1992M6(
F(Liv)
t [Pt+1]

F(Liv)
t [Pt+6]

)2
=
(
spi12t
spi6t

)2
if t < 1992M6

(A.122)

where Pt is the S&P 500 index and t indexes the survey’s response deadline. To obtain a survey

expectation of the log change in price growth I use the approximation:

Ft(∆pt+1) ≈ log(Ft[Pt+1])− log(Pt)

Conference Board (CB) Survey Respondents provide the categorical belief of whether they

expect stock prices to “increase,” “decrease,” or stay the “same” over the next year. Since the

survey asks respondents about stock prices in the “year ahead,” I interpret the question to

be asking about the forecast period from the end of the current survey month to the end of

the same month one year ahead. When we use this qualitative survey forecast to compare

to machine forecasts, we impute a point forecast for stock market returns using the method

described in Section D.4.2 below. I compare the imputed point forecast to machine forecasts of

CRSP returns.

The survey is conducted monthly and I use the survey responses over 1987:04 to 2022:08. The

data was downloaded on September 26, 2022. The survey uses an address-based mail sample
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design. Questionnaires are mailed to households on or about the first of each month. Survey

responses flow in throughout the collection period, with the sample close-out for preliminary

estimates occurring around the 18th of the month. Any responses received after then are used

to produce final estimates for the month, which are published with the following month’s data.

Conversations with those knowledgeable about the survey suggested that most panelists respond

early. Any responses received after around the 20th of the month–regardless of when they are

filled out–are included in the final (but not preliminary) numbers.

I take a stand on the information set of the respondents when each forecast was made by

assuming that respondents could have used all data released before they completed the survey.

Since questionnaires reach households on or about the first of each month (e.g., February 1st)

and most respondents respond early, I conservatively set the response deadline for the machine

forecast to be the first day of the survey month (e.g., February 1st), implying that I allow the

machine to use information only up through the end of the previous month (e.g., January 31st).

Converting Qualitative Forecasts to Point Forecasts (SOC and CB) I use the SOC

probability to impute a quantitative point forecast of stock returns using a linear regression of

CFO point forecasts for returns onto the SOC probablity of a price increase. The SOC asks

respondents about the percent chance that an investment will “increase in value in the year

ahead.” I interpret this as asking about the ex dividend value, i.e., about price price growth.

The CFO survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1.

The SOC survey is conducted monthly, where survey months span 2002:06 to 2021:12. Since the

CFO is a quarterly survey, the regression is estimated in real-time over a quarterly overlapping

sample. Since the CFO survey is conducted during the last month of the quarter while the

SOC is conducted monthly, I align the survey months between CFO and SOC by regressing the

quarterly CFO survey point forecast with the qualitative SOC survey response during the last

month of the quarter.

Since the SOC survey question is interpreted as asking about S&P 500 price growth while

the CFO survey question asks about stock returns including dividends, I follow Nagel and Xu

(2021) in subtracting the current dividend yield of the CRSP value weighted index from the

CFO variable before running the regression. After estimating the regression, I then add back

the dividend yield to the fitted value to obtain an imputed SOC point forecast of stock returns

including dividends.

Specifically, at time t, I assume that the CFO forecast of stock returns, FCFO
t [rt,t+1], minus the

current dividend yield, Dt/Pt, is related to the contemporaneous SOC probability of an increase

in the stock market next year, P SOC
t,t+1, by:

FCFO
t [rt,t+1]−Dt/Pt = β0 + β1P

SOC
t,t+1 + ϵt.

The final imputed SOC point forecast is constructed as FSOC
t [rt,t+1] = β̂0+β̂1P

SOC
t,t+1+Dt/Pt. I first

estimate the coefficients of the above regression over an initial overlapping sample of 2002Q2 to
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2004Q4, where the quarterly observations from the CFO survey is regressed on the SOC survey

responses from the last month of each calendar quarter. Using the estimated coefficients and

the SOC probability from 2005:03 gives us the point forecast of the one-year stock return from

2005Q1 to 2006Q1. I then re-estimate this equation, recursively, adding one quarterly observation

to the end of the sample at a time, and storing the fitted values. This results in a time series of

SOC point forecasts FSOC
t [rt,t+1] spanning 2005Q1 to 2021Q1.

The same procedure is done for the Conference Board Survey, except I replace P SOC
t,t+1 by

PCB
t,t+1, a ratio of the proportion of those who respond with “increase” to the sum of “decrease”

and “same.” The CB survey asks respondents to provide the categorical belief of whether they

expect stock prices to “increase,” “decrease,” or stay the “same” over the next year. I interpret

this as asking about price price growth. Since the CB survey question is interpreted as asking

about S&P 500 price growth while the CFO survey question asks about stock returns including

dividends, I follow Nagel and Xu (2021) in subtracting the current dividend yield of the CRSP

value weighted index from the CFO variable before running the regression. After estimating the

regression, I then add back the dividend yield to the fitted value to obtain an imputed CB point

forecast of stock returns including dividends.

The CFO survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1.

The CB survey is conducted monthly, where survey months span 1987:04 to 2022:08. The

regression is first estimated over an initial overlapping sample of 2001Q4 to 2004Q4, where the

quarterly observations from the CFO survey is regressed on the CB survey responses from the

last month of each calendar quarter. Using the estimated coefficients and the CB survey response

PCB
t,t+1 from 2005:03 gives us the point forecast of the stock return from 2005Q1 to 2006Q1. I

then re-estimate this equation, recursively, adding one observation to the end of the sample at a

time, and storing the fitted values. This results in a time series of CB point forecasts FCB
t [rt,t+1]

over 2005Q1 to 2021Q1.

Nagel and Xu Individual Investor Expectations Nagel and Xu (2021)’s individual in-

vestor expectations series for returns covers 1972-1977 (Annual) and 1987Q2-2021Q4 (Quarterly)

and combine data from the following surveys:

1. UBS/Gallup: 1998:06-2007:10; Survey captures respondents’ expected stock market re-

turns, in percent, over a 1-year horizon.

2. Michigan Survey of Consumers (SOC): 2002:04-2022:12; Respondents provide the proba-

bility of a rise in the stock market over a 1-year horizon.

3. Conference Board (CB): 1987:04-2022:08; Respondents provide the categorial opinion whether

they expect stock prices to rise, or stay about where they are, or decline over the next year.

4. Vanguard Research Initiative (VRI): 2014:08; Survey captures respondents’ expected stock

market returns, in percent, over a 1-year horizon.
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5. Roper: 1974-1977, annual, observed June of each calendar year; Respondents provide the

categorial opinion whether they expect stock prices to rise, or stay about where they are,

or decline over the next year.

6. Lease, Lewellen, and Schlarbaum (1974, 1977): 1972-1973, annual, observed July of each

calendar year; Survey captures respondents’ expected stock market returns, in percent,

over a 1-year horizon.

NX arrive at their final series through the following imputation steps. UBS/Gallup measures

the investors’ expected stock market returns most closely, but it covers a relatively short period.

SOC and CB cover a relatively longer period, but they are qualitative forecasts that need to be

converted to point forecasts.

1. Start with UBS/Gallup for 1998:06-2007:10 and VRI for 2014:08 since they capture the re-

spondents’ expected stock returns relatively closely (other surveys only provide qualitative

measures).

2. Regress SOC on UBS/Gallup and VRI using periods of overlapping coverage (2002:04-

2007:10). Use the fitted values from this regression to impute missing data for 2007:11-

2022:12 (excluding 2014:08).

3. Regress CB on UBS/Gallup and VRI using periods of overlapping coverage (1998:06-

2007:10). Use the fitted values from this regression to impute missing data for 1987:04-

1998:05 (using CB) and 1974-1977 (using Roper).

4. Use the coefficients from regressing CB on UBS/Gallup and VRI (from step 3) to compute

fitted values that convert the probabilistic forecast from Roper into point forecasts of stock

returns.

5. Convert expected returns to expected excess returns by subtracting the average 1-year

Treasury yield measured at the beginning of the survey month.

6. Aggregate monthly series to a quarterly frequency by taking the average expectation within

calendar quarters.

D.5 Risk-Free Rates

Realized Risk-Free Rates As a measure of realized risk-free rates rft , I obtain daily series

for the annualized three-month Treasury bill rate (DTB3), downloaded from FRED on May 15,

2024. To match the definition used as the target variable in the Survey of Professional Forecasters

(SPF), I time-aggregate the daily realized risk-free rate series to a quarterly frequency by taking

the quarterly average, as discussed below.
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Survey Expectations of Risk-Free Rates I obtain subjective expectations about risk-free

rates from median forecasts for the annualized three-month Treasury bill rate from the Survey

of Professional Forecasters (SPF). The SPF provides forecasts at the one and ten year horizons.

For one year ahead forecasts (TBILL), respondents are asked to provide quarterly forecasts

of the quarterly average three-month Treasury bill rate, in percentage points, where the forecasts

are for the quarterly average of the underlying daily levels. I interpret the survey to be asking

about annual net simple rates Ft[R
f
t,t+1], and approximate the expected log risk-free rate as

Ft[r
f
t,t+1] ≈ log(1 + Ft[R

f
t,t+1]).

For ten year ahead forecasts (BILL10), respondents are asked to provide forecasts for the

annual-average rate of return to three-month Treasury bills over the next 10 years, in percentage

points. The ten year ahead forecasts are available only for surveys conducted in the first quarter

of each calendar year. I interpret the survey to be asking about annualized cumulative net simple

rates compounded from the survey quarter to the same quarter that is ten years after the survey

year Ft[R
f
t,t+10], and approximate the expected log risk-free rate as Ft[r

f
t,t+10] ≈ log(1+Ft[R

f
t,t+10]).

To obtain long-horizon survey expectations of annualized log three-month Treasury bill rates

over the next 1 < h < 10 years, I interpolate the forecasts across annualized 1 year and 10 year

return expectations:

Ft[r
f
t,t+h] =

10− h

10− 1
Ft[r

f
t,t+1] +

h− 1

10− 1
Ft[r

f
t,t+10], h = 1, 2, . . . , 10 (A.123)

Finally, I use the difference between the cumulative annualized long-horizon log three-month

Treasury bill rate expectations between adjacent years (i.e., Ft[r
f
t,t+h−1] and Ft[r

f
t,t+h]) to obtain

Ft[r
f
t+h], the time t survey expectation of annualized forward log three-month Treasury bill rate

h years ahead:

Ft[r
f
t+h] = h× Ft[r

f
t,t+h]− (h− 1)× Ft[r

f
t,t+h−1], h = 1, 2, . . . , 10 (A.124)

The surveys are sent out at the end of the first month of each quarter, and they are collected

in the second or third week of the middle month of each quarter. When constructing machine

learning forecasts for the risk-free rate, I assume that forecasters could have used all data released

before the survey deadlines for the SPF, which are posted online at the Federal Reserve Bank of

Philadelphia website. Since surveys are typically sent out at the end of the first month of each

quarter, I make the conservative assumption that respondents only had data released by the first

day of the second month of each quarter.

D.6 Earnings

D.6.1 Realized Earnings

To measure corporate earnings, I use quarterly S&P 500 earnings per share (EPS) data from S&P

Global https://www.spglobal.com/spdji/en/documents/additional-material/sp-500-eps-est.xlsx. The

EPS series starts from 1988Q2. To extend the sample backward, I use monthly EPS data on the
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S&P 500 from Robert Shiller’s data depository at URL: http://www.econ.yale.edu/~shiller/

data/ie_data.xls. These are monthly EPS data equal to the sum over the trailing 12 months,

computed from the S&P four-quarter trailing totals. I use data for this series from 1959:01 to

1988:03. (There are no quarterly EPS observations recorded publically prior to 1988:03.) To

obtain a single quarterly earnings series extending backward to 1959Q1, I employ a recursive

process that combines these two series. Specifically, let time t be measured in months. Shiller’s

series provides a monthly series of earnings over the past 12 months:

emt = et + et−1 + ...+ et−11 (A.125)

Starting from 1988Q2, I also have a quarterly series of earnings over the quarter:

eqt = et + et−1 + et−2 (A.126)

if t = {3, 6, 9, 12}, eqt = 0 otherwise. Suppose that I am interested in earnings for 1988Q1:

em1988M12 = e1988M12 + e1988M11 + e1988M10︸ ︷︷ ︸
eq1988M12

+...+ e1988M3 + e1988M2 + e1988M1︸ ︷︷ ︸
eq1988M3

(A.127)

= eq1988M12 + eq1988M9 + eq1986M6 + eq1988M3 (A.128)

We can then compute implied earnings for 1988Q1 as

eq1988M3 = em1988M12 − [eq1988M12 + eq1988M9 + eq1988M6] . (A.129)

We can then use the same formula recursively to obtain earnings before 1988, i.e., with

em1988M9 = e1988M9 + e1988M8 + e1988M7︸ ︷︷ ︸
eq1988M9

+...+ e1987M12 + e1987M11 + e1987M10︸ ︷︷ ︸
eq1987M12

, (A.130)

which gives the implied earnings for 1987Q4. I continue recursively, working backward to the

beginning of the sample in 1959Q1. In the S&P Global dataset there is one observation in

2008Q4 with a negative EPS. Since I need to ultimately compute earnings growth rates, I remove

this single negative observation by replacing the 2008Q4 EPS observation with the Shiller 12-

month trailing total EPS observation for 2008Q4. To convert EPS to total earnings, I next

multiply the resulting quarterly EPS series by the quarterly S&P 500 divisor available at URL:

https://ycharts.com/indicators/sp_500_divisor. Finally, to obtain a monthly S&P 500

earnings series, I linearly interpolate the resulting quarterly total earnings series. The final

monthly total earnings series spans the period 1959:03 to 2021:12. The EPS data from S&P

Global, Shiller, and the divisor data were downloaded on March 13, 2022.

D.6.2 Survey Expectations of Earnings

I obtain monthly survey data for the median analyst earnings per share forecast and actual

earnings per share from the Institutional Brokers Estimate System (IBES) via Wharton Research

Data Services (WRDS). The data spans the period 1976:01 to 2021:12 and was downloaded on

October 2022.
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Short-Term Growth (STG) Expectations I build measures of aggregate S&P 500 earnings

expectations growth using the constituents of the S&P 500 at each point in time following De La O

and Myers (2021). I first construct expected earnings expectations for aggregate earnings h-

months-ahead as:

Ft[Et+h] = Ωt

 ∑
i∈xt+h

Ft [EPSi,t+h]Si,t

 /Divisort, (A.131)

where F is the median analyst survey forecast, E is aggregate S&P 500 earnings, EPSi is earning

per share of firm i among all S&P 500 firms xt+h for which I have forecasts in IBES for t+ h, Si

is shares outstanding of firm i, and Divisort is calculated as the S&P 500 market capitalization

divided by the S&P 500 index. I obtain the number of outstanding shares for all companies in

the S&P500 from Compustat. All data from Compustat were downloaded on November 17th,

2022. IBES estimates are available for most but not all S&P 500 companies. Following De La O

and Myers (2021), I multiply this aggregate by Ωt+h, a ratio of total S&P 500 market value to

the market value of the forecasted companies at t+h to account for the fact that IBES does not

provide earnings forecasts for all firms in the S&P 500 in every period.

IBES database contains earning forecasts up to five annual fiscal periods (FY1 to FY5) and

as a result, I interpolate across the different horizons to obtain the expectation over the next 12

months. This procedure has been used in the literature, including De La O and Myers (2021).

Specifically, if the fiscal year of firm XYZ ends nine months after the survey date, I have a 9-

month earning forecast Ft[Et+9] from FY1 and a 21-month forecast Ft[Et+21] from FY2. I then

obtain the 12-month ahead forecast by interpolating these two forecasts as follows,

Ft[Et+12] =
9

12
Ft[Et+9] +

3

12
Ft[Et+21]. (A.132)

For the forecasting performance estimates, I use quarterly data. To convert the monthly forecast

to quarterly frequency, I use the forecast made in the middle month of each quarter, and construct

one-year earnings expectations from 1976Q1 to 2021Q4 and the earning expectation growth is

calculated as an approximation following following De La O and Myers (2021):

Ft (∆et+12) ≈ ln (Ft[Et+12])− et (A.133)

where et is log earnings for S&P 500 at time t calculated as et = log (EPSt ·Divisort), where

EPSt is the earnings per share for the S&P 500 obtained from Shiller’s data depository and S&P

Global, as described above.

Long-Term Growth (LTG) Expectations I construct long term expected earnings growth

(LTG) for the S&P 500 following Bordalo et al. (2019). Specifically, I obtain the median firm-level

LTG forecast from IBES, and aggregate the value-weighted firm-level forecasts,

LTGt =
S∑

i=1

LTGi,t
Pi,tQi,t∑S
i=1 Pi,tQi,t

(A.134)
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where S is the number of firms in the S&P 500 index, and where Pi,t and Qi,t are the stock

price and the number of shares outstanding of firm i at time t, respectively. LTGi,t is the

median forecast of firm i’s long term expected earnings growth. The data spans the periods from

1981:12 to 2021:12. All data were downloaded in February 2023.

Finally, I use the difference between survey expectations of log earnings between adjacent

years (i.e., Ft[et+h−1] and Ft[et+h]) to obtain Ft[∆et+h] = Ft[et+h]− Ft[et+h−1], the time t survey

expectation of forward one-year log earnings growth h = 1, 2, 3, 4 years ahead. For the h = 5

year horizon, I interpret the IBES’s Long-Term Growth (LTG) forecast as the 5-year forward

annual log earnings growth from 4 to 5 years ahead:

Ft[∆et+h] =

{
Ft[et+h]− Ft[et+h−1] if h = 1, 2, 3, 4 years
LTGt if h = 5 years

(A.135)

To estimate any biases in IBES analyst forecasts, the dynamic machine algorithm takes as

an input a likely date corresponding to information analysts could have known at the time of

their forecast. IBES does not provide an explicit deadline for their forecasts to be returned.

Therefore I instead use the “statistical period” day (the day when the set of summary statistics

was calculated) as a proxy for the deadline. I set the machine deadline to be the day before

this date. The statistical period date is typically between day 14 and day 20 of a given month,

implying that the machine deadline varies from month to month. As the machine learning

algorithm uses mixed-frequency techniques adapted to quarterly sampling intervals, while the

IBES forecasts are monthly, I compare machine and IBES analyst forecasts as of the middle

month of each quarter, considering 12-month ahead forecast from the beginning of the month

following the survey month.

D.7 Price-Earnings Ratio

I construct a quarterly series for the price-earnings ratio PEt ≡ Pt/Et as the ratio between the

end-of-quarter S&P 500 stock price index Pt and the S&P 500 quarterly total earnings Et. I

infer subjective expectations of the log price-earnings ratio Ft[pet+h] by combining the current

log price-earnings ratio pet with h year ahead subjective expectations of annual log stock returns

Ft[rt+h] and annual log earnings growth Ft[∆et+h], following the approach used in De La O and

Myers (2021). Rearrange the Campbell and Shiller (1988) log-linear approximation of the price-

earnings ratio in equation (A.33) to express the future log price-earnings ratio as a function of

current log price-earnings, log earnings growth, and log stock returns:

pet+h =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe +∆et+j − rt+j) (A.136)
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where the equation holds both ex-ante and ex-post. Apply subjective expectations Ft on both

sides of the equation:

Ft[pet+h] =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe + Ft[∆et+j]︸ ︷︷ ︸
Survey (IBES)

− Ft[rt+j]︸ ︷︷ ︸
Survey (CFO)

) (A.137)

where subjective expectations about j years ahead forward annual log stock returns Ft[rt+j] and

forward annual log earnings growth Ft[∆et+j] use survey forecasts from the CFO survey and

IBES, respectively.

D.8 Earnings-Employment Ratio

The current earnings-employment ratio is defined as ELt ≡ Et/Lt+1, where Et denotes quarterly

total earnings for the S&P 500 and Lt+1 is the employment stock at the beginning of period t+1. I

measure Lt+1 using end-of-period employment levels within each quarter. This timing assumption

ensures that the measures are consistent with the timing conventions from Section B while still

remaining known to firms by the end of period t. Let elt = log(ELt) denote the log earnings-

employment ratio. Subjective expectations of future values Ft[elt+1] ≡ Ft[logEt+1− logLt+1] are

constructed as:

Ft[elt+1] ≡ Ft[logEt+1 − logLt+1] (A.138)

= Ft[logEt+1 − logEt + logEt − logLt+1] (A.139)

= elt + Ft[∆et,t+1]︸ ︷︷ ︸
Survey (IBES)

(A.140)

where survey expectations of earnings growth Ft[∆et,t+h] come from IBES.

D.9 Machine Learning Forecasts

For each survey forecast, I also construct their corresponding machine learning forecast by esti-

mating a Long Short-Term Memory (LSTM) neural network:

Et[yt,t+h] = G(Xt,βh,t) (A.141)

where yt,t+h denotes the variable y to be predicted h years ahead of time t, and Xt is a large input

dataset of right-hand-side variables including the intercept. G(Xt,βh,t) denotes predicted values

from a LSTM neural network that can be represented by a (potentially) high dimensional set of

finite-valued parameters βh,t. The machine learning model is estimated using an algorithm that

takes into account the data-rich environment in which managers operate in (Bianchi et al., 2022

and Bianchi et al., 2024b). When constructing machine learning forecasts of each variable, I allow

the machine to use only information that would have been available to all survey respondents at

the time of each forecast. See Section E for details about the machine learning algorithm and
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predictor variables. Machine expectations about the price-earnings ratio Et[pet+1] and earnings-

employment ratio Et[elt+1] are constructed similarly to the survey counterpart, by replacing the

survey forecasts of stock returns, earnings growth, and employment growth on the right-hand

side of equation (A.137) and (19) with the corresponding machine learning forecasts.

E Machine Learning

E.1 Data Inputs for Machine Learning Algorithm

E.1.1 Macro Data Surprises

These data are used as inputs into the machine learning forecasts. I obtain median forecasts for

GDP growth (Q/Q percentage change), core CPI (Month/Month change), unemployment rate

(percentage point), and nonfarm payroll (month/month change) from the Money Market Service

Survey. The median market survey forecasts are compiled and published by the Money Market

Services (MMS) the Friday before each release. I apply the approach used in Bauer and Swanson

(2023) and define macroeconomic data surprise as the actual value of the data release minus

the median expectation from MMS on the Friday immediately prior to that data release. The

GDP growth forecasts are available quarterly from 1990Q1 to 2022Q1. The core CPI forecast

is available monthly from July 1989 to April 2022. The median forecasts for the unemployment

rate and nonfarm payrolls are available monthly from Jan 1980 to May 2022, and Jan. 1985 to

May 2022, respectively. All survey forecasts were downloaded from Haver Analytics on December

17, 2022. To pin down the timing of when the news was actually released I follow the published

tables of releases from the Bureau of Labor Statistics (BLS), discussed below.

The macro news events are indexed by their date and time of the data release, while the

machine learning algorithm is adapted to quarterly sampling frequencies. When including the

macro data surprises as additional predictors for the machine forecast, I time-aggregate the macro

data surprises to a quarterly frequency by taking the sum of the surprises across data releases

that occurred before the response deadline set for the machine. For example, if the response

deadline is set to the first day of the middle month of each quarter (e.g., February 1st), I take

the sum of the surprises from data releases up to the day before the deadline, the last day of the

first month of each quarter (e.g., January 31st).

E.1.2 FOMC Surprises

FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-

ahead federal funds futures (FFF) contract rate and changes in the 1, 2, 4, and 8 quarter-ahead

Eurodollar (ED) futures contract rate, from 10 minutes before to 20 minutes after each U.S.

Federal Reserve Federal Open Market Committee (FOMC) announcement. The data on FFF

and ED were downloaded on June 3rd 2022. When benchmarking against a survey, I use the

last FOMC meeting before the survey deadline to compute surprises. For surveys that do not

have a clear deadline, I compute surprises using from the last FOMC in the first month of the
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quarter. When benchmarking against moving average, I use the last FOMC meeting before the

end of the first month in each quarter to compute surprises.

When including the FOMC surprises as additional predictors for the machine forecast, I

time-aggregate the FOMC surprises to a quarterly frequency by taking the sum of the surprises

across FOMC announcements that occurred before the response deadline set for the machine.

For example, if the response deadline is set to the first day of the middle month of each quarter

(e.g., February 1st), I take the sum of the surprises from FOMC announcements up to the day

before the deadline, the last day of the first month of each quarter (e.g., January 31st).

E.1.3 S&P 500 Jumps

As a measure of the market’s reaction to news shocks, I use the jump in the S&P 500 pre- and

post- a 30-minute window around major news events. The events in our analysis include (i) 1,482

macroeconomic data releases for U.S. GDP, Consumer Price Index (CPI), unemployment, and

payroll data spanning 1980:01-2021:12, (ii) 16 corporate earnings announcement days spanning

1999:03-2020:05, and (iii) 219 Federal Open Market Committee (FOMC) press releases from the

Fed spanning 1994:02-2021:12. The corporate earnings news events are from Baker et al. (2019)

who conduct textual analyses ofWall Street Journal articles to identify days in which there were

large jumps in the aggregate stock market that could be attributed to corporate earnings news

with high confidence.

The jump in the S&P 500 for a given event is defined as

jτ = pτ+δpost − pτ−δpre (A.142)

where τ indexes the time of an event and pτ = log(Pτ ) is the log S&P 500 index. δpre and δpost

denote the pre and post event windows, which is 10 minutes before and 20 minutes after the

event, respectively.

I obtain data on Pτ using tick-by-tick data on the S&P 500 index from tickdata.com. The

series was purchased and downloaded on 7/2/2022 from https://www.tickdata.com/. I create

the minutely data using the close price within each minute. I supplement the S&P 500 index

using S&P500 E-mini futures for events that occur in off-market hours. I use the current-quarter

contract futures. I purchased the S&P 500 E-mini futures from CME group on 7/2/2022 at

https://datamine.cmegroup.com/. Our sample spans 1/2/1986 to 6/30/2022.

For each event, I separate out the events for which the S&P 500 increased over the window

(j
(+)
τ ≥ 0) and those for which the market decreased (j

(−)
τ ≤ 0):

j(+)
τ = max{0, jτ} (A.143)

j(−)
τ = min{0, jτ} (A.144)

I aggregate the event-level jumps to monthly time series by summing over all the relevant events

within the month, where the events are partitioned into two groups based on the sign of the
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jump:

J
(+)
t =

∑
τ∈x(t)

j(+)
τ (A.145)

J
(−)
t =

∑
τ∈x(t)

j(−)
τ (A.146)

where t indexes the month and x(t) is the set of all events that occurred within month t. The

procedure results in two monthly variables, J
(+)
t and J

(−)
t , which capture total market reaction

to news events in either direction during the quarter. The series spans the period 1994:02 to

2022:03. Separating out the events based on the sign of the jump allows us to capture any

differential effects on return predictability based on whether the market perceived the news as

good or bad. The partition also allows us to accurately capture the total extent of over- or

under-reaction. Otherwise, mixing all the events would only capture the net effect of the jumps

and bias the market reaction towards zero.

When used as additional predictors in the for the machine forecast, the jumps need to be

converted to quarterly time series because the machine learning algorithm is adapted to a quar-

terly sampling frequency. The set of events in x(t) is chosen so that the machine only sees the

news events that would have been available to the real-time manager. When combining the

events within a quarter, I impose the response deadline used to produce the machine forecast.

For example, if the response deadline is set to the first day of the middle month of each quarter

(e.g., February 1st), I use the jumps from the events up to the day before the deadline, the last

day of the first month of each quarter (e.g., January 31st).

E.1.4 Real-Time Macro Data

This section gives details on the real time macro data inputs used in the machine learning

forecasts. A subset of these series are used in the structural estimation. At each forecast date

in the sample, I construct a dataset of macro variables that could have been observed on or

before the day of the survey deadline. I use the Philadelphia Fed’s Real-Time Data Set to

obtain vintages of macro variables.4 These vintages capture changes to historical data due to

periodic revisions made by government statistical agencies. The vintages for a particular series

can be available at the monthly and/or quarterly frequencies, and the series have monthly and/or

quarterly observations. In cases where a variable has both frequencies available for its vintages

and/or its observations, I choose one format of the variable. For instance, nominal personal

consumption expenditures on goods is quarterly data with both monthly and quarterly vintages

available; in this case, I use the version with monthly vintages.

Table A.16 gives the complete list of real-time macro variables. Included in the table is the

first available vintages for each variable that has multiple vintages. I do not include the last

4The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center/real-time-data/data-files.
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vintage because most variables have vintages through the present.5 Table A.16 also lists the

transformation applied to each variable to make them stationary before generating factors. Let

Xi,t denote variable i at time t after the transformation, and let XA
i,t be the untransformed series.

Let ∆ = (1−L) with LXi,t = Xit−1. There are seven possible transformations with the following

codes:

1 Code lv: Xi,t = XA
i,t

2 Code ∆lv: Xi,t = XA
i,t −XA

it−1

3 Code ∆2lv: Xi,t = ∆2XA
i,t

4 Code ln: Xi,t = ln(XA
i,t)

5 Code ∆ln: Xi,t = ln(XA
i,t)− ln(XA

it−1)

6 Code ∆2ln: Xi,t = ∆2ln(XA
i,t)

7 Code ∆lv/lv: Xi,t = (XA
i,t −XA

it−1)/X
A
it−1

Table A.16: List of Macro Dataset Variables

No. Short Name Source Tran Description First Vintage

Group 1: Output and Income

1 IPMMVMD Philly Fed ∆ln Ind. production index - Manufacturing 1962M11

2 IPTMVMD Philly Fed ∆ln Ind. production index - Total 1962M11

3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979M8

4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983M7

5 NCPROFATMVQD Philly Fed ∆ln Nom. corp. profits after tax without IVA/CCAdj 1965Q4

6 NCPROFATWMVQD Philly Fed ∆ln Nom. corp. profits after tax with IVA/CCAdj 1981Q1

7 OPHMVQD Philly Fed ∆ln Output per hour - Business sector 1998Q4

8 NDPIQVQD Philly Fed ∆ln Nom. disposable personal income 1965Q4

9 NOUTPUTQVQD Philly Fed ∆ln Nom. GNP/GDP 1965Q4

10 NPIQVQD Philly Fed ∆ln Nom. personal income 1965Q4

11 NPSAVQVQD Philly Fed ∆lv Nom. personal saving 1965Q4

12 OLIQVQD Philly Fed ∆ln Other labor income 1965Q4

13 PINTIQVQD Philly Fed ∆ln Personal interest income 1965Q4

14 PINTPAIDQVQD Philly Fed ∆ln Interest paid by consumers 1965Q4

15 PROPIQVQD Philly Fed ∆ln Proprietors’ income 1965Q4

16 PTAXQVQD Philly Fed ∆ln Personal tax and nontax payments 1965Q4

17 RATESAVQVQD Philly Fed ∆lv Personal saving rate 1965Q4

18 RENTIQVQD Philly Fed ∆lv Rental income of persons 1965Q4

19 ROUTPUTQVQD Philly Fed ∆ln Real GNP/GDP 1965Q4

20 SSCONTRIBQVQD Philly Fed ∆ln Personal contributions for social insurance 1965Q4

21 TRANPFQVQD Philly Fed ∆ln Personal transfer payments to foreigners 1965Q4

22 TRANRQVQD Philly Fed ∆ln Transfer payments 1965Q4

23 CUUR0000SA0E BLS ∆2ln Energy in U.S. city avg., all urban consumers, not

seasonally adj

Group 2: Employment

24 EMPLOYMVMD Philly Fed ∆ln Nonfarm payroll 1946M12

5For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the last
available vintage is 2013Q2.
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No. Short Name Source Tran Description First Vintage

25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971M9

26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971M9

27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971M9

28 LFCMVMD Philly Fed ∆ln Civilian labor force 1998M11

29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998M11

30 POPMVMD Philly Fed ∆ln Civilian noninstitutional population 1998M11

31 ULCMVQD Philly Fed ∆ln Unit labor costs - Business sector 1998Q4

32 RUCQVMD Philly Fed ∆lv Unemployment rate 1965Q4

33 WSDQVQD Philly Fed ∆ln Wage and salary disbursements 1965Q4

Group 3: Orders, Investment, Housing

34 HSTARTSMVMD Philly Fed ∆ln Housing starts 1968M2

35 RINVBFMVQD Philly Fed ∆ln Real gross private domestic inv. - Nonresidential 1965Q4

36 RINVCHIMVQD Philly Fed ∆lv Real gross private domestic inv. - Change in pri-

vate inventories

1965Q4

37 RINVRESIDMVQD Philly Fed ∆ln Real gross private domestic inv. - Residential 1965Q4

38 CASESHILLER S&P ∆ln Case-Shiller US National Home Price index/CPI 1987M1

Group 4: Consumption

39 NCONGMMVMD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009M8

40 NCONHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. 2009M8

41 NCONSHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009M8

42 NCONSNPMMVMD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009M8

43 RCONDMMVMD Philly Fed ∆ln Real personal cons. exp. - Durables 1998M11

44 RCONGMMVMD Philly Fed ∆ln Real personal cons. exp. - Goods 2009M8

45 RCONHHMMVMD Philly Fed ∆ln Real hh. cons. exp. 2009M8

46 RCONMMVMD Philly Fed ∆ln Real personal cons. exp. - Total 1998M11

47 RCONNDMVMD Philly Fed ∆ln Real personal cons. exp. - Nondurables 1998M11

48 RCONSHHMMVMD Philly Fed ∆ln Real hh. cons. exp. - Services 2009M8

49 RCONSMMVMD Philly Fed ∆ln Real personal cons. exp. - Services 1998M11

50 RCONSNPMMVMD Philly Fed ∆ln Real final cons. exp. of NPISH 2009M8

51 NCONGMVQD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009Q3

52 NCONHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. 0209Q3

53 NCONSHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009Q3

54 NCONSNPMVQD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009Q3

55 RCONDMVQD Philly Fed ∆ln Real personal cons. exp. - Durable goods 1965Q4

56 RCONGMVQD Philly Fed ∆ln Real personal cons. exp. - Goods 2009Q3

57 RCONHHMVQD Philly Fed ∆ln Real hh. cons. exp. 2009Q3

58 RCONMVQD Philly Fed ∆ln Real personal cons. exp. - Total 1965Q4

59 RCONNDMVQD Philly Fed ∆ln Real pesonal cons. exp. - Nondurable goods 1965Q4

60 RCONSHHMVQD Philly Fed ∆ln Real hh. cons. exp. - Services 2009Q3

61 RCONSMVQD Philly Fed ∆ln Real personal cons. exp. - Services 1965Q4

62 RCONSNPMVQD Philly Fed ∆ln Real final cons. exp. of NPISH 2009Q3

63 NCONQVQD Philly Fed ∆ln Nom. personal cons. exp. 1965Q4

Group 5: Prices

64 PCONGMMVMD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009M8

65 PCONHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. 2009M8

66 PCONSHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009M8

67 PCONSNPMMVMD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009M8

68 PCPIMVMD Philly Fed ∆2ln Consumer price index 1998M11

69 PCPIXMVMD Philly Fed ∆2ln Core consumer price index 1998M11

70 PPPIMVMD Philly Fed ∆2ln Producer price index 1998M11

71 PPPIXMVMD Philly Fed ∆2ln Core producer price index 1998M11

72 PCONGMVQD Philly Fed ∆2ln Price index for personal. cons. exp. - Goods 2009Q3

73 PCONHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. 2009Q3
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No. Short Name Source Tran Description First Vintage

74 PCONSHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009Q3

75 PCONSNPMVQD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009Q3

76 PCONXMVQD Philly Fed ∆2ln Core price index for personal cons. exp. 1996Q1

77 CPIQVMD Philly Fed ∆2ln Consumer price index 1994Q3

78 PQVQD Philly Fed ∆2ln Price index for GNP/GDP 1965Q4

79 PCONQVQD Philly Fed ∆2ln Price index for personal cons. exp. 1965Q4

80 PIMPQVQD Philly Fed ∆2ln Price index for imports of goods and services 1965Q4

Group 6: Trade and Government

81 REXMVQD Philly Fed ∆ln Real exports of goods and services 1965Q4

82 RGMVQD Philly Fed ∆ln Real government cons. and gross inv. - Total 1965Q4

83 RGFMVQD Philly Fed ∆ln Real government cons. and gross inv. - Federal 1965Q4

84 RGSLMVQD Philly Fed ∆ln Real government cons. and gross. inv. - State and

local

1965Q4

85 RIMPMVQD Philly Fed ∆ln Real imports of goods and services 1965Q4

86 RNXMVQD Philly Fed ∆lv Real net exports of goods and services 1965Q4

Group 7: Money and Credit

87 BASEBASAQVMD Philly Fed ∆2ln Monetary base 1980Q2

88 M1QVMD Philly Fed ∆2ln M1 money stock 1965Q4

89 M2QVMD Philly Fed ∆2ln M2 money stock 1971Q2

90 NBRBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves 1967Q3

91 NBRECBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves plus extended credit 1984Q2

92 TRBASAQVMD Philly Fed ∆2ln Total reserves 1967Q3

93 DIVQVQD Philly Fed ∆ln Dividends 1965Q4

E.1.5 Daily Financial Data

Daily Data and construction of daily factors These data are used in the machine learning

forecasts. The daily financial series in this data set are from the daily financial dataset used in

Andreou et al. (2013). I create a smaller daily database which is a subset of the large cross-

section of 991 daily series in their dataset. Our dataset covers five classes of financial assets: (i)

the Commodities class; (ii) the Corporate Risk category; (iii) the Equities class; (iv) the Foreign

Exchange Rates class and (v) the Government Securities.

The dataset includes up to 87 daily predictors in a daily frequency from 23-Oct-1959 to

24-Oct-2021 (14852 trading days) from the above five categories of financial assets. I remove

series with fewer than ten years of data and time periods with no variables observed, which

occurs for some series in the early part of the sample. For those years, I have less than 87

series. There are 39 commodity variables which include commodity indices, prices and futures,

16 corporate risk series, 9 equity series which include major US stock market indices and the

500 Implied Volatility, 16 government securities which include the federal funds rate, government

treasury bills of securities from three months to ten years, and 7 foreign exchange variables which

include the individual foreign exchange rates of major five US trading partners and two effective

exchange rate. I choose these daily predictors because they are proposed in the literature as

good predictors of economic growth.

I construct daily financial factors in a quarterly frequency in two steps. First, I use these daily

financial time series to form factors at a daily frequency. The raw data used to form factors are
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always transformed to achieve stationarity and standardized before performing factor estimation

(see generic description below). I re-estimate factors at each date in the sample recursively over

time using the entire history of data available in real time prior to each out-of-sample forecast.

In the second step, I convert these daily financial indicators to quarterly weighted variables

to form quarterly factors by selecting an optimal weighting scheme according to the method

described below (see the weighting scheme section).

The data series used in this dataset are listed below in Table A.17 by data source. The tables

also list the transformation applied to each variable to make them stationary before generating

factors. The transformations used to stationarize a time series are the same as those explained

in the section “Monthly financial factor data”.

Table A.17: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description

Group 1: Commodities

1 GSIZSPT Data Stream ∆ln S&P GSCI Zinc Spot - PRICE INDEX

2 GSSBSPT Data Stream ∆ln S&P GSCI Sugar Spot - PRICE INDEX

3 GSSOSPT Data Stream ∆ln S&P GSCI Soybeans Spot - PRICE INDEX

4 GSSISPT Data Stream ∆ln S&P GSCI Silver Spot - PRICE INDEX

5 GSIKSPT Data Stream ∆ln S&P GSCI Nickel Spot - PRICE INDEX

6 GSLCSPT Data Stream ∆ln S&P GSCI Live Cattle Spot - PRICE INDEX

7 GSLHSPT Data Stream ∆ln S&P GSCI Lean Hogs Index Spot - PRICE INDEX

8 GSILSPT Data Stream ∆ln S&P GSCI Lead Spot - PRICE INDEX

9 GSGCSPT Data Stream ∆ln S&P GSCI Gold Spot - PRICE INDEX

10 GSCTSPT Data Stream ∆ln S&P GSCI Cotton Spot - PRICE INDEX

11 GSKCSPT Data Stream ∆ln S&P GSCI Coffee Spot - PRICE INDEX

12 GSCCSPT Data Stream ∆ln S&P GSCI Cocoa Index Spot - PRICE INDEX

13 GSIASPT Data Stream ∆ln S&P GSCI Aluminum Spot - PRICE INDEX

14 SGWTSPT Data Stream ∆ln S&P GSCI All Wheat Spot - PRICE INDEX

15 EIAEBRT Data Stream ∆ln Europe Brent Spot FOB U$/BBL Daily

16 CRUDOIL Data Stream ∆ln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE

17 LTICASH Data Stream ∆ln LME-Tin 99.85% Cash U$/MT

18 CWFCS00 Data Stream ∆ln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT.

PRICE

19 CCFCS00 Data Stream ∆ln CBT-CORN COMP. CONTINUOUS - SETT. PRICE

20 CSYCS00 Data Stream ∆ln CBT-SOYBEANS COMP. CONT. - SETT. PRICE

21 NCTCS20 Data Stream ∆ln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE

22 NSBCS00 Data Stream ∆ln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE

23 NKCCS00 Data Stream ∆ln CSCE-COFFEE C CONTINUOUS - SETT. PRICE

24 NCCCS00 Data Stream ∆ln CSCE-COCOA CONTINUOUS - SETT. PRICE

25 CZLCS00 Data Stream ∆ln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE

26 COFC01 Data Stream ∆ln CBT-OATS COMP. TRc1 - SETT. PRICE

27 CLDCS00 Data Stream ∆ln CME-LIVE CATTLE COMP. CONTINUOUS - SETT.

PRICE

28 CLGC01 Data Stream ∆ln CME-LEAN HOGS COMP. TRc1 - SETT. PRICE

29 NGCCS00 Data Stream ∆ln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE

30 LAH3MTH Data Stream ∆ln LME-Aluminium 99.7% 3 Months U$/MT

31 LED3MTH Data Stream ∆ln LME-Lead 3 Months U$/MT

32 LNI3MTH Data Stream ∆ln LME-Nickel 3 Months U$/MT

33 LTI3MTH Data Stream ∆ln LME-Tin 99.85% 3 Months U$/MT
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No. Short Name Source Tran Description

34 PLNYD www.macrotrends.net ∆ln Platinum Cash Price (U$ per troy ounce)

35 XPDD www.macrotrends.net ∆ln Palladium (U$ per troy ounce)

36 CUS2D www.macrotrends.net ∆ln Corn Spot Price (U$/Bushel)

37 SoybOil www.macrotrends.net ∆ln Soybean Oil Price (U$/Pound)

38 OATSD www.macrotrends.net ∆ln Oat Spot Price (US$/Bushel)

39 WTIOilFut US EIA ∆ln Light Sweet Crude Oil Futures Price: 1St Expiring Contract

Settlement ($/Bbl)

Group 2: Equities

40 S&PCOMP Data Stream ∆ln S&P 500 COMPOSITE - PRICE INDEX

41 ISPCS00 Data Stream ∆ln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE

42 SP5EIND Data Stream ∆ln S&P500 ES INDUSTRIALS - PRICE INDEX

43 DJINDUS Data Stream ∆ln DOW JONES INDUSTRIALS - PRICE INDEX

44 CYMCS00 Data Stream ∆ln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE

45 NASCOMP Data Stream ∆ln NASDAQ COMPOSITE - PRICE INDEX

46 NASA100 Data Stream ∆ln NASDAQ 100 - PRICE INDEX

47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX

48 S&P500toVIX Data Stream ∆ln S&P500/VIX

Group 3: Corporate Risk

49 LIBOR FRED ∆lv Overnight London Interbank Offered Rate (%)

50 1MLIBOR FRED ∆lv 1-Month London Interbank Offered Rate (%)

51 3MLIBOR FRED ∆lv 3-Month London Interbank Offered Rate (%)

52 6MLIBOR FRED ∆lv 6-Month London Interbank Offered Rate (%)

53 1YLIBOR FRED ∆lv One-Year London Interbank Offered Rate (%)

54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

55 3MEuro-FF FRED lv 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

57 APFNF-

AANF

Data Stream lv 1-Month A2/P2/F2 Nonfinancial Commercial Paper (NCP)

(% P. A.) minus 1-Month Aa NCP (% P.A.)

58 APFNF-AAF Data Stream lv 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Finan-

cial Commercial Paper (% P.A.)

59 TED Data Stream, FRED lv 3Month Tbill minus 3-Month London Interbank Offered Rate

(%)

60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus

Y10-Tbond

61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus

Y10-Tbond

62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: Effective Yield (%)

minus Y10-Tbond

63 MLAA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aa Rated: Effective Yield

(%) minus Y10-Tbond

64 MLAAA-

10YTB

Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: Effective Yield

(%) minus Y10-Tbond

Group 4: Treasuries

65 FRFEDFD Data Stream ∆lv US FED FUNDS EFF RATE (D) - MIDDLE RATE

66 FRTBS3M Data Stream ∆lv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE

67 FRTBS6M Data Stream ∆lv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE

68 FRTCM1Y Data Stream ∆lv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE

RATE

69 FRTCM10 Data Stream ∆lv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE

RATE
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No. Short Name Source Tran Description

70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity

(%) minus Fed Funds

71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

Fed Funds

72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus Fed Funds

73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) mi-

nus 3M-Tbills

74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills

75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus 3M-Tbills

76 BKEVEN05 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 5-year (%)

77 BKEVEN10 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 10-year (%)

78 BKEVEN1F4 FRB lv BKEVEN1F4

79 BKEVEN1F9 FRB lv BKEVEN1F9

80 BKEVEN5F5 FRB lv US Inflation compensation: coupon equivalent forward rate:

5-10 years (%)

Group 5: Foreign Exchange (FX)

81 US CWBN Data Stream ∆ln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-

DEX

82 US CWMN Data Stream ∆ln US NOMINAL DOLLAR MAJOR CURR INDEX - EX-

CHANGE INDEX

83 US CSFR2 Data Stream ∆ln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE

84 EU USFR2 Data Stream ∆ln EURO TO US$ NOON NY - EXCHANGE RATE

85 US YFR2 Data Stream ∆ln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE

86 US SFFR2 Data Stream ∆ln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE

87 US UKFR2 Data Stream ∆ln UK POUND TO US $ NOON NY - EXCHANGE RATE

E.1.6 LDA Data

The LDA data are used as inputs into the machine learning forecasts. The database for our Latent

Dirichlet Allocation (LDA) analysis contains around one million articles published in Wall Street

Journal between January 1984 to June 2022. The current vintage of the results reported here is

based a randomly selected sub-sample of 200,000 articles over the same period, one-fifth size of

the entire database. The sample selection procedures follows Bybee et al. (2021). First, I remove

all articles prior to January 1984 and after June 2022 and exclude articles published in weekends.

Second, I exclude articles with subject tags associated with obviously non-economic content such

as sports. Third, I exclude articles with the certain headline patterns, such as those associated

with data tables or those corresponding to regular sports, leisure, or books columns. I filter the

articles using the same list of exclusions provided by Bybee et al. (2021). Last, I exclude articles

with less than 100 words.

Processing of texts The processing of the texts can be summarized into five steps:

58



1. Tokenization: parse each article’s text into a white-space-separated word list retaining the

article’s word ordering.

2. I drop all non-alphabetical characters and set the remaining characters to lower-case, re-

move words with less than 3 letters, and remove common stop words and URL-based terms.

I use a standard list of stop words from the Python library gensim.parsing.preprocessing.

3. Lemmatization and Stemming: lemmatization returns the original form of a word using

external dictionary Textblob.Word in Python and based on the context of the word. For

instance, as a verb, “went” is converted to“go”. Stemming usually refers to a heuristic

process that remove the trailing letters at the end of the words, such as from “assesses” to

“assess’, and “really” to “real”. I use the Python library Textblob.Word to implement the

lemmatization and SnowballStemmer for the stemming. The results are not very sensitive

to the particular Python packages being used.

4. From the first three steps, I obtain a list of uni-grams which are a list of singular words.

For example, “united” and “states” are uni-grams from “united states”. From the list of

uni-grams, I generate a set of bi-grams as all pairs of (ordered) adjacent uni-grams. For

example, “united states” together is one bi-gram. I then exclude uni-grams and bi-grams

appearing in less than 0.1% of articles.

5. Last, I convert an article’s word list into a vector of counts for each uni-gram and bi-gram.

For example, the vector of counts [5, 7, 2] corresponds to the number of times the words

[”federal”, ”reserve”, ”bank”] appear in the article.

The LDA Model The LDA model Blei et al. (2003) essentially achieves substantial dimension

reduction of the word distribution of each article using the following assumptions. I assume a

factor structure on the vectors of word counts. Each factor is a topic and each article is a

parametric distribution of topics, specified as follows,

V×1︷︸︸︷
wi︸︷︷︸

word dist of article i

∼ Mult


V×K︷︸︸︷
Φ′︸︷︷︸,

topic-word dist.

K×1︷︸︸︷
θi︸︷︷︸

topic dist.

, Ni︸︷︷︸
# of words

 (A.147)

where Mult is the multinomial distribution. In the above equation, wi is a vector of word counts

of each unique term (uni-gram or bi-gram) in article i, whose size is equal to the number of

unique terms V . K is the number of factors in article i. In the estimation, I assume K = 180

following Bybee et al. (2021). Φ is a matrix sized K × V , whose kth row and vth column is

equal to the probability of the unique term v showing up in topic k. θi stores the weights of all

k topics contained in article i, which sum up to one. Dimension reduction is achieved as long

as K << V (the number of topics are significantly smaller than the number of unique terms).
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More specifically, it reduces the dimension from T × V to T ×K (the size of θ) + K × V (the

size of Φ).

Real-time news factors. I also generate real-time news factors for each month t starting from

January 1991. In theory, I could train the LDA model using each real-time monthly vintage but

it is computationally challenging. Instead, I simplify the procedure by training the LDA model

using quarterly vintages t, t+3, t+6, etc, and use the LDA model parameters estimated at t to

filter news paper articles within the quarter and generate news factors for those months. More

specifically, given every article’s word distribution wi,t+s,for s = 0, 1, 2, and the estimated real-

time topic-word distribution parameters Φ̂t using articles till date t, one can obtain the filtered

topic distribution of each article θ̂i,t+s, as follows,

V×1︷ ︸︸ ︷
wi,t+s︸ ︷︷ ︸

word dist of article i at time t+s

∼ Mult


V×K︷︸︸︷
Φ̂′︸︷︷︸,

topic-word dist.

K×1︷ ︸︸ ︷
θ̂i,t+s︸ ︷︷ ︸

topic dist.

, Ni,t+s︸ ︷︷ ︸
# of words

 . (A.148)

LDA Estimation I use the built-in LDA model estimation toolbox in the Python library

https://pypi.org/project/gensim/Gensim to implement the model estimation. The model

requires following initial inputs and parameters and it is estimated using Bayesian methods.6

1. I create a document-term matrix W as a collection of wi for all articles i in the sample. The

number of rows in W is equal to the number of articles in our sample and the number of

columns in W is equal to the number of unique uni-gram and bi-grams (after being filtered)

across all articles. The matrix W is used as an input for the LDA model estimation. I

then follow Bybee et al. (2021) and set the number of topics K to be 180.7

2. In the Python library Gensim, the key parameters of the LDA estim are α and β.With a

higher value of α, the documents are composed of more topics. With a higher values of

β, each topic contains more terms (uni- or bi-grams). In the implementations, I do not

impose any explicit restrictions on initial values of those parameters and set them to be

“auto”. These two parameters, alongside Φ′ and {θi}i, are estimated by the toolbox from

Python library https://pypi.org/project/gensim/Gensim.

Real-time LDA Factors With the estimated topic weights θi,t of each article i from the LDA

model, I fruther construct time series of the overall news attention to each topic, or a news factor.

The value of the topic k at time t is the average weights of topic k of all articles published at t,

specified as follows,

Fk,t =

∑
i θ̂i,k,t

# of articles at t
(A.149)

for all topics k.

6In theory, maximum-likelihood estimation is possible but it is computationally challenging.
7The authors used Bayesian criteria to find 180 to be an optimal number of topics.
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E.2 Machine Algorithm Details

The basic dynamic algorithm follows the six step approach of Bianchi et al. (2022) of 1. Sample

partitioning, 2. In-sample estimation, 3. Training and cross-validation, 4. Grid reoptimization,

5. Out-of-sample prediction, and 6. Roll forward and repeat. We refer the interested reader to

that paper for details and discuss details of the implementation here only insofar as they differ.

At time t, a prior sample of size Ṫ is partitioned into two subsample windows: a training

sample consisting of the first TE observations, and a hold-out validation sample of TV subsequent

observations so that Ṫ = TE + TV . The training sample is used to estimate the model subject

to a specific set of tuning parameter values, and the validation sample is used for tuning the

hyperparameters. The model to be estimated over the training sample is

yt,t+h = Ge
(
Xt,βh,t

)
+ ϵt+h.

where yt,t+h is a time series indexed by j whose value in period h ≥ 1 the machine is asked

to predict at time t, Xt is a large input dataset of right-hand-side variables including the in-

tercept, and Ge(·) is a machine learning estimator that can be represented by a (potentially)

high dimensional set of finite-valued parameters βe
h,t. We consider two estimators for Ge(·):

Elastic Net GEN(Xt,β
EN
j,h ), and Long Short-Term Memory (LSTM) network GLSTM(Xt,β

LSTM
j,h ).

The e ∈ {EN,LSTM} superscripts on β indicate that the parameters depend on the estimator

being used (See the next section for a description of EN and LSTM). Xt always denotes the

most recent data that would have been in real time prior to the date on which the forecast was

submitted. To ensure that the effect of each variable in the input vector is regularized fairly

during the estimation, we standardize the elements of Xt such that sample means are zero and

sample standard deviations are unity. It should be noted that the most recent observation on the

left-hand-side is generally available in real time only with a one-period lag, thus the forecasting

estimations can only be run with data over a sample that stops one period later than today in

real time.

The parameters βe
h,t are estimated by minimizing the mean-square loss function over the

training sample with L1 and L2 penalties

L(βe
h,t,XTE

,λe
t ) ≡

1

TE

TE∑
τ=1

(
yτ+h −Ge

(
Xτ ,β

e
h,t

))2
︸ ︷︷ ︸

Mean Square Error

+ λe
1,t

K∑
k=1

∣∣βe
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λe
2,t

K∑
k=1

(βe
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

where XTE
= (yt−TE

, . . . , yt,X ′
t−TE

, . . . ,X ′
t )

′ is the vector containing all observations in the train-
ing sample of size TE. The estimated βe

h,t is a function of the data XTE
and a non-negative

regularization parameter vector λe
t =

(
λe
1,t, λ

e
2,t,λ

LSTM
0,t

)′
where λLSTM

0,t is a set of hyperparame-
ters only relevant when using the LSTM estimator for Ge(·) (see below). For the EN case there
are only two hyperparameters, which determine the optimal shrinkage and sparsity of the time t
machine specification. The regularization parameters λe

t are estimated by minimizing the mean-
square loss over pseudo-out-of-sample forecast errors generated from rolling regressions through
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the validation sample:

λ̂
EN

t , T̂E , T̂V = argmin
λEN
t ,TE ,TV

{
1

TV − h

TE+TV −h∑
τ=TE

(
yτ+h −GEN (Xτ , β̂

EN

j,h,τ (XTE
))
)2

+ λEN
1,t

K∑
k=1

βEN
j,h,t,k︸ ︷︷ ︸

L1 Penalty

+ λEN
2,t

K∑
k=1

(βEN
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

}

λ̂
LSTM

t , T̂E , T̂V = argmin
λLSTM
t ,TE ,TV

{
1

TV − h

TE+TV −h∑
τ=TE

(
yτ+h −GLSTM (Xτ , β̂

LSTM

j,h,τ (XTE
,λLSTM

t ))
)2

+ λLSTM
1,t

K∑
k=1

∣∣βLSTM
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λLSTM
2,t

K∑
k=1

(βLSTM
j,h,t,k )2︸ ︷︷ ︸

L2 Penalty

}

where β̂
e

j,h,τ (·) for e ∈ {EN,LSTM} is the time τ estimate of βe
j,h given λe

t and data through time

τ in a training sample of size TE. Denote the combined final estimator β̂
e

h,t(X T̂E
, λ̂

e

t ), where the

regularization parameter λ̂
e

t is estimated using cross-validation dynamically over time. Note that

the algorithm also asks the machine to dynamically choose both the optimal training window T̂E

and the optimal validation window T̂V by minimizing the pseudo-out-of-sample MSE.

The estimation of β̂
e

h,t(X T̂E
, λ̂

e

t ) is repeated sequentially in rolling subsamples, with parame-

ters estimated from information known at time t. Note that the time t subscripts of β̂
e

h,t and λ̂
e

t

denote one in a sequence of time-invariant parameter estimates obtained from rolling subsam-

ples, rather than estimates that vary over time within a sample. Likewise, we denote the time t

machine belief about yt,t+h as Ee
t [yt,t+h], defined by

Ee
t [yt,t+h] ≡ Ge

(
Xt, β̂

e

h,t(X T̂E
, λ̂

e

t )
)

Finally, the machine MSE is computed by averaging across the sequence of squared forecast

errors in the true out-of-sample forecasts for periods t = (Ṫ + h), . . . , T where T is the last

period of our sample. The true out-of-sample forecasts used for neither estimation nor tuning is

the testing subsample used to evaluate the model’s predictive performance.

On rare occasions, one or more of the explanatory variables used in the machine forecast

specification assumes a value that is order of magnitudes different from its historical value. This

is usually indicative of a measurement problem in the raw data. We therefore program the

machine to detect in real-time whether its forecast is an extreme outlier, and in that case to

discard the forecast replacing it with the historical mean. Specifically, at each t, the machine

forecast Ee
t [yt,t+h] is set to be the historical mean calculated up to time t whenever the former is

five or more standard deviations above its own rolling mean over the most recent 20 quarters.

We include the contemporaneous survey forecasts Ft [yt,t+h] for the median respondent only for

inflation and GDP forecasts, following Bianchi et al. (2022). This procedure allows the machine

to capture intangible information due to judgement or private signals. Specifically, for these
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forecasts of inflation and GDP growth, we consider the following machine learning empirical

specification for forecasting yt,t+h given information at time t, to be benchmarked against the

time t survey forecast of respondent-type X, where this type is the median here:

yt,t+h = Ge
jh (Zt) + γjhMFt [yt,t+h] + ϵt+h, h ≥ 1 (A.150)

where γjhM is a parameter to be estimated, and where GjhM (Zt) represents a ML estimator as

function of big data. Note that the intercept αjh from Bianchi et al. (2022) gets absorbed into

the Ge
jh (Zt) in LSTM via the outermost bias term.

E.2.1 Elastic Net (EN)

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Selection

Operator (LASSO) and ridge type penalties. The model can be written as:

yt,t+h = X ′
tjβ

EN
j,h + ϵt+h

where Xt = (1,X1t,...,XKt)
′ include the independent variable observations (Ft [yt,t+h] ,Zj,t) into a

vector with “1” and βEN
j,h = (αj,h, βj,hF, vec (Bj,hZ))

′ ≡ (β0, β1, ...βK)
′ collects all the coefficients.

It is customary to standardize the elements of Xt such that sample means are zero and sample

standard deviations are unity. The coefficient estimates are then put back in their original scale

by multiplying the slope coefficients by their respective standard deviations, and adding back

the mean (scaled by slope coefficient over standard deviation.) The EN estimator incorporates

both an L1 and L2 penalty:

β̂
EN

j,h = argmin
β0,β1,...,βK


1

TE

TE∑
τ=1

(
yτ+h −X ′

τβj,h

)2
+ λ1

K∑
k=1

∣∣βj,h,k

∣∣
︸ ︷︷ ︸

LASSO

+ λ2

K∑
k=1

(βj,h,k)
2

︸ ︷︷ ︸
ridge


By minimizing the MSE over the training samples, we choose the optimal λ1 and λ2 values

simultaneously.

In the implementation, the EN estimator is sometimes used as an input into the algorithm

using the LSTM estimator. Specifically, we ensure that the machine forecast can only differ

from the relevant benchmark if it demonstrably improves the pseudo out-of-sample prediction

in the training samples prior to making a true out-of-sample forecast. Otherwise, the machine

is replaced by the benchmark calculated up to time t. In some cases the benchmark is a sur-

vey forecast, in others it could be a historical mean value for the variable. However, for the

implementation using LSTM, we also use the EN forecast as a benchmark.

E.2.2 Long Short-Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network (RNN), which are neural networks

used to learn about sequential data such as time series or natural language. In particular, LSTM
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networks can learn long-term dependencies between across time periods by introducing hidden

layers and memory cells to control the flow of information over longer time periods. The general

case of the LSTM network with up to N hidden layers is defined as

GLSTM(Xt,β
LSTM
j,h )︸ ︷︷ ︸

1×1

= W (yhN )︸ ︷︷ ︸
1×D

hN

hN
t︸︷︷︸

D
hN

×1

+ by︸︷︷︸
1×1

(Output layer)

hn
t︸︷︷︸

Dhn×1

= ont︸︷︷︸
Dhn×1

⊙ tanh( cnt︸︷︷︸
Dhn×1

) (Hidden layer)

cnt︸︷︷︸
Dhn×1

= fn
t︸︷︷︸

Dhn×1

⊙ cnt−1︸︷︷︸
Dhn×1

+ int︸︷︷︸
Dhn×1

⊙ c̃nt︸︷︷︸
Dhn×1

(Final memory)

c̃nt︸︷︷︸
Dhn×1

= tanh(W (cnhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+W (cnhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bcn︸︷︷︸
Dhn×1

) (New memory)

fn
t︸︷︷︸

Dhn×1

= σ(W (fnhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+W (fnhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bfn︸︷︷︸
Dhn×1

) (Forget gate)

int︸︷︷︸
Dhn×1

= σ(W (inhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+ W (inhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bin︸︷︷︸
Dhn×1

) (Input gate)

ont︸︷︷︸
Dhn×1

= σ(W (onhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+W (onhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bon︸︷︷︸
Dhn×1

) (Output gate)

where n = 1, . . . , N indexes each hidden layer. hn
t ∈ RDhn is the n-th hidden layer, where Dhn is

the number of neurons or nodes in the hidden layer. The 0-th layer is defined as the input data:

h0
t ≡ Xt. The memory cell cnt allows the LSTM network to retain information over longer time

periods. The output gate ont controls the extent to which the memory cell cnt maps to the hidden

layer hn
t . The forget gate f

n
t controls the flow of information carried over from the final memory

in the previous timestep cnt−1. The input gate int controls the flow of information from the new

memory cell c̃nt . The initial states for the hidden layers (hn
0 )

N
n=1 and memory cells (cn0 )

N
n=1 are set

to zeros.

σ(·) and tanh(·) are activation functions that introduce non-linearities in the LSTM network,

applied elementwise. σ : R → R is the sigmoid function: σ(x) = (1 + e−x)−1. tanh : R → R
is the hyperbolic tangent function: tanh(x) = e2x−1

e2x+1
. The ⊙ operator refers to elementwise

multiplication.

βLSTM
j,h ≡ (((vec(W (gnhn−1))′, vec(W (gnhn))′, b′gn)g∈{c,f,i,o})

N
n=1, vec(W

(yhN ))′, by)
′ are parameters

to be estimated. We will refer to parameters indexed with W as weights ; parameters indexed

with b are biases. We estimate the parameters βLSTM
j,h for the LSTM network using Stochastic

Gradient Decent (SGD), which is an iterative algorithm for minimizing the loss function and

proceeds as follows:

1. Initialization. Fix a random seed R and draw a starting value of the parameters β
(0)
j,h

randomly, where the superscript (0) in parentheses indexes the iteration for an estimate of

βLSTM
j,h .
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(a) Initialize the input weights W (gnhn−1) ∈ RDhn×Dhn−1 for g ∈ {c, f, i, o} using the Glorot

initializer. Draw randomly from a uniform distribution with zero mean and a variance

that depends on the dimensions of the matrix:

W
(gnhn−1)
ij

iid∼ U

[
−
√

6

Dhn +Dhn−1

,

√
6

Dhn +Dhn−1

]
for each i = 1, . . . , Dhn and j = 1, . . . , Dhn−1 .

(b) Initialize the recurrent weights W (gnhn) ∈ RDhn×Dhn for g ∈ {c, f, i, o} using the Or-

thogonal initializer. Use the orthogonal matrix obtained from the QR decomposition

of a Dhn×Dhn matrix of random numbers drawn from a standard normal distribution.

(c) Initialize biases (bgn)g∈{c,f,i,o}, hidden layers hn
0 , and memory cells cn0 with zeros.

2. Mini-batches. Prepare the input data by dividing the training sample into a collection of

mini-batches.

(a) Suppose that we have a multi-variate time-series training sample with dimensions

(TE, K) whose time steps t are indexed by t = 1, . . . , TE and K is the number of

predictors. We transform this training sample into a 3-D tensor with dimensions

(NS,M,K) where

� NS = Total number of sequences in training sample

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

This can be done by creating overlapping sequences from the time series:

� Sequence 1 contains time steps 1, . . . ,M

� Sequence 2 contains time steps 2, . . . ,M + 1

� Sequence 3 contains time steps 3, . . . ,M + 2

� . . .

� Sequence TE −M contains time steps TE −M, . . . , TE − 1

� Sequence NS = TE −M + 1 contains time steps TE −M + 1, . . . , TE

(b) Randomly shuffle the NS sequences by randomly sampling a permutation of the se-

quences without replacement.

(c) Partition the NS shuffled sequences into ⌈NS/NB⌉ mini-batches. We partition the NS

sequences in the training sample ((NS,M,K) tensor) into a list of ⌈NS/NB⌉ mini-

batches. A mini-batch is a (NB,M,K)-dimensional tensor containing NB out of NS

randomly shuffled sequences.8 Let B(1), . . . , B⌈NS/NB⌉ denote the list of mini-batches.

8When NS/NB is not a whole number, ⌊NS/NB⌋ of the mini-batches will be 3-D tensors with dimensions
(NB ,M,K). One batch will contain leftover sequences and will have dimensions (NS%NB ,M,K) where % is the
modulus operator.
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� NS = Total number of sequences in training sample

� NB = Mini-batch size, i.e., number of sequences in each partition.

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

3. Repeat until the stopping condition is satisfied (k = 1, 2, 3, . . . ):

(a) Dropout. Apply dropout to the mini-batch. To obtain the n-th hidden layer under

dropout, multiply the current value of the n− 1-th hidden layer hn−1
t and the lagged

value of the n-th hidden layer hn
t−1 with binary masks r

(k)

t,hn−1
t

∈ RDhn−1 and r
(k)
t,hn

t−1
∈

RDhn , respectively:

h
n−1

t︸︷︷︸
Dhn−1×1

= r
(k)

t,hn−1
t︸ ︷︷ ︸

Dhn−1×1

⊙ hn−1
t︸︷︷︸

Dhn−1×1

, r
(k)

t,hn−1
t ,i

iid∼ Bernoulli(phn−1
t

), i = 1, . . . , Dhn−1

h
n

t−1︸︷︷︸
Dhn×1

= r
(k)
t,hn

t−1︸ ︷︷ ︸
Dhn×1

⊙ hn
t−1︸︷︷︸

Dhn×1

, r
(k)
t,hn

t−1,i

iid∼ Bernoulli(phn
t−1

), i = 1, . . . , Dhn

where t ∈ B(k) and n = 1, . . . , N indexes the hidden layer and it is understood that

the 0-th layer is the input vector h0
t ≡ Xt. phn−1

t
, phn

t−1
∈ [0, 1] is the probability that

time t nodes in the n−1-th hidden layer and time t−1 nodes in the n-th hidden layer

are retained, respectively.

(b) Stochastic Gradient. Average the gradient over observations in the mini-batch

∇L(β
(k−1)
j,h ,XB(k) ,λLSTM) =

1

M

∑
t∈B(k)

∇L(β
(k−1)
j,h ,Xt,λ

LSTM)

where ∇L(β
(k−1)
j,h ,Xt,λ

LSTM) is the gradient of the loss function with respect to the

parameters β
(k−1)
j,h , evaluated at the time t observation Xt = (yt,t+h, X̂ ′

t )
′ after applying

dropout.

(c) Learning rate shrinkage. Update the parameters to β
(k)
j,h using the Adaptive Moment

Estimation (Adam) algorithm. The method uses the first and second moments of the

gradients to shrink the overall learning rate to zero as the gradient approaches zero.

β
(k)
j,h = β

(k−1)
j,h − γ

m(k)

√
v(k) + ε

where m(k) and v(k) are weighted averages of first two moments of past gradients:

m(k) =
1

1− πk
1

(π1m
(k−1) + (1− π1)∇L(β

(k−1)
j,h ,XB(k) ,λLSTM))

v(k) =
1

1− πk
2

(π2v
(k−1) + (1− π2)∇L(β

(k−1)
j,h ,XB(k) ,λLSTM)2)
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πk denotes the k-the power of π ∈ (0, 1), and /,
√
·, and (·)2 are applied element-

wise. The default values of the hyperparameters are m(0) = v(0) = 0 (initial moment

vectors), γ = 0.001 (initial learning rate), (π1, π2) = (0.9, 0.999) (decay rates), and

ε = 10−7 (prevent zero denominators).

(d) Stopping Critera. Stop iterating and return β
(k)
j,h if one of the following holds:

� Early stopping. At each iteration, use the updated β
(k)
j,h to calculate the loss

from the validation sample. Stop when the validation loss has not improved for

S steps, where S is a “patience” hyperparameter. By updating the parameters

for fewer iterations, early stopping shrinks the final parameters βj,h towards the

initial guess β
(0)
j,h, and at a lower computational cost than ℓ2 regularization.

� Maximum number of epochs. Stop if the number of iterations reaches the maxi-

mum number of epochs E. An epoch happens when the full set of the training

sample has been used to update the parameters. If the training sample has TE

observations and each mini-batch hasM observations, then each epoch would con-

tain ⌈TE/M⌉ iterations (after rounding up as needed). So the maximum number

of iterations is bounded by E × ⌈TE/M⌉.

4. Ensemble forecasts. Repeat steps 1. and 2. over different random seeds R and save each of

the estimated parameters β̂
LSTM

j,h,TE
(XTE

,λLSTM, R). Then construct out-of-sample forecasts

using the top 10 out of 20 starting values with the best performance in the validation

sample. Ensemble can be considered as a regularization method because it aims to guard

against overfitting by shrinking the forecasts toward the average across different random

seeds. The random seed affects the random draws of the parameter’s initial starting value

β
(0)
j,h, the sequences selected in each mini-batch B(k), and the dropout mask r

(k)
t .

E.2.3 Hyperparameters

Let λLSTM ≡ [λ1, λ2, γ, π1, π2, p,N, (Dhn)Nn=1,M,E, S]′ collect all the hyperparameters that con-

trol the LSTM network’s complexity and prevent the model from overfitting the data. The

number of hidden layers N and the number of neurons Dh1 , . . . , DhN in each hidden layer are hy-

perparameters that characterize the network’s architecture. The hyperparameters are estimated

by minimizing the mean-square loss over pseudo out-of-sample forecast errors generated from

rolling regressions through the validation sample.

Table A.18 reports the hyperparameters for the LSTM network and its estimation. Hyperpa-

rameters reported as a range or a set of values are cross-validated. We ask the machine to cross

validate the L1 and L2 penalties by adjusting the relative weight on the L1 penalty, α, and the

overall multiplier, λ, within the range of values listed in the table. α and λ are converted back

to the L1 and L2 penalties using the mapping λ1 = αλ and λ2 =
1−α
2
λ. The window lengths for

the training sample TE and validation sample TV denote the number of quarterly observations.

TV = Expand denotes the case of recursively expanding windows, where pseudo out-of-sample
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forecasts are generated from rolling estimates based on a training sample that expands recursively

over time starting from 1984Q1 for returns and price growth, 1995Q1 for earnings growth.

Table A.18: Hyperparameters for the Machine Algorithm

(1) Machine Forecast: Stock Returns and Price Growth (1 Year Ahead)

Description / Horizon Returns (1 Year) Price Growth (1 Year)

(a) Elastic Net (λEN)
Weight on L1 penalty (α) [0.01, 0.99] [0.01, 0.99]
Multiplier on L1 and L2 penalties (λ) [10−2, 10] [10−2, 10]
Size of training sample (TE) 4, 5, 6, 7 4, 5, 6, 7
Size of validation sample (TV ) 4, 5, 6, 7, Expand 4, 5, 6, 7, Expand

(b) Long Short-Term Memory Network (λLSTM)
Weight on L1 penalty (α) [0.01, 0.99] [0.01, 0.99]
Multiplier on L1 and L2 penalties (λ) [10−4, 10−2] [10−4, 10−2]
Initial learning rate (γ) 0.001 0.001
Gradient decay rates (π1, π2) 0.9, 0.999 0.9, 0.999
Probability of dropout (pX , phn) 0.8, 0.5 0.8, 0.5
Number of hidden layers (N) 1 1
Number of neurons (Dhn)Nn=1 4 4
Mini-batch size (NB) 4 4
Sequence length (M) 4 4
Patience for early stopping (S) 10 20
Maximum number of epochs (E) 10, 000 10, 000
Random seeds (R) 1, 2, . . . , 20 1, 2, . . . , 20
Size of training sample (TE) 5, 7 5, 7
Size of validation sample (TV ) 5, 7, 20 5, 7, 20

(2) Machine Forecast: Stock Returns (2, 3, 4, and 5 Years Ahead)

Description / Horizon 2 Years 3 Years 4 Years 5 Years

(a) Elastic Net (λEN)
Weight on L1 penalty (α) [0.01, 0.99] [0.1, 0.9] [0.1, 0.9] [0.1, 0.9]
Multiplier on L1 and L2 (λ) [10−2, 10] [10−1, 10] [10−1, 10] [10−1, 10]
Size of training sample (TE) 4, 5, 6, 7 4, 5, 6, 7 4, 5, 6, 7 4, 5, 6, 7

Size of validation sample (TV )
4, 5, 6, 7
Expand

4, 5, 6, 7
Expand

4, 5, 6, 7
Expand

4, 5, 6, 7
Expand

(b) Long Short-Term Memory Network (λLSTM)
Weight on L1 penalty (α) [0.01, 0.99] [0.01, 0.99] [0.01, 0.99] [0.01, 0.99]
Multiplier on L1 and L2 (λ) [10−4, 10−2] [10−4, 10−2] [10−4, 10−2] [10−4, 10−2]
Initial learning rate (γ) 0.001 0.001 0.001 0.001
Gradient decay rates (π1, π2) 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Probability of dropout (1− p) 0.5 0.5 0.5 0.05
Number of hidden layers (N) 1 1 1 1
Number of neurons (Dhn)Nn=1 4 4 4 4
Mini-batch size (M) 2 2 2 2
Patience for early stopping (S) 3 3 3 20
Maximum number of epochs (E) 1, 000 1, 000 1, 000 10, 000
Random seeds (R) 1, 2, . . . , 20 1, 2, . . . , 20 1, 2, . . . , 20 1, 2, . . . , 20
Size of training sample (TE) 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7
Size of validation sample (TV ) 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each estimator.
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(3) Machine Forecast: Earnings Growth (1, 2, 3, and 4 Years Ahead)

Description / Horizon 1 Year 2 Years 3 Years 4 Years

(a) Elastic Net (λEN)
Weight on L1 penalty (α) [0.1, 0.9] [0.1, 0.9] [0.1, 0.9] [0.1, 0.9]
Multiplier on L1 and L2 (λ) [1, 10] [1, 10] [1, 10] [1, 10]
Size of training sample (TE) 4, 6, 8, 10, 12 4, 6, 8, 10, 12 4, 6, 8, 10, 12 4, 6, 8, 10, 12

Size of validation sample (TV )
4, 6, 8, 10, 12
Expand

4, 6, 8, 10, 12
Expand

4, 6, 8, 10, 12
Expand

4, 6, 8, 10, 12
Expand

(b) Long Short-Term Memory Network (λLSTM)
Weight on L1 penalty (α) [0.01, 0.99] [0.01, 0.99] [0.01, 0.99] [0.01, 0.99]
Multiplier on L1 and L2 (λ) [10−4, 10−2] [10−4, 10−2] [10−4, 10−2] [10−4, 10−2]
Initial learning rate (γ) 0.001 0.001 0.001 0.001
Gradient decay rates (π1, π2) 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Probability of dropout (pX , phn) 0.05, 0.05 0.05, 0.05 0.05, 0.05 0.05, 0.05
Number of hidden layers (N) 1 1 1 1
Number of neurons (Dhn)Nn=1 4 4 4 4
Mini-batch size (NB) 4 4 4 4
Sequence length (M) 4 4 4 4
Patience for early stopping (S) 20 20 20 20
Maximum number of epochs (E) 10, 000 10, 000 10, 000 10, 000
Random seeds (R) 1, 2, . . . , 20 1, 2, . . . , 20 1, 2, . . . , 20 1, 2, . . . , 20
Size of training sample (TE) 4, 8, 12 4, 8, 12 4, 8, 12 4, 8, 12
Size of validation sample (TV ) 4, 8, 12, 20 4, 8, 12, 20 4, 8, 12, 20 4, 8, 12, 20

(4) Machine Forecast: Long-Term Growth (LTG)

Description / Horizon 4-to-5-years 0-to-5-years 1-to-10-years

(a) Elastic Net (λEN)
Weight on L1 penalty (α) [0.1, 0.9] [0.1, 0.9] [0.1, 0.9]
Multiplier on L1 and L2 (λ) [1, 10] [1, 10] [1, 10]
Size of training sample (TE) 6, 8, 10, 12 6, 8, 10, 12 6, 8, 10, 12

Size of validation sample (TV )
6, 8, 10, 12
Expand

6, 8, 10, 12
Expand

6, 8, 10, 12
Expand

(b) Long Short-Term Memory Network (λLSTM)
Weight on L1 penalty (α) [0.01, 0.99] [0.01, 0.99] [0.01, 0.99]
Multiplier on L1 and L2 (λ) [10−5, 10−1] [10−4, 10−2] [10−5, 10−1]
Initial learning rate (γ) 0.001 0.001 0.001
Gradient decay rates (π1, π2) 0.9, 0.999 0.9, 0.999 0.9, 0.999
Probability of dropout (pX , phn) 0.05, 0.05 0.05, 0.05 0.05, 0.05
Number of hidden layers (N) 1 1 1
Number of neurons (Dhn)Nn=1 4 4 4
Mini-batch size (NB) 4 4 4
Sequence length (M) 4 4 4
Patience for early stopping (S) 80 20 20
Maximum number of epochs (E) 10, 000 10, 000 10, 000
Random seeds (R) 1, 2, . . . , 20 1, 2, . . . , 20 1, 2, . . . , 20

Size of training sample (TE)
3, 7, 12;

TE = 3 if TV = 20
4, 8, 12

3, 7, 12;
TE = 3 if TV = 20

Size of validation sample (TV ) 3, 7, 12, 20 4, 8, 12, 20 3, 7, 12, 20

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each estimator. The LSTM forecast
is replaced with the corresponding EN forecast if the LSTM cannot improve on the EN over the pseudo out-of-sample predictions.
The LSTM forecast for 0-to-5 year ahead LTG is implemented as an estimation using forecast errors as the dependent variable.
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(5) Machine Forecast: Inflation and Employment Growth (1 Year Ahead)

Description / Horizon Inflation (1 Year) Employment Growth (1 Year)

(a) Elastic Net (λEN)
Weight on L1 penalty (α) [0.01, 0.99] [0.01, 0.99]
Multiplier on L1 and L2 penalties (λ) [10−2, 3] [10−1, 10]
Size of training sample (TE) 3, 4, 5, 6, 7 3, 4, 5, 6, 7
Size of validation sample (TV ) 6, 7, . . . , 14, 15 6, 7, . . . , 14, 15

(b) Long Short-Term Memory Network (λLSTM)
Weight on L1 penalty (α) [0.01, 0.99] [0.01, 0.99]
Multiplier on L1 and L2 penalties (λ) [10−4, 10−2] [10−4, 10−2]
Initial learning rate (γ) 0.001 0.001
Gradient decay rates (π1, π2) 0.9, 0.999 0.9, 0.999
Probability of dropout (pX , phn) 0.8, 0.5 0.005, 0.005
Number of hidden layers (N) 1 1
Number of neurons (Dhn)Nn=1 4 4
Mini-batch size (NB) 4 4
Sequence length (M) 4 4
Patience for early stopping (S) 20 5
Maximum number of epochs (E) 10, 000 10, 000
Random seeds (R) 1, 2, . . . , 20 1, 2, . . . , 20
Size of training sample (TE) 5, 7 3, 5
Size of validation sample (TV ) 6, 9, 12, 15 6, 9, 12

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each estimator.
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E.2.4 Machine Variables to Be forecast

Returns and price growth When evaluating the MSE ratio of the machine relative to that

of a benchmark survey, we use the machine forecast for the return or price growth measure that

most closely corresponds to the concept that survey respondents are asked to predict:

1. CFO survey asks respondents about their expectations for the S&P 500 return over the

next 12 months. Following Nagel and Xu (2021), we interpret the survey to be asking about

the one-year CRSP value-weighted return (including dividends) from the current survey

month to the same month one year ahead.

2. Gallup/UBS survey respondents report the return (including dividends) they expect on

their own portfolio one year ahead. We interpret the survey to be asking about the one-

year CRSP value-weighted return(including dividends) from the current survey month to

the same month one year ahead.

3. Livingston survey respondents provide 12-month ahead forecasts of the S&P 500 index.

We convert the level forecast to price growth forecast by taking the log difference between

the 12-month ahead level forecast and the nowcast of the S&P 500 index for the current

survey month. Therefore, we interpret the survey to be asking about the one-year price

growth in the S&P 500 index.

4. Bloomberg Consensus Forecasts asks survey respondents about the end-of-year closing value

of the S&P 500 index. We interpret the survey to be asking about the h-month price growth

in the S&P 500 index. The horizon of the forecast changes depending on when in the year

the panelists are answering the survey.

5. Michigan Survey of Consumers (SOC) asks respondents about their perceived probability

that an investment in a diversified stock fund would increase in value in the year ahead.

We interpret the question to be asking about the one-year price growth in the S&P 500

index.

6. Conference Board (CB) survey asks respondents about their categorical belief on whether

they expect stock prices to increase, decrease, or stay the same over the next year. We

interpret the question to be asking about the one-year price growth in the S&P 500 index.

7. When the machine forecast is compared with the historical mean as the benchmark, we

compare the forecasts for annualized CRSP return. For forecast horizons longer than one

year, we compare the machine forecast of annualized cumulative log CRSP return from the

time of the forecast to the end of the forecast horizon less the current short rate against

the historical mean of the same variable.
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Earning Growth For earning growth forecasts, we use a quarterly S&P 500 total earnings

series that combines data from S&P Global, Shiller, and the S&P 500 divisor, as described above.

Since the machine learning algorithm has been adapted to a quarterly forecasting frequency, we

use the quarterly series before the monthly interpolation. The quarterly series spans the period

1959:Q1 to 2021:Q4.

For Long-Term Growth (LTG) forecasts, IBES defines LTG as the “expected annual increase

in operating earnings over the company’s next full business cycle. These forecasts refer to a

period of between three to five years.” We compare survey responses of LTG against machine

forecasts under alternative interpretations of LTG. First, we consider machine forecasts of annual

5-year forward growth, i.e., annual earnings growth from four to five years ahead. Second, we

consider machine forecasts of annualized 5-year growth, i.e., annual earnings growth from current

quarter to five years ahead, following the interpretation in Bordalo et al. (2019). Third, we

consider machine forecasts of annualized earnings growth from one to 10 years ahead, following

the interpretation in Nagel and Xu (2021)

Inflation We construct forecasts of annual inflation defined as

πt+4,t = log

(
PGDPt+4

PGDPt

)
where PGDPt is the quarterly level of the chain-weighted GDP price index. Following Coibion

and Gorodnichenko (2015), we use the vintage of data that are available four quarters after the

period being forecast.

Employment growth We construct forecasts of annual employment growth defined as

yt+4,t = log

(
EMPt+4

EMPt

)
Following Coibion and Gorodnichenko (2015), we use the vintage of data that are available four

quarters after the period being forecast.

E.2.5 Machine Input Data: Predictor Variables

The vector Zjt ≡
(
yt, Ĝ

′
t,W

′
jt

)′
is an r = 1 + rG + rW vector which collects the data at time t

with Zjt ≡
(
yt, ..., yt−py , Ĝ

′
t, ..., Ĝ

′
t−pG

,W′
jt, ...,W

′
jt−pW

)′
a vector of contemporaneous and lagged

values of Zjt, where py, pG, pW denote the total number of lags of yt, Ĝ
′
t, W

′
jt, respectively. The

predictors below are listed as elements of yt, Ĝ
′
jt, or W

′
jt for variables.

Stock return and price growth predictor variables and specifications For yj equal

to CRSP value-weighted returns or S&P 500 price index growth, we first predict the one-year

log stock return or price growth that is expected to occur h quarters into the future from time
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t+ h− 4 to t+ h, i.e., Et[rt+h−4,t+h]. For horizons longer than one year, since the h-quarter long

horizon return is the sum of one-year returns between time t to t+h, we first forecast the forward

one-year returns separately and then add the components together to get machine forecasts of

h-quarter long horizon returns. The forecasting model considers the following variables:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time

macro series; includes both monthly and quarterly series, with monthly series converted to

quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly

financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily

financial indicators. The raw daily series are first converted to daily factors GD,t (w) and

the daily factors are aggregated up to quarterly observations GQ
D,t (w) using a weighted

average of daily factors, with the weights w dependent on two free parameters that are

chosen to minimize the sum of squared residuals in a regression of yt,t+h on GD,t (w).

4. LDA topics Fk,t, for topic k = 1, 2, ...50. The value of the topic k at time t is the average

weights of topic k of all articles published at t.

5. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment rate

(percentage point), and nonfarm payroll (month/month change). We include first release,

second release, and final release for GDP growth. This constitutes six macro data surprises

per quarter.

6. FOMC surprises are defined as the changes in the current-month, 1, 2, 3, 4, 6, 12, and

24 month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2, 3,

4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to 20

minutes after each FOMC announcement. When benchmarking against a survey, we use

the last FOMC meeting before the survey deadline to compute surprises. For surveys that

do not have a clear deadline, we compute surprises using from the last FOMC in the first

month of the quarter. When benchmarking against moving average, we use the last FOMC

meeting before the end of the first month in each quarter to compute surprises. This leaves

10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps in the

S&P 500 around news events over the previous quarter.

8. yt−k for k = 1, 2 are lags of the dependent variable. For price growth forecasts, include lags

of CRSP returns. We include this term for forecast horizons of 1 and 2 years.
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9. µ̄t−k for k = 1, 2 is the historical mean of the dependent variable calculated up to the

middle month of the quarter at time t. The initial period is 1959Q1. For price growth

forecasts, include the historical mean of CRSP returns.

10. Long-term growth of earnings : Annualized 5-year log growth rate of quarterly S&P 500 total

earnings at the end of the previous quarter. We include this term for forecast horizons of

1 and 2 years.

11. Short rates. When forecasting returns or price growth, the machine controls for the current

nominal short rate, log(1+ 3MTBt/100), imposing a unit coefficient. This is equivalent to

forecasting the future return minus the current short rate.

12. For LSTM forecasts only: EN forecast of the variable to be predicted. Missing EN forecasts

during earlier periods are imputed with the historical mean of the dependent variable. For

price growth forecasts, include the EN forecast of CRSP returns.

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment and

hours, consumer spending, housing starts, orders and unfilled orders, compensation and labor

costs, and capacity utilization measures. The dataset also includes commodity and price indexes

and a handful of bond and stock market indexes, and foreign exchange measures. The financial

dataset Df is an updated monthly version of the of 147 variables comprised solely of financial

market time series used in Ludvigson and Ng (2007). These data include valuation ratios such

as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and

prices, default and term spreads, yields on corporate bonds of different ratings grades, yields

on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and

momentum portfolio equity returns.9 The 87 daily financial indicators in DD include daily time

series on commodities spot prices and futures prices, aggregate stock market indexes, volatility

indexes, credit spreads and yield spreads, and exchange rates.

After constructing machine forecasts of forward one-year stock returns Et[rt+h−4,t+h], we con-

struct machine forecasts of cumulative h-quarter long horizon returns between time t to t + h,

i.e., Et[rt,t+h], as the sum of the forward one-year return expectations up to h quarters ahead:

Et[rt,t+h] = Et[rt,t+4] + Et[rt+4,t+8] + · · ·+ Et[rt+h−4,t+h]

Earning growth predictor variables and specifications For earning growth forecasts, we

first detrend the (log) earnings level in real time by, starting with an initial sample, recursively

running the following regression at each point in time t

log (earningst) = αt + βtt+ yt

9A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc data appendix.pdf
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For yt equal to the detrended (log) earning level, we construct a forecasted value for yt,

denoted ŷt|t−h, based on information known up to time t using the following variables:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time

macro series; includes both monthly and quarterly series, with monthly series converted to

quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly

financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily

financial indicators. The raw daily series are first converted to daily factors GD,t (w) and

the daily factors are aggregated up to quarterly observations GQ
D,t (w) using a weighted

average of daily factors, with the weights w dependent on two free parameters that are

chosen to minimize the sum of squared residuals in a regression of yt on GD,t (w).

4. LDA factors Fk,t−j, for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at time t

is the average weights of topic k of all articles published at t.

5. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment rate

(percentage point), and nonfarm payroll (month/month change). We include first release,

second release, and final release for GDP growth. This constitutes six macro data surprises

per quarter.

6. FOMC surprises are defined as the changes in the current-month, 1, 2, 3, 4, 6, 12, and

24 month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2, 3,

4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to 20

minutes after each FOMC announcement. When benchmarking against a survey, we use

the last FOMC meeting before the survey deadline to compute surprises. For surveys that

do not have a clear deadline, we compute surprises using from the last FOMC in the first

month of the quarter. When benchmarking against moving average, we use the last FOMC

meeting before the end of the first month in each quarter to compute surprises. This leaves

10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps in the

S&P 500 around news events over the previous quarter.

8. yt−k for k = 1, 2 are lags of the dependent variable.

9. µ̄t−k for k = 1, 2 is the historical mean of the dependent variable calculated up to time t.

The initial period is 1959Q1.

10. Ft−k[yt+h−k] for k = 1, 2 are lags of the survey forecasts of the dependent variable.
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11. For LSTM forecasts only: EN forecast of the variable to be predicted. Missing EN forecasts

during earlier periods are imputed with the historical mean of the dependent variable.

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment and

hours, consumer spending, housing starts, orders and unfilled orders, compensation and labor

costs, and capacity utilization measures. The dataset also includes commodity and price indexes

and a handful of bond and stock market indexes, and foreign exchange measures. The financial

dataset Df is an updated monthly version of the of 147 variables comprised solely of financial

market time series used in Ludvigson and Ng (2007). These data include valuation ratios such

as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and

prices, default and term spreads, yields on corporate bonds of different ratings grades, yields

on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and

momentum portfolio equity returns.10 The 87 daily financial indicators in DD include daily time

series on commodities spot prices and futures prices, aggregate stock market indexes, volatility

indexes, credit spreads and yield spreads, and exchange rates.

After we obtain the machine forecast for the detrended level of earnings, y, we obtain the

h-horizon machine earnings growth forecast (from t− h to t denoted Et−h

[
∆ log

(
earningsMt

)]
)

by constructing

Et−h

[
∆ log

(
earningsMt

)]
= α̂t−h + β̂t−ht+ ŷMt|t−h − log (earningst−h)

where log (earningst−h) is the realized log earning level at time t− h, and ŷMt|t−h is the machine

forecast of the detrended log earnings based on information up to time t−h. Following De La O

and Myers (2021) and Bordalo et al. (2019), we assume that the survey respondents and the

machine could observe log (earningst−h), the log earnings level for the quarter on which the

forecast is made.

To use this approach to forecast the 20-quarter ahead annual forward earnings i.e., (from t−4

to t on basis of information at t− 20), we would construct

Et−20

[
log
(
earningsMt

)]
= α̂t−20 + β̂t−20t+ ŷMt|t−20.

To construct 20-quarter ahead annual earnings growth forecast we compute

Et−20

[
log
(
earningsMt−4

)]
= α̂t−20 + β̂t−20(t− 4) + ŷMt−4|t−20

to get the machine forecast of 20-quarter forward annual earnings log growth as

Et−20

[
log
(
earningsMt

)
− log

(
earningsMt−4

)]
= β̂t−204 + ŷMt|t−20 − ŷMt−4|t−20.

An alternative is to use the machine inputs to directly forecast 20-quarter forward annual earnings

log growth Et−20

[
log
(
earningsMt

)
− log

(
earningsMt−4

)]
.

10A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc data appendix.pdf
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Inflation predictor variables For yj equal to inflation, the forecasting model considers the

following variables:

1. F(i)
jt−k[yjt+h−k], lagged values of the ith type’s forecast, where k = 1, 2

2. F(s ̸=i)
jt−1 [yjt+h−1], lagged values of other type’s forecasts, s ̸= i

3. varN

(
F(·)
t−1[yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of lagged survey

forecasts

4. skewN

(
F(·)
t−1[yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of lagged sur-

vey forecasts

5. Trend inflation measured as πt−1 =

{
ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t < 1991:Q4
CPI10t−1 if t ≥ 1991:Q4

, where

CPI10 is the median SPF forecast of annualized average inflation over the current and next

nine years. Trend inflation is intended to capture long-run trends. When long-run forecasts

of inflation are not available, as is the case pre-1991:Q4, we us a moving average of past

inflation.

6. ˙GDP t−1 = detrended gross domestic product, defined as the residual from a regression

of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See

Hamilton (2018).

7. ˙EMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton

(2018).

8. N(i)
t [πt,t−h] = Nowcast as of time t of the ith percentile of inflation over the period t− h to

t.

Lags of the dependent variable:

1. yt−1,t−h−1 one quarter lagged inflation.

The factors in Ĝ′
jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time

macro series; includes both monthly and quarterly series, with monthly series converted to

quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly

financial series.
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3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily

financial indicators. The raw daily series are first converted to daily factors GD,t (w) and

the daily factors are aggregated up to quarterly observations GQ
D,t (w) using a weighted

average of daily factors, with the weights w dependent on two free parameters that are

chosen to minimize the sum of squared residuals in a regression of yt,t+h on GD,t (w).

4. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment rate

(percentage point), and nonfarm payroll (month/month change). We include first release,

second release, and final release for GDP growth. This constitutes six macro data surprises

per quarter.

5. FOMC surprises are defined as the changes in the current-month, 1, 2, 3, 4, 6, 12, and

24 month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2, 3,

4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to 20

minutes after each FOMC announcement. When benchmarking against a survey, we use

the last FOMC meeting before the survey deadline to compute surprises. For surveys that

do not have a clear deadline, we compute surprises using from the last FOMC in the first

month of the quarter. When benchmarking against moving average, we use the last FOMC

meeting before the end of the first month in each quarter to compute surprises. This leaves

10 FOMC surprise variables per quarter.

6. Stock market jumps are accumulated 30-minute window negative and positive jumps in the

S&P 500 around news events over the previous quarter.

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment and

hours, consumer spending, housing starts, orders and unfilled orders, compensation and labor

costs, and capacity utilization measures. The dataset also includes commodity and price indexes

and a handful of bond and stock market indexes, and foreign exchange measures. The financial

dataset Df is an updated monthly version of the of 147 variables comprised solely of financial

market time series used in Ludvigson and Ng (2007). These data include valuation ratios such

as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and

prices, default and term spreads, yields on corporate bonds of different ratings grades, yields

on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and

momentum portfolio equity returns.11 The 87 daily financial indicators in DD include daily time

series on commodities spot prices and futures prices, aggregate stock market indexes, volatility

indexes, credit spreads and yield spreads, and exchange rates.

11A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc data appendix.pdf
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Employment growth predictor variables and specifications For earning growth fore-

casts, I first detrend the (log) employment level in real time by, starting with an initial sample,

recursively running the following regression at each point in time t

log (employmentt) = αt + βtt+ yt (A.151)

For yt equal to the detrended (log) employment level, I construct a forecasted value for yt, denoted

ŷt|t−h, based on information known up to time t using the following variables:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time

macro series; includes both monthly and quarterly series, with monthly series converted to

quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly

financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily

financial indicators. The raw daily series are first converted to daily factors GD,t (w) and

the daily factors are aggregated up to quarterly observations GQ
D,t (w) using a weighted

average of daily factors, with the weights w dependent on two free parameters that are

chosen to minimize the sum of squared residuals in a regression of yt on GD,t (w).

4. LDA factors Fk,t−j, for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at time t

is the average weights of topic k of all articles published at t.

5. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment rate

(percentage point), and nonfarm payroll (month/month change). I include first release,

second release, and final release for GDP growth. This constitutes six macro data surprises

per quarter.

6. FOMC surprises are defined as the changes in the current-month, 1, 2, 3, 4, 6, 12, and

24 month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2,

3, 4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to

20 minutes after each FOMC announcement. When benchmarking against a survey, I use

the last FOMC meeting before the survey deadline to compute surprises. For surveys that

do not have a clear deadline, I compute surprises using from the last FOMC in the first

month of the quarter. When benchmarking against moving average, I use the last FOMC

meeting before the end of the first month in each quarter to compute surprises. This leaves

10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps in the

S&P 500 around news events over the previous quarter.
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8. yt−k for k = 1, 2 are lags of the dependent variable.

9. µ̄t−k for k = 1, 2 is the historical mean of the dependent variable calculated up to time t.

The initial period is 1959Q1.

10. Ft−k[yt+h−k] for k = 1, 2 are lags of the survey forecasts of the dependent variable.

11. For LSTM forecasts only: EN forecast of the variable to be predicted. Missing EN forecasts

during earlier periods are imputed with the historical mean of the dependent variable.

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment and

hours, consumer spending, housing starts, orders and unfilled orders, compensation and labor

costs, and capacity utilization measures. The dataset also includes commodity and price indexes

and a handful of bond and stock market indexes, and foreign exchange measures. The financial

dataset Df is an updated monthly version of the of 147 variables comprised solely of financial

market time series used in Ludvigson and Ng (2007). These data include valuation ratios such

as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and

prices, default and term spreads, yields on corporate bonds of different ratings grades, yields

on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and

momentum portfolio equity returns.12 The 87 daily financial indicators in DD include daily time

series on commodities spot prices and futures prices, aggregate stock market indexes, volatility

indexes, credit spreads and yield spreads, and exchange rates.

After I obtain the machine forecast for the detrended level of employment, y, I obtain the h-

horizon machine employment growth forecast (from t−h to t denoted Et−h

[
∆ log

(
employmentMt

)]
)

by constructing

Et−h

[
∆ log

(
employmentMt

)]
= α̂t−h + β̂t−ht+ ŷMt|t−h − log (employmentt−h) (A.152)

where log (employmentt−h) is the realized log employment level at time t − h, and ŷMt|t−h is

the machine forecast of the detrended log employment based on information up to time t − h.

Following De La O and Myers (2021) and Bordalo et al. (2019), I assume that the survey

respondents and the machine could observe log (employmentt−h), the log employment level for

the quarter on which the forecast is made.

12A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc data appendix.pdf
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