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1 Introduction

Why is unemployment so volatile? Aggregate unemployment is an important indicator of the

business cycle, and the fact that unemployment rises so sharply during recessions is one of the

main reasons why business cycle fluctuations are viewed as undesirable. Despite its importance,

the standard model of unemployment, the search-and-matching model, struggles to account for

the observed volatility of unemployment fluctuations, a disconnect known as the “unemployment

volatility puzzle” (Shimer, 2005).

This paper shows that subjective belief distortions about future cash flows are an important

driver of unemployment fluctuations. Using survey forecasts to directly measure firms’ subjective

expectations, I find three key results. First, survey forecasts exhibit systematic overreaction:

upward revisions in expected cash flows predict negative forecast errors, indicating firms become

overly optimistic after positive news. This overreaction is absent in machine learning forecasts

that serve as a rational benchmark. Second, under subjective expectations, cash flow beliefs

explain 97% of aggregate hiring fluctuations at the five-year horizon while discount rates account

for less than 8%, reversing the decomposition under rational expectations where discount rates

explain 78% and cash flows only 20%. Third, this pattern holds in the cross-section across firms:

those with more pessimistic subjective cash flow beliefs hire fewer workers, and the relationship

is far stronger than under rational expectations. A constant-gain learning model in which firms

slowly update beliefs about long-run cash flow growth reproduces these decomposition patterns

and generates about 60% of observed unemployment volatility.

The puzzle can be understood by focusing on the firm’s value of a new hire, as it is a key

determinant of job creation. A firm creates a job only if the expected value of hiring a worker

can cover the cost of posting a vacancy. The value of hiring depends on two components: (i) the

future cash flows the worker is expected to generate, which in the search model is productivity

net of wages and hiring costs, and (ii) the discount rate, which determines how much those future

cash flows are worth today and reflects a risk premium that compensates the firm for bearing

the uncertainty of future cash flows. In the benchmark search model, risk neutrality makes the

discount rate constant, leaving cash flows as the sole driver of hiring. Rational expectations, in

turn, imply firms correctly forecast that cash flows will track productivity. The puzzle emerges

because these productivity shocks are not volatile enough to generate the large fluctuations in

hiring seen in the data.

This paper offers a behavioral perspective on this puzzle by examining distortions in subjective

beliefs. I show that firms overreact to new information about future cash flows, causing large
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and persistent fluctuations in the perceived value of hiring. Using survey forecasts of cash flows

and discount rates, I measure belief distortions by comparing with machine learning forecasts

that proxy for rational expectations. I find that survey forecasts of cash flows overreact to news:

during booms, firms become excessively optimistic about future cash flows, inflating the value

of hiring, while in downturns, pessimism overshoots, sharply reducing vacancy creation. This

subjective overreaction generates amplified hiring volatility and thus unemployment fluctuations

that better match observed data.

My approach builds on an alternative explanation for the puzzle that emphasizes time-varying

discount rates while maintaining full information rational expectations (Hall, 2017; Borovickova

and Borovička, 2017; Kehoe et al., 2023). In these models, recessions are periods of high risk

premia, meaning that firms require greater compensation for bearing the uncertainty of future

cash flows. When discount rates rise with higher risk premia, future cash flows are discounted

more heavily, lowering the present value of a new worker, similar to how the price of a risky

bond falls when investors demand higher yields. Therefore, these models predict that, under

rational beliefs, news about future discount rates should be the primary driver of fluctuations in

unemployment, not news about cash flows.

While this mechanism can amplify unemployment volatility, it faces two limitations. First,

while rational discount rates can differ across firms due to variation in their exposure to systematic

risk, it remains an open question whether this mechanism alone can account for the full magnitude

of the hiring dispersion observed across firms. Firm-specific idiosyncratic risks should not affect

discount rates, since they do not represent systematic risk, but they can still generate substantial

cross-sectional differences in hiring behavior.

Second, a growing body of evidence shows that survey forecasts by firms and financial analysts

deviate from rational benchmarks, with persistent and predictable errors that imply distorted

rather than fully rational beliefs (Coibion and Gorodnichenko, 2015; Nagel and Xu, 2021; De La O

and Myers, 2021; Adam and Nagel, 2023; Bordalo et al., 2024a). This evidence could open the

door for an explanation for both aggregate volatility and cross-sectional dispersion in the labor

market. While rational discount-rate models can account for dispersion that reflects differences

in firms’ exposures to aggregate risk, they have limited power to explain variation arising from

purely idiosyncratic or diversifiable shocks. If agents overreact to such idiosyncratic shocks, then

belief distortions could generate wide differences in hiring behavior across firms that rational

models alone struggle to capture.

I formalize this idea through an approach that builds on the Diamond-Mortensen-Pissarides

search and matching framework while allowing beliefs to deviate from rational expectations.
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Using the firm’s hiring condition, I derive a decomposition of the value of hiring into two forward-

looking components: expected cash flows, defined as the earnings a new worker is expected to

generate after wages and hiring costs, and discount rates, which determine how heavily those

future cash flows are valued today. The structure of this decomposition is directly analogous

to the present-value identity of Campbell and Shiller (1988), which attributes fluctuations in

valuation ratios in asset markets to revisions in expected cash flows versus discount rates.

To understand how beliefs influence hiring, I measure these components using both subjective

and rational expectations. For subjective expectations, I use financial analyst forecasts from

IBES for cash flows and CFO surveys for discount rates. For rational benchmarks, I construct

machine learning forecasts from a Long Short-Term Memory neural network trained on a rich set

of macroeconomic, financial, and textual information. Rational expectations require agents to

form beliefs by efficiently processing all available information. A high-dimensional neural network

trained on a rich set of macroeconomic and financial variables can approximate this benchmark by

learning complex nonlinear relationships without imposing strong parametric assumptions about

the underlying data-generating process. To avoid look-ahead bias, the machine forecasts are

constructed in real time using only information available at each date. The difference between

survey and machine forecasts therefore isolates the portion of expectations not explained by

efficient information use, which I interpret as belief distortions.

Before turning to decompositions, I first establish that subjective expectations overreact to

news about cash flows. Following Coibion and Gorodnichenko (2015), I test whether forecast

revisions predict subsequent forecast errors. Under rational expectations, revisions should incor-

porate all available information and thus be uncorrelated with future mistakes. Instead, I find

that survey forecast revisions in cash flows predict forecast errors of the opposite sign. When

good news leads forecasters to revise expectations upward, they become overly optimistic and

systematically overestimate future outcomes, generating negative forecast errors when reality

disappoints. Machine forecasts show no such pattern, confirming their role as rational bench-

marks. This evidence indicates that the belief distortion, the wedge between survey and machine

forecasts, arises from survey overreaction to news, with machine forecasts providing the non-

overreacting benchmark.

Having established that survey forecasts overreact, I evaluate the quantitative importance of

these distortions using variance decompositions of the value of hiring in both the time series and

the cross section. In the time series, I focus on the aggregate vacancy filling rate, defined as the

probability that a posted vacancy gets filled. This variable captures the firm’s incentives to post

vacancies and is a main driver of unemployment fluctuations (Shimer, 2012). In the cross section,
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I analyze hiring rates across portfolios sorted by deciles of idiosyncratic shocks, ranking firms each

quarter by the size of their firm-specific cash-flow innovations. This classification separates firms

experiencing large positive idiosyncratic shocks from firms experiencing large negative shocks,

which may trigger overly optimistic or pessimistic beliefs. Examining hiring patterns across

these portfolios smooths out occasionally negative firm-level earnings and provides a test of how

subjective expectations drive labor market decisions at the micro level.

The results reveal a stark reversal. Under rational expectations, discount rates dominate,

explaining 69% of time-series variation in the vacancy filling rate and 72% of cross-sectional

variation in hiring at the five-year forecast horizon. This pattern aligns with existing rational

models that emphasize time-varying discount rates to explain the unemployment volatility puzzle.

Under subjective beliefs, however, distorted cash flow expectations take center stage. Subjective

cash flow expectations account for 97% of aggregate hiring variation and 72% of cross-sectional

dispersion, while subjective discount rates play a negligible role.

The gap between subjective and rational cash flow expectations reflects the overreaction

documented in survey forecasts. This overreaction in cash flow expectations directly affects

hiring decisions because firms base hiring on the expected value of new workers. When survey

forecasts become overly optimistic about future cash flows, firms perceive hiring as more valuable

and increase job creation. Conversely, when pessimism overshoots, the perceived value of hiring

falls sharply, causing firms to cut back on vacancy posting.

To interpret these findings and understand the mechanisms driving belief distortions in hiring,

I develop a search-and-matching model in which firms learn about their long-run cash flows.

Instead of having perfect knowledge of the cash flow process, firms update their beliefs using

constant-gain learning, a process that embeds fading memory by placing greater weight on recent

information. This learning rule causes them to over-extrapolate from recent forecast errors,

leading their beliefs to overreact to new information. Optimism in good times and pessimism in

bad times lead to persistent overreaction, which propagates into the value of hiring.

Simulations from the model generate patterns consistent with the empirical decompositions,

where firms over-estimate the importance of cash flow news in explaining hiring decisions. The

model with belief distortions can generate about 60% of observed unemployment volatility, which

is a substantial improvement over standard models that underpredict it by an order of magnitude.

The model thus provides a unified explanation for the unemployment volatility puzzle that is

consistent with both aggregate and cross-sectional evidence. Taken together, the results show

that labor market fluctuations reflect distortions in beliefs about cash flows, highlighting the

need for macroeconomic models to incorporate subjective beliefs more explicitly.
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Related Literature This paper contributes to several strands of literature on unemployment

fluctuations, labor markets, asset prices, and expectation formation. My work connects the

insights from two separate literatures. On the one hand, a macro labor literature introduces

time-varying risk premia based on asset prices to explain fluctuations in the labor market, but

these models tend to maintain rational expectations. On the other hand, a literature in behav-

ioral finance introduces deviations from rational expectations to better explain asset prices. My

work connects these two insights by connecting distorted beliefs to fluctuations in labor markets

through the firms’ asset prices.

First, it relates to the literature on the unemployment volatility puzzle in search-and-matching

models. A central challenge in macroeconomics is to explain why unemployment is highly volatile

relative to productivity (Shimer, 2005; Hagedorn and Manovskii, 2008; Hall and Milgrom, 2008;

Pissarides, 2009; Elsby and Michaels, 2013; Kudlyak, 2014; Chodorow-Reich and Karabarbou-

nis, 2016; Ljungqvist and Sargent, 2017). Traditional search and matching models struggle to

generate sufficient volatility in unemployment unless firms’ responses to shocks are amplified

through mechanisms that exploit time-varying discount rates under the assumption of rational

expectations (Merz and Yashiv, 2007; Donangelo, 2014; Belo et al., 2014; Favilukis and Lin, 2015;

Hall, 2017; Borovickova and Borovička, 2017; Kuehn et al., 2017; Kilic and Wachter, 2018; Mitra

and Xu, 2019; Donangelo et al., 2019; Kehoe et al., 2019; Liu, 2021; Kehoe et al., 2023; Belo et

al., 2023; Meeuwis et al., 2023). These models assume that firms rationally process information

about cash flows and discount rates. My approach of introducing subjective expectations comple-

ments these rational models. Belief distortions, particularly about cash flows, can better explain

variation in hiring and unemployment, offering an alternative resolution to the unemployment

volatility puzzle.

A growing literature embeds non-rational expectations in macro models with labor market

frictions (Venkateswaran, 2014; Acharya andWee, 2020; Mueller et al., 2021; Menzio, 2023; Faber-

man et al., 2022; Bhandari et al., 2024; Du et al., 2025). Notably, Bhandari et al. (2024) show

that pessimism in households and firms can explain the volatility of unemployment fluctuations.

My paper complements their findings by providing direct survey evidence on the content and

cyclicality of firm expectations, showing that overreaction to cash flow news is the main driver

of excess unemployment volatility. The cross-sectional analysis in my paper also adds another

dimension to belief-driven labor market volatility by showing that firms with more distorted

beliefs experience larger swings in hiring.

The empirical analysis of this paper builds on existing survey-based evidence on the empirical

properties of firm expectations. Ben-David et al. (2013) document persistent over-optimism in
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CFO forecasts. Gennaioli et al. (2016) document that extrapolative CFO expectations of earnings

growth predict corporate investment. Ma et al. (2020) link biases in managerial forecasts to

distortions in firm investment. Coibion et al. (2018) and Candia et al. (2020) find that firm

managers’ inflation expectations adjust slowly and display substantial dispersion. My paper

builds on this work by showing how distortions in survey expectations shape labor markets.

The variance decomposition and learning model in this paper builds on recent work using

survey-based expectations to reassess the drivers of asset prices (Timmermann, 1993; Barberis

et al., 1998; Chen et al., 2013; Greenwood and Shleifer, 2014; Collin-Dufresne et al., 2016; Adam

et al., 2016; Giglio et al., 2021; De La O and Myers, 2021; Nagel and Xu, 2022; Jin and Sui,

2022; De La O et al., 2024; Adam and Nagel, 2023; Bordalo et al., 2024a; Décaire and Graham,

2024). The variance decomposition method adapts the Campbell-Shiller framework (Campbell

and Shiller, 1988; Cochrane, 2007), which attributes price-dividend and price-earnings ratio vari-

ation to expected cash flows and discount rates. Recent applications of this framework using

survey-based expectations have challenged traditional views about the sources of asset price

volatility. De La O and Myers (2021) show that subjective expectations of cash flow growth,

rather than discount rates, explain most of the variation in price-dividend and price-earnings

ratios, challenging standard decompositions that assume rational expectations. Bordalo et al.

(2024a) find that overreaction in long-term earnings growth expectations accounts for a sub-

stantial share of aggregate and cross-sectional return predictability. My contribution is to show

that a similar decomposition can be adapted to study real decisions by linking asset valuation to

hiring through the firm’s optimality condition, revealing that the same belief distortions operate

in both financial markets and labor markets.

Informed by this literature, I adopt a machine learning approach to measure rational expec-

tations using a dynamic real-time forecasting framework (Bianchi et al., 2022, 2024, 2025; Du

et al., 2025). It is based on the principle that rational expectations require agents to efficiently

use the full set of real-time information available to them. The algorithm uses high-dimensional

prediction models estimated on rolling samples of real-time data to produce a benchmark that

is free from human cognitive biases and look-ahead bias, while also addressing overfitting and

structural change. The method uses tools from machine learning by training LSTM networks

with recursive re-estimation and hyperparameter tuning (Gu et al., 2020, Cong et al., 2020, By-

bee et al., 2024). The resulting forecasts are fully ex-ante and provide high-dimensional empirical

counterparts to rational expectations for evaluating belief distortions.

The rest of the paper proceeds as follows. Section 2 describes the data used in the empirical

analysis. Section 3 documents overreaction in survey expectations and compares the predictive
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performance of machine and survey forecasts. Section 4 presents a search and matching model

with belief distortions and derives a decomposition of the vacancy filling rate. Section 5 presents

the estimated variance decomposition of the aggregate vacancy filling rate. Section 6 presents

cross-sectional evidence motivated by a firm-level extension of the baseline model. Section 7

introduces a model of constant-gain learning about future earnings that could match the decom-

positions estimated from the data. Section 8 discusses model extensions and robustness checks.

Finally, section 9 concludes.

2 Data

This section describes the data used to estimate the time-series and cross-sectional variance

decompositions. For each outcome variable, I use survey forecasts to measure subjective expec-

tations Ft[·] and machine learning forecasts to measure rational expectations Et[·]. The final

estimation sample is quarterly and spans 2005Q1 to 2023Q4.1 The cross-sectional analysis uses

portfolios of firms denoted by subscript i constructed by sorting on firm characteristics.

Vacancy Filling Rate Vacancies Vt are measured using JOLTS job openings starting 2000:12

and the help-wanted index for earlier periods (Barnichon, 2010). Unemployment Ut is measured

from the BLS unemployment series (UNEMPLOY). The vacancy filling rate qt is defined as the

rate at which posted vacancies are filled out of unemployment:

qt =
ftUt

Vt

The job finding rate ft is the share of unemployed workers that find jobs within the period:

ft = 1− Ut − U s
t

Ut−1

where U s
t is short-term unemployment less than 5 weeks (UEMPLT5). I construct the variables

at a monthly frequency, time-aggregate to quarterly averages, and detrend using an HP filter

with a smoothing parameter of 105 to ensure stationarity (Shimer, 2005). Labor market tightness

is defined as the vacancy-to-unemployment ratio, θt ≡ Vt/Ut. The job separation rate δt uses the

corresponding series from JOLTS.

Employment Employment Li,t is measured using annual total employee counts (EMP) of

S&P 500 firms, sourced from the CRSP/Compustat Merged Annual Industrial Files. I aggregate

the firm-level employment data to construct a total employment series Lt for the S&P 500. I

1See Appendix C for more details. Figure A.1 and Table A.1 reports stylized facts about the data.
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interpolate the annual series to a quarterly frequency by using quarterly averages of the fitted

values from regressing annual S&P 500 employment on the monthly BLS nonfarm payrolls series.

Earnings Quarterly earnings for the S&P 500 ei,t are sourced from IBES street earnings per

share (EPS) data that starts in 1983Q4. Street earnings, which serve as the forecast target

for IBES analysts, differ from standard GAAP earnings by excluding discontinued operations,

extraordinary charges, and other non-operating items. This adjustment makes street earnings

a cleaner measure of recurring performance and a more relevant proxy for expected cash flows.

Street earnings exhibit less transitory volatility and are more informative about firm fundamen-

tals and valuation than standard earnings measures (Hillenbrand and McCarthy, 2024).

To construct subjective expectations of future cash flows Ft[∆ei,t+h], I use survey forecasts

of S&P 500 earnings from the IBES database (De La O and Myers, 2021; Bordalo et al., 2019).

IBES provides firm-level forecasts from financial analysts, which I aggregate to form market-wide

earnings expectations for the S&P 500. These forecasts reflect the views of professionals who

actively track firms for investment research and have strong reputational incentives to report

them accurately, as they are not anonymous (Cooper et al., 2001; De La O et al., 2024). Prior

research shows that these forecasts are widely followed by market participants and are priced into

asset values, supporting their use as proxies for subjective expectations (Kothari et al., 2016).2

IBES provides monthly median analyst forecasts for earnings per share (EPS) at one through

four year horizons, as well as long-term growth (LTG) forecasts.3 One- through four-year-ahead

forecasts of annual log earnings growth Ft[∆ei,t+h] for h = 1, 2, 3, 4 are constructed as log dif-

ferences between level forecasts from adjacent horizons. For the five-year horizon Ft[∆ei,t+5], I

interpret the LTG forecast as the expected log growth in earnings from year four to five (Bianchi

et al., 2024). The sample spans January 1983 to December 2023 at a monthly frequency, which

are time-aggregated to quarterly averages. The forecasts cover approximately 80% of total mar-

ket capitalization, providing broad coverage of U.S. public firms.

Stock Returns Stock returns ri,t+h are measured using monthly Center for Research in Secu-

rity Prices (CRSP) value-weighted returns with dividends (VWRETD). Annualized cumulative

h-year log stock returns are compounded from monthly returns.

2As a robustness check, Appendix Table A.6 considers using earnings forecasts from the CFO survey, which
reflect managerial expectations. The two series have a relatively strong correlation of 0.60 at the 1-year horizon,
suggesting that analyst and managerial beliefs are broadly aligned.

3Long-Term Growth (LTG) is defined in IBES as the “expected annual increase in operating earnings over the
company’s next full business cycle. These forecasts refer to a period of between three to five years.”
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For survey expectations of aggregate stock returns Ft[rt+h], I use the quarterly CFO survey

from 2001Q4 to 2023Q4. The CFO survey asks respondents about their expectations for the

S&P 500 return over the next 12 months and 10 years ahead. For intermediate horizons between

1 and 10 years, I interpolate linearly between the 1 and 10 year ahead forecasts. The CFO

survey panel includes firms ranging from small operations to Fortune 500 companies across all

major industries. Respondents include chief financial officers, owner-operators, vice presidents,

and directors of finance, and others with financial decision-making roles.

For survey expectations of firm-level stock returns Ft[ri,t+h], I use survey data on stock price

targets (De La O et al., 2024). Specifically, I proxy for stock return expectations by constructing

expected price growth from IBES 12-month median price targets and Value Line 3–5 year median

price targets. I interpret the Value Line price targets as a five-year-ahead forecast and interpolate

linearly to impute expectations for intermediate horizons between 1 and 5 years.

Price-Earnings Ratio The current log price-earnings ratio is defined as pei,t ≡ log(Pi,t/Ei,t),

where Pi,t is the end-of-quarter stock price and Ei,t denotes quarterly total earnings for the S&P

500. I construct subjective expectations of log price-earnings Ft[pei,t+h] by applying the Campbell

and Shiller (1988) approximate present value identity (De La O and Myers, 2021):

Ft[pei,t+h] =
1

ρh
pei,t −

1

ρh

h∑
j=1

ρj−1(cpe + Ft[∆ei,t+j]− Ft[ri,t+j])

where cpe is a linearization constant, ρ = exp(pe)/(1 + exp(pe)) is the time discount factor from

the log-linearization. Expected returns Ft[ri,t+j] and earnings growth Ft[∆ei,t+j] come from the

corresponding survey forecasts listed above.

Machine Learning Forecasts For each survey forecast, I construct the corresponding ma-

chine learning forecast using a Long Short-Term Memory (LSTM) neural network:

Et[yt+h] = G(Xt,βh,t)

where yt+h denotes the outcome variable (stock returns or earnings growth) to be predicted h

periods ahead of time t. Xt is a large input dataset of macroeconomic, financial, and textual

predictors (Appendix D.2). The input dataset also includes the survey forecast of y, allowing

the machine to combine public information with intangible private information embedded in the

survey responses.4 G(Xt,βh,t) denotes predicted values from Long Short-Term Memory (LSTM)

4While it uses survey forecasts as one input among many predictive variables, a truly rational agent would
efficiently extract signals from all available public information, including potentially biased survey data, and
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neural networks that can be represented by a potentially high-dimensional set of parameters βh,t.

The parameters are estimated using a dynamic algorithm from Bianchi et al. (2022, 2024, 2025)

that takes into account the data-rich environment in which firms operate in (Appendix D.1).

To obtain more granular measures of undistorted expectations with a cross-sectional dimen-

sion across firms, I construct analogous machine learning forecasts at the portfolio level:

Et[yi,t+h] = G(Xi,t,βi,h,t)

where yi,t+h is the outcome to be predicted for portfolio i. The predictor set Xi,t = Xt ⊗Ci,t aug-
ments the aggregate predictors Xt with firm characteristics Ci,t (Gu et al., 2020, Appendix D.3).

Firms are sorted into value-weighted portfolios sorted deciles of idiosyncratic shocks, with pre-

dictor variables aggregated to the portfolio level using market cap weights. Idiosyncratic shocks

are estimated as the residuals from a firm-level autoregressive (AR(1)) model of earnings that in-

cludes both firm and time fixed effects. This sorting is done in real-time to avoid look-ahead bias,

ensuring the portfolios are formed using truly ex-ante beliefs rather than information unavailable

at the time of hiring.

3 Evidence of Belief Distortions

Predictability of Survey Forecast Errors To assess whether survey expectations system-

atically deviate from rational expectations, Panel (1) of Table 1 estimates Coibion and Gorod-

nichenko (2015) regressions of survey forecast errors on survey forecast revisions:

yt+h − Ft[yt+h] = β0 + β1[Ft[yt+h]− Ft−1[yt+h]] + β2Ft−1[yt+h] + εt (1)

where yt+h denotes either stock returns rt+h (discount rates) or earnings growth ∆et+h (cash

flows), as defined in Section 2. The results reveal predictable forecast errors in subjective be-

liefs. For cash flow expectations, the coefficients on forecast revisions are negative, ranging

from -0.263 at the one-year horizon to -0.968 at five years. These results indicate overreaction.

Upward revisions in survey forecasts are followed by negative forecast errors, suggesting that

survey respondents respond too strongly to positive earnings news and generate overly opti-

mistic forecasts. For discount rate expectations, the coefficients are negative and significant at

longer horizons, with a coefficient of -0.998 at the five-year horizon, indicating that respondents

overreact to discount rate news.5

de-bias them optimally. The machine learning model approximates this process by finding the optimal forecast
given an information set that includes survey responses alongside other predictive variables.

5For future price-earnings expectations, the coefficient is also negative at -0.919, showing that price-earnings
forecasts overreact to news. Through the Campbell-Shiller present-value identity, this suggests cash flow overre-
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Panel (2) repeats the analysis using machine learning forecasts in place of survey expectations.

In contrast to the strong predictability in survey forecast errors, the coefficients on machine

forecast revisions are small and statistically insignificant at all horizons, with values near zero

(0.096 for discount rates and -0.070 for cash flows at the five-year horizon). This lack of forecast

error is consistent with the behavior of rational expectations, under which forecast errors should

be unpredictable. Panels (3) and (4) of Table 1 present complementary analysis using cross-

sectional regressions of forecast errors for idiosyncratic shock sorted portfolios:

yi,t+h − Ft[yi,t+h] = β1[Ft[yi,t+h]− Ft−1[yi,t+h]] + β2Ft−1[yi,t+h] + αi + αt + εt (2)

where yi,t+h denotes either stock returns ri,t+h (discount rates) or earnings growth ∆ei,t+h (cash

flows) for portfolio i. These regressions include portfolio αi and time αt fixed effects, implying

that the identifying variation comes from revisions in expectations that are idiosyncratic to

each portfolio. At the five-year horizon, the coefficients on survey forecast revisions are large

and negative for both discount rates (-0.730) and cash flows (-0.715), indicating that survey

respondents overreact to portfolio-specific news. Upward revisions in a given portfolio’s forecasts

beyond the average are associated with subsequent forecast errors in the opposite direction.

In contrast, the corresponding coefficients for machine forecasts are small and close to zero

(-0.051 for discount rates and 0.033 for cash flows), suggesting that machine expectations do

not systematically overreact to idiosyncratic information. These results reinforce the conclusion

that survey expectations exhibit predictable bias even at the cross-sectional level, while machine

expectations remain consistent with a rational benchmark.

Accuracy of Machine Learning vs. Survey Forecasts To assess whether survey respon-

dents misweight relevant information, Figure 1 evaluates the out-of-sample accuracy of machine

learning relative to survey forecasts for discount rates rt+h and cash flows et+h. These variables

are factors that can influence the value of hiring through the firm’s optimal hiring decision in

the search model. I measure the relative predictive performance using the ratio MSEE/MSEF

of mean-squared-forecast-error of the machine (MSEE) over that of the survey (MSEF):

Machine MSE =
1

T

T∑
t=1

(yt+h − Et[yt+h])
2, Survey MSE =

1

T

T∑
t=1

(yt+h − Ft[yt+h])
2

action dominates discount rate overreaction in driving price-earnings forecasts. While both discount rates and
cash flow expectations overreact, the cash flow component (which enters positively in the identity) has a stronger
influence on price-earnings ratio variation than the discount rate component (which enters negatively), leading
to net overreaction in price-earnings forecasts.
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Table 1: Predictability of Survey Forecast Errors

(a) Aggregate Forecasts

Horizon h (Years) 1 2 3 4 5

(1) Survey: yt+h − Ft[yt+h] = β0 + β1[Ft[yt+h]− Ft−1[yt+h]] + β2Ft−1[yt+h] + εt

Cash Flows −0.263 −0.463∗∗∗ −0.801∗∗∗ −0.833∗∗∗ −0.968∗∗∗

t-stat (−1.413) (−3.793) (−5.682) (−5.898) (−8.242)

Discount Rates −0.581∗∗∗ −0.646∗∗ −0.658∗∗∗ −0.681∗∗∗ −0.998∗∗∗

t-stat (−2.916) (−2.360) (−2.821) (−3.047) (−2.758)

(2) Machine: yt+h − Et[yt+h] = β0 + β1[Et[yt+h]− Et−1[yt+h]] + β2Et−1[yt+h] + εt

Cash Flows −0.064 −0.114 −0.056 −0.133 −0.070
t-stat (−0.507) (−1.387) (−1.255) (−1.563) (−1.594)

Discount Rates 0.057 −0.005 0.109 0.010 0.096
t-stat (0.249) (−0.036) (0.710) (0.114) (0.973)

(b) Cross-Sectional Forecasts

Horizon h (Years) 1 2 3 4 5

(3) Survey: yi,t+h − Ft[yi,t+h] = β1[Ft[yi,t+h]− Ft−1[yi,t+h]] + β2Ft−1[yi,t+h] + αi + αt + εi,t

Cash Flows −0.665∗∗ −0.581∗∗∗ −0.588∗∗∗ −1.092∗∗∗ −0.715∗∗∗

t-stat (−2.297) (−2.899) (−3.690) (−7.989) (−5.605)

Discount Rates −0.837∗∗∗ −0.853∗∗∗ −0.696∗∗ −0.845∗∗∗ −0.730∗∗∗

t-stat (−5.883) (−6.133) (−2.354) (−5.376) (−4.124)

(4) Machine: yi,t+h − Et[yi,t+h] = β1[Et[yi,t+h]− Et−1[yi,t+h]] + β2Et−1[yi,t+h] + αi + αt + εi,t

Cash Flows −0.018 −0.004 0.027 0.025 0.033
t-stat (−1.055) (−0.143) (1.028) (0.760) (1.022)

Discount Rates 0.038 −0.041 0.025 −0.151 −0.051
t-stat (0.838) (−0.744) (0.806) (−1.301) (−0.707)

Notes: Table reports regression coefficients β1 from forecast error regressions of the form: forecast error regressed on the revision
in the forecast and the lagged forecast level. The forecast target is either stock returns rt+h (discount rates) or earnings growth
∆et+h (cash flows). Panel (a) presents results using aggregate time-series forecasts for the S&P 500: (1) survey forecast errors on
survey forecast revisions, and (2) machine forecast errors on machine forecast revisions. Panel (b) presents results from cross-sectional
regressions of forecast errors on forecast revisions and lagged forecast levels for portfolios sorted by deciles of idiosyncratic shocks,
including portfolio and time fixed effects. Specifications (3) and (4) report cross-sectional results based on survey-based and machine-
based forecasts, respectively. Time-series survey forecasts Ft come from the CFO survey (discount rates) and IBES (cash flows).
Cross-sectional survey forecasts Ft come from IBES (discount rates and cash flows). Time-series and cross-sectional machine learning
expectations Et are generated using a Long Short-Term Memory (LSTM) model trained in real time on macroeconomic, financial,
and textual data. The sample covers quarterly data from 2005Q1 to 2023Q4. All t-statistics are Newey-West corrected with 4 lags
in Panel (a), two-way clustering by portfolio and quarter in Panel (b). Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

where T is the length of the out-of-sample testing period, which spans 2005Q1 to 2023Q4.

Figure 1 shows that machine learning forecasts consistently outperform survey forecasts across

all variables and horizons, with MSE ratios well below one. The performance gap widens with

forecast horizon, indicating that belief distortions are larger at longer horizons. The machine

outperforms the survey for both aggregate S&P 500 level and portfolio level forecasts across
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idiosyncratic shock sorted groups, suggesting that belief distortions affect not only aggregate

expectations but also the cross-sectional dispersion of beliefs across firms.

These findings suggest that survey expectations about factors that influence hiring decisions

systematically deviate from an unbiased benchmark, both in the time-series and the cross-section.

If survey respondents were rational in forming their beliefs, their forecasts would have performed

at least on par with the machine.6 The superior performance of the machine also highlights its

ability to process a large amount of real-time data efficiently and objectively, supporting its use

as a reliable benchmark of undistorted beliefs.

Figure 1: Accuracy of Machine Learning vs. Survey Forecasts
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Notes: Figure plots MSEE/MSEF, the ratio of mean squared forecast errors between machine learning and survey forecasts. Lower
values indicate greater accuracy of the machine learning forecast. MSEE and MSEF refer to out-of-sample forecast errors from
machine and survey forecasts, respectively. The out-of-sample testing period is 2005Q1–2023Q4. Dark bars correspond to aggregate
time-series forecasts for the S&P 500; light bars correspond to cross-sectional forecasts across 10 idiosyncratic shock sorted portfolios.
The forecast target yt+h is the present value of discount rates rt,t+h and cash flows et,t+h, as defined in equation (17). Time-series
survey forecasts Ft come from the CFO survey (discount rates) and IBES (cash flows). Cross-sectional survey forecasts Ft come from
IBES (discount rates and cash flows). Time-series and cross-sectional machine learning expectations Et are generated using a Long
Short-Term Memory (LSTM) model trained in real time on macroeconomic, financial, and textual data.

Hiring Outcomes and Belief Distortions Given the evidence of overreaction in subjective

cash flow forecasts, this section examines the relationship between subjective cash flow expecta-

tions and the vacancy filling rate. In standard search-and-matching models of the labor market,

the vacancy filling rate is a sufficient statistic for the marginal value of job creation.

6The magnitude of the MSE ratio is more consistent with truly subjective beliefs rather than rational but risk-
neutral beliefs. Estimates of risk premia typically range 5-10% annually (Adam et al., 2021), which is insufficient
to explain the 15-30% deterioration in MSE ratios observed in Figure 1. The magnitude and persistence of forecast
errors across horizons instead also point to behavioral biases rather than rational risk compensation.
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Figure 2 reveals a striking relationship between belief distortions and labor market dynamics.

The figure plots the growth rate of the U.S. vacancy filling rate against belief distortions in cash

flow growth expectations, measured as the gap between subjective and rational 5-year forecasts

of annualized S&P 500 earnings growth (Ft[∆et,t+h]−Et[∆et,t+h]). The subjective forecasts come

from survey data, while the rational benchmark uses machine-learning predictions.

The figure shows that belief distortions exhibit strong cyclical patterns that closely track

labor market fluctuations. During economic expansions, positive belief distortions emerge as

subjective forecasts become overly optimistic relative to the rational benchmark, reflecting ex-

cessive optimism about future cash flows. These periods of optimism coincide with declines in

the vacancy-filling rate, reflecting that a surge in vacancy posting tightens the market and makes

it harder for any given vacancy to be filled. Conversely, when belief distortions turn negative

and firms scale back vacancy posting, the vacancy-filling rate rises.

This pattern is particularly evident during the large positive belief distortions of the late

1990s and the pre-2008 period, both followed by dramatic reversals to negative distortions that

coincided with sharp contractions in vacancy filling rate growth and NBER-dated recessions.

The tight co-movement between these expectational errors in cash flow forecasts and vacancy

filling rate growth suggests that distortions in firms’ earnings expectations are a powerful driver

of labor market fluctuations, operating independently of changes in discount rates.

Figure 2: Vacancy Filling Rate and Belief Distortions in Subjective Cash Flows

Notes: Figure plots the annual log growth of the U.S. vacancy filling rate ∆qt (left axis) against the belief distortion in cash flows,
which is measured as expectational errors Ft[∆et,t+h]−Et[∆et,t+h] in 5-year forecasts of annualized S&P 500 earnings growth (right
axis). Survey expectations Ft[∆et+h]: IBES median analyst forecasts for the next four fiscal years and long-term growth (LTG).
Rational expectations Et[∆et+h]: Machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. Sample is
quarterly from 1983Q1 to 2023Q4. Gray shaded areas indicate NBER recessions.
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Figure 3 illustrates this key relationship in the cross-section by plotting the cross-sectional

correlation between actual hiring rates and cash flow belief distortions across the 10 idiosyncratic

shock sorted portfolios. The scatter plot reveals a clear positive relationship, where portfolios

with more optimistic cash flow expectations relative to the machine learning benchmark exhibit

systematically higher hiring rates. Each point in the binned scatter represents a percentile of the

joint distribution, and the strong positive slope confirms that belief distortions in expected cash

flows translate directly into observable differences in labor demand across firms.

Figure 3: Cross-Sectional Hiring Rates and Belief Distortions
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Notes: Figure plots the relationship between hiring rates and cash flow expectations across 10 idiosyncratic shock sorted portfolios.
y-axis reports the corresponding cross-sectionally demeaned log hiring rate, h̃li,t. x-axis reports the cross-sectionally demeaned belief
distortion measured as expectational errors Ft[∆et,t+h] − Et[∆et,t+h] in 5-year forecasts of annualized S&P 500 earnings growth.
Subjective expectations Ft: IBES forecasts. Rational expectations Et: Machine learning (LSTM) forecasts. Each dot is a bin scatter
representing one percentile of the pooled distribution across all observations in the sample. A positive slope implies that portfolios
with upward-biased cash flow expectations tend to hire more, consistent with the model’s prediction that belief distortions influence
firm-level employment decisions. The sample is quarterly from 2005Q1 to 2023Q4.

4 Theoretical Framework

The reduced-form link between fluctuations in the vacancy filling rate and belief distortions about

cash flows motivate a structural interpretation. This section develops a search and matching

model of the labor market in which firms’ expectations about future cash flows and discount

rates may be distorted, leading to fluctuations in vacancy filling rates and unemployment. The

model builds on the Diamond (1982), Mortensen (1982), and Pissarides (2009) framework but
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departs from the standard rational expectations assumption, allowing firms’ hiring decisions to

be influenced by biased subjective beliefs.

Environment Consider a discrete time economy populated by a representative household and

a mass of firms I, normalized to one, that hires workers in a frictional labor market. The firm

uses labor as a single input to production. The household’s population is normalized to one and

has a continuum of members, where a fraction Lt are employed and the rest are unemployed

Ut = 1 − Lt. The household’s intertemporal consumption decision gives rise to a stochastic

discount factor Mt+1.

Labor Market Each period, each firm posts job vacancies at a cost κ > 0 to maximize its

cum-dividend value of equity. Employment Li,t reflects the number of workers employed in firm

i at the beginning of period t before any separations or new hires.7 During the period, a fraction

δi,t of employed workers separate, while the firm posts vacancies Vi,t to search from a pool of

unemployed workers Ut. Let Lt =
∑

i∈I Li,t and Vt =
∑

i∈I Vi,t denote the aggregate number of

employed workers and vacancies posted by all firms. Matches are formed at the end of period t

according to a Cobb-Douglas matching function M(Ut, Vt):

M(Ut, Vt) = BUη
t V

1−η
t (3)

where B is the matching efficiency parameter, and η ∈ (0, 1) governs the elasticity of matches

with respect to unemployment. The probability that a firm fills a posted vacancy, the vacancy

filling rate, is then given by:

qt =
M(Ut, Vt)

Vt

= B

(
Ut

Vt

)η

= Bθ−η
t (4)

and the job finding rate is given by ft ≡ M(Ut, Vt)/Ut. These new hires enter employment at

the start of period t+ 1, so employment Li,t and unemployment Ut = 1−Lt evolve according to

the law of motion:

Li,t+1 = (1− δi,t)Li,t + qtVi,t (5)

Aggregate unemployment Ut = 1− Lt evolves according to:

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (6)

where θt = Vt/Ut denotes labor market tightness, defined as the vacancy-to-unemployment ratio.

7I adopt an end-of-period matching convention following Petrosky-Nadeau et al. (2018). See Hansen et al.
(2005) and Kogan and Papanikolaou (2012) for similar conventions applied for the q theory of investment.
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Firm’s Technology and Cash Flow Each firm i uses labor Li,t to produce output Yi,t via a

Cobb-Douglas production function at constant returns to scale:

Yi,t = Ai,tLi,t (7)

where Ai,t is firm-level productivity, Li,t is the level of employment. The firm pays wages Wi,t,

incurs hiring costs κVi,t, and generates cash flows defined as the firm’s period earnings:

Ei,t = Yi,t −WtLi,t − κVi,t (8)

Earnings represent the net flow profits from operating the firm, which is the output net of the

wage bill and vacancy posting costs. I assume that the household owns the equity of the firm

and the firm pays out all of its earnings Ei,t as dividends (Petrosky-Nadeau et al., 2018). I also

assume that the firm’s manager has access to complete markets so that the return to hiring

equals the stock market return in equilibrium (Cochrane, 1991).

Firm’s Problem The firm chooses vacancy postings Vi,t to maximize the present discounted

value of future cash flows. The firm’s value function V satisfies the Bellman equation:

V(Ai,t, Li,t) = max
Vi,t,Li,t+1

{Ei,t + Ft[Mt+1V(Ai,t+1, Li,t+1)]} (9)

subject to the employment accumulation equation (5). Ft[·] is the firm’s subjective expectations

conditional on information available at the beginning of period t.8 These beliefs may depart from

rational expectations Et[·], where the nature and magnitude of the deviation will be disciplined

using survey data. Mt+1 is the stochastic discount factor that prices the firm’s cash flows. The

firm does not observe this discount factor directly and needs to form expectations about it by

forecasting the household’s marginal utility of consumption (Venkateswaran, 2014).

Hiring Condition Under search frictions, hiring is forward-looking investment. The firm’s op-

timal hiring decision equates the marginal cost of posting a vacancy with the expected discounted

marginal value of employment:

κ

qt︸︷︷︸
Cost of hiring

= Ft

[
Mt+1

∂V(Ai,t+1, Li,t+1)

∂Li,t+1

]
︸ ︷︷ ︸
Expected discounted value of hiring

(10)

The left side represents the expected cost of hiring an additional worker while accounting for the

probability qt that a posted vacancy will be filled. The right side captures the expected discounted

8I use the term “firm’s beliefs” as shorthand to refer to the expectations held by decision makers within firms
(Coibion et al., 2018; Candia et al., 2020).
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value of the marginal worker, incorporating both the firm’s subjective beliefs about the future

state and the discount rate for valuing risky cash flows.9 Subjective distortions in beliefs can

thus shift the perceived value of hiring through Ft[·] and affect equilibrium vacancy filling rates,

which in turn affect unemployment through its law of motion in equation (6). Assuming constant

returns to scale, the marginal value of hiring equals its average value:

∂V(Ai,t+1, Li,t+1)

∂Li,t+1

=
V(Ai,t+1, Li,t+1)

Li,t+1

(11)

Define the firm’s ex-dividend market value as Pi,t ≡ Ft[Mt+1V(Ai,t+1, Li,t+1)] to derive a direct

link between the vacancy filling rate and the firm’s market value per worker:

κ

qt
=

Pi,t

Li,t+1

(12)

where employment Li,t+1 is determined at the end of date t under the timing convention from

equation (5). Take logarithms, rearrange terms, and expand the price-employment ratio Pi,t/Li,t+1:

log qt = log κ− log

(
Pi,t

Ei,t

)
− log

(
Ei,t

Li,t+1

)
(13)

Define log price-earnings pei,t = log(Pi,t/Ei,t) and earnings-employment eli,t = log(Ei,t/Li,t+1):

log qt = log κ− pei,t − eli,t (14)

Log-linear Approximation of Price-Earnings Ratio To decompose the vacancy filling rate

into economically meaningful components, I apply the Campbell and Shiller (1988) present value

identity to the price-earnings ratio. Log-linearize the price-earnings ratio pei,t ≡ log(Pi,t/Ei,t)

around its long-run mean pe to obtain the approximate relationship:

pei,t = cpe − ri,t+1 +∆ei,t+1 + ρpei,t+1 (15)

where cpe is a linearization constant, ρ = exp(pe)/(1 + exp(pe)) is the time discount factor from

the log-linearization, ri,t+1 = log((Pi,t+1+Ei,t+1)/Pi,t) is the stock return assuming that the firm

pays out its earnings as dividends, and ∆ei,t+1 denotes earnings growth.10 This equation is an

9The hiring equation is the labor market analogue of the optimality condition for physical capital in the q
theory of investment (Hayashi, 1982), where the upfront cost of hiring κ/qt is analogous to Tobin’s marginal q
and the separation rate δt+1 is analogous to the depreciation rate (Borovickova and Borovička, 2017). See Lettau
and Ludvigson (2002) and Kogan and Papanikolaou (2012) for a similar log-linearization applied for the q theory
of physical capital investment.

10This identity also holds approximately when dividends differ from earnings. Following Lintner (1956), divi-
dends can be approximated as a stable fraction of earnings (with a long-run payout ratio near 50%). The resulting
payout ratio term (1− ρ)det+1 becomes negligible after log-linearization since 1− ρ ≈ 0.02, allowing this term to
be absorbed into the constant cpe (De La O et al., 2024). See Appendix Section B for a derivation.
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accounting identity that links current valuation ratios to future cash flows and discount rates.

Substituting recursively for the next h periods yields the present value identity:

pei,t =
h∑

j=1

ρj−1cpe −
h∑

j=1

ρj−1ri,t+j +
h∑

j=1

ρj−1∆ei,t+j + ρhpei,t+h (16)

Decomposition of Vacancy Filling Rate Substitute log-linearized price-earnings (16) into

the hiring equation (14) to obtain a decomposition of the vacancy filling rate qt:

log qt = cq +
h∑

j=1

ρj−1ri,t+j︸ ︷︷ ︸
≡ ri,t,t+h

−

[
eli,t +

h∑
j=1

ρj−1∆ei,t+j

]
︸ ︷︷ ︸

≡ ei,t,t+h

− ρhpei,t+h︸ ︷︷ ︸
≡ pei,t,t+h

(17)

where cq ≡ log κ− cpe(1−ρh)

1−ρ
is a constant. The vacancy filling rate has been decomposed into three

forward-looking components: the present value of future discount rates ri,t,t+h ≡
∑h

j=1 ρ
j−1ri,t+j,

cash flows ei,t,t+h ≡ eli,t+
∑h

j=1 ρ
j−1∆ei,t+j, and price-earnings ratio pei,t,t+h ≡ ρhpei,t+h. The cash

flow component consists of the current earnings-employment ratio elt, which captures short-term

fluctuations in cash flows, and j = 1, . . . , h period ahead earnings growth ∆et+j, which captures

news about future cash flows. To decompose time-series variation in the vacancy filling rate qt,

the right-hand side of equation (17) can be aggregated across firms:

log qt︸ ︷︷ ︸
Vacancy Filling Rate

= cq + Ft[rt,t+h]︸ ︷︷ ︸
Discount Rate

−Ft[et,t+h]︸ ︷︷ ︸
Cash Flow

− Ft[pet,t+h]︸ ︷︷ ︸
Future Price-Earnings

(18)

where xt =
∑

i∈I wi,txi,t aggregates firm-level variable xi,t using employment weights wi,t =

Li,t/
∑

j∈I Lj,t for x ∈ {r, e, pe}.11 Intuitively, the vacancy filling rate rises when firms expect

high future cash flows (making hiring valuable) or low future discount rates (making future profits

more valuable today). The Campbell-Shiller formula allows us to separate these two channels by

recursively decomposing the price-earnings ratio into expected returns and earnings growth.

Since equation (17) holds both ex-ante and ex-post, it can be evaluated under either subjective

or rational expectations. The subjective decomposition replaces ex-post realizations of future

outcomes with their ex-ante subjective expectation Ft[·]:

log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h] (19)

11The aggregate decomposition follows from the firm-level decomposition by summing across individual firms’
hiring conditions under two assumptions: (i) vacancy posting costs are linear in the number of vacancies, and (ii)
the labor market for matches is competitive, so that all firms face a common vacancy filling rate qt. Under these
conditions, the aggregate hiring equation is obtained by weighting firm-level equations by employment, which
ensures that the decomposition holds exactly at the aggregate level. For the cross-sectional analysis, the same
logic applies to portfolios of firms.
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The equation implies that the vacancy filling rate is high when firms subjectively expect fu-

ture returns to be high, expected cash flows to be low, or both. Alternatively, the rational

decomposition replaces each subjective expectation Ft[·] with its rational expectation Et[·]:

log qt = cq + Et[rt,t+h]− Et[et,t+h]− Et[pet,t+h] (20)

Comparing these decompositions can quantify how belief distortions affect the vacancy filling

rate. The econometrician can estimate the variance decomposition using predictive regressions

of each expected outcome on the current vacancy filling rate. For the subjective decomposition,

demean each variable in equation (19), multiply both sides by the current log vacancy filling rate

log qt, and take the sample average:

V ar [log qt] = Cov [Ft[rt,t+h], log qt]− Cov [Ft[et,t+h], log qt]− Cov [Ft[pet,t+h], log qt] (21)

where V ar[·] and Cov[·] are sample variances and covariances based on data observed over a

historical sample. Finally, divide both sides by V ar [log qt] to decompose its variance:

1 =
Cov [Ft[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Ft[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Ft[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(22)

The left-hand side represents the full variability in vacancy filling rates, hence is equal to one.

Each term on the right reflects the share explained by subjective expectations of discount rates,

cash flows, or future price-earnings ratios. Under stationarity, the econometrician can estimate

these shares using the OLS coefficients from regressing Ft[rt,t+h], Ft[et,t+h], and Ft[pet,t+h] on

the current log vacancy filling rate log qt, respectively. Finally, the decomposition under ratio-

nal expectations can be estimated similarly based on equation (22) by replacing the subjective

expectation Ft[·] with its rational counterpart Et[·].
Comparing the decompositions implied by subjective and rational expectations can highlight

the role of belief distortions, which I define as the gap between the survey and machine forecasts:

Ft − Et. This comparison allows us to assess the role of belief distortions in explaining labor

market dynamics and determine whether firms systematically mis-perceive economic conditions

when making hiring decisions. Although the variance decomposition does not necessarily capture

causal relationships, it has the advantage of not requiring the researcher to take a stand on the

deep determinants of vacancy filling rates because the evolution of discount rates and cash flows

summarize the combined effects of these deep determinants.
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5 Time-Series Decomposition of the Vacancy Filling Rate

The evidence of overreaction in survey expectations and the superior forecasting performance of

machine learning suggests the presence of distortions in subjective expectations. This section

quantifies how those distortions affect hiring behavior by estimating the contributions of discount

rate and cash flow expectations to fluctuations in the aggregate vacancy filling rate.

Rational Expectations Figure 4 presents the variance decomposition of the vacancy filling

rate. The figure shows that, under rational beliefs, discount rate news is the dominant driver

of variation in vacancy filling rates. At the five-year horizon, rational discount rates explain

69.1% of the variation in vacancy filling rates, while rational cash flow news accounts for 6.6%.12

Consistent with the predictions of the search and matching model, higher vacancy filling rates

are associated with higher discount rates and lower expected cash flows because a lower value

of hiring leads firms to post fewer vacancies, reducing tightness and raising qt. The contribution

from terminal price-earnings ratios still remains sizable at the five-year horizon, accounting for

20.1%.13 The combined contribution from the three components sums to 95.8% at the five-year

horizon, a value reasonably close to 100.0% suggesting that the decomposition is empirically

accurate despite being estimated freely without imposing this constraint.

These findings are consistent with predictions from search-and-matching models that empha-

size time-varying risk premia while maintaining rational expectations. The large contribution

from discount rate news is consistent with models that introduce rational time-varying discount

rates to explain unemployment fluctuations (Hall, 2017).14 The increasing importance of discount

rate news at longer horizons is consistent with rational models that match observed fluctuations

in unemployment by modeling hiring as a risky investment with long-duration returns (Kehoe

et al., 2023). Finally, the small rational cash flow component aligns with the unemployment

volatility puzzle, as Shimer (2005) showed that, without time-varying discount rates, standard

search models cannot generate enough unemployment volatility from productivity shocks, which

12Table A.3 reports more detailed statistics on the variance decomposition. First-differenced estimates in
Figure A.3 show similar patterns, with rational discount rates explaining 58.7% and cash flows explaining only
10.0% of vacancy filling rate variation. Figure A.4 uses a VAR to extend the decomposition to the infinite horizon
where rational discount rates explain 78.1% of vacancy filling rate variation.

13Hyatt and Spletzer (2016) document that about half of U.S. workers have job tenures exceeding five years,
reflecting the prevalence of long-term employment relationships. Despite relatively long job tenures, time dis-
counting and mean-reversion in cash flows could limit the variance contribution of long-horizon cash flows.

14On the relative importance of risk-free rates and risk premia, which are two components of discount rates,
Figure A.8 shows that rational risk-free rate expectations explain less than 5% of the variation in the vacancy filling
rate. This implies that the explanatory power of discount rate news is driven primarily by risk premia, consistent
with rational models of labor markets that introduce time-varying risk premia (Borovickova and Borovička, 2017).
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would mainly be reflected in the cash flow component.

Figure 4: Time-Series Decomposition of the Vacancy Filling Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components from the time-series decomposition of the
U.S. aggregate vacancy filling rate. Light bars show contributions under rational expectations; dark bars show contributions under
subjective expectations. Subjective expectations Ft are constructed from CFO survey forecasts (discount rates) and IBES analyst
forecasts (cash flows). Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM)
neural networks. x-axis denotes the forecast horizon h. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West
95% confidence intervals with lags = 4.

Subjective Expectations On the other hand, Figure 4 reveals a striking reversal under sub-

jective expectations. At the five-year horizon, subjective cash flow news explains 96.7% of the

variation in vacancy filling rates, while subjective discount rate news accounts for only -1.0%.15

These results suggest that firms systematically over-estimate the importance of cash flows and

under-estimate the importance of discount rates when hiring workers. Since vacancy filling rates

are countercyclical (declining during expansions as labor markets tighten), the positive cash flow

coefficient indicates that firms expect high cash flows during periods when qt is low, consistent

with excessive optimism during economic booms. The negative contribution on the discount

rate component indicates that survey respondents predict lower future returns during recessions,

contrary to what a rational forecast would imply.

The contribution from the terminal price-earnings ratio falls with horizon and is negligible by

year five (2.8%), compared with 20.1% under rational expectations. This implies that subjective

beliefs place excessive weight on near-term cash flows relative to long-run fundamentals. Finally,

the three components sum to 98.5% at the five-year horizon, showing that survey expectations are

15First-differenced estimates in Figure A.3 show similar results, with subjective cash flows explaining 90.6%
and discount rates explaining only -1.3% of the vacancy filling rate. Figure A.4 uses a VAR to extend the
decomposition to the infinite horizon where subjective cash flows explain 95.4% of vacancy filling rate variation.
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internally consistent and the model’s approximation is reasonably accurate, with any remaining

gap likely attributable to measurement error in the survey data (e.g., Ma et al., 2020).16

Compared to the rational benchmark, the implied overreaction to cash flow news is substan-

tial. Low vacancy filling rates during expansions are associated with a significant disappointment

in future cash flows. Defining the belief distortion as the difference between subjective and ratio-

nal expectations Ft−Et, the estimates imply that, at the five-year horizon, 96.7%−6.6% = 90.1%

of variation in vacancy filling rates can be attributed to the fact that the vacancy filling rate

predicts distortions in cash flow expectations with a significant positive relationship (Table A.5).

These distortions capture inefficiencies or behavioral biases in survey respondents’ subjective

beliefs that the machine learning model could have identified ex-ante.

Sources of Vacancy Filling Rate Variation While Table 1 has shown subjective discount

rate forecasts to exhibit overreaction, their contribution to the variance decomposition of vacancy

filling rates remains small in Figure 4. This can be reconciled by the fact that subjective discount

rate expectations display relatively little time-series variation, so even overreactive revisions have

limited impact on hiring decisions. In contrast, subjective cash flow expectations vary much more

over time, making them the primary driver of belief-driven fluctuations in hiring.17

To visualize the relative importance of each component in the decomposition, Figure 5 con-

structs counterfactual time series for the annual growth in the vacancy filling rate. These series

represent the component of vacancy filling rate growth explained by a single driver, based on

the fitted values from the variance decomposition from Figure 4. As shown in the figures, each

counterfactual series is initialized to match the actual vacancy filling rate in 2005Q1 to provide

a common baseline for comparison. The results are consistent with the variance decomposition.

Under subjective beliefs, the counterfactual based on cash flow expectations tracks the realized

path of vacancy filling rate growth remarkably well, explaining a substantial portion of its cycli-

cal fluctuations. In contrast, while the discount rate component under rational beliefs accounts

for a significant share of fluctuations, its explanatory power is visibly less pronounced than that

of subjective cash flows.

16This residual term captures any model misspecification or approximation errors in the decomposition, includ-
ing potential misspecification of the stochastic discount factor or approximation errors in the Campbell-Shiller
decomposition under subjective beliefs. As shown in Section A.3.2, the residual is quantitatively negligible and
approximately orthogonal to the model’s main components of discount rates and cash flow expectations.

17Figure A.1 illustrates this point visually by showing that subjective expectations exhibit excessive cyclicality in
cash flow forecasts and muted responses in discount rate forecasts compared to their machine-based counterparts.
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Figure 5: Role of Components in the Vacancy Filling Rate
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Notes: Figure presents counterfactual time series showing the evolution of vacancy filling rate growth if driven solely by each
expectation component. Left panel shows subjective expectations; right panel shows rational expectations. Counterfactual series
are constructed by accumulating fitted values from regressions of vacancy filling rate growth on individual expectation measures,
with all series initialized to the actual vacancy filling rate growth in 2005Q1. Black line shows actual vacancy filling rate growth for
comparison. Subjective expectations Ft are based on CFO survey forecasts (discount rates) and IBES analyst forecasts (cash flows,
price-earnings). Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural
networks. Gray shaded areas indicate NBER recessions. Sample period: 2000Q4 to 2023Q4.

Discussion Although the decomposition does not necessarily estimate causal relationships,

it can account for possible sources of variation in the vacancy filling rate. A large estimate

for subjective cash flow news means that, whatever shocks drive the vacancy filling rate, they

must have a larger impact on subjective cash flow expectations than subjective discount rates.

Under rational expectations, by contrast, firms correctly interpret those same shocks as signals

about future risk compensation embedded in discount rates. This divergence points to belief

distortions as a key source of vacancy filling rate fluctuations. By overreacting to perceived

changes in future cash flows, firms may cut hiring and vacancies too sharply during downturns,

amplifying unemployment volatility beyond what rational models predict.

Several robustness checks confirm this interpretation. The patterns persist when compar-

ing subjective expectations against risk-neutral benchmarks extracted from futures prices (Fig-

ure A.9). This confirms that the observed distortions reflect genuine departures from rational

belief formation. They are not simply the result of respondents reporting forecasts under a

rational risk-neutral measure. At the five-year horizon, cash flow expectations explain 96.7%

of the variation in vacancy filling rates under subjective beliefs, compared to just 59.6% under

risk-neutral expectations, with the gap between the two capturing the extent of overreaction in

subjective beliefs. Additionally, extending the baseline model to introduce financial constraints

does not alter the overreaction in subjective cash flow expectations, suggesting that hiring pat-

terns are driven more by belief distortions than by financial frictions (Figure A.12).
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The large contribution of subjective cash flows in shaping hiring decisions is consistent with

models that introduce non-rational expectations about earnings growth to account for fluctua-

tions in asset prices (Bordalo et al., 2024a; Bianchi et al., 2024) and the business cycle (Bordalo

et al., 2024b). This parallel implies that the belief distortions known to influence asset valuations

can also extend to real economic behavior through the labor market.

On the other hand, the small and negative contribution of subjective discount rates (although

not statistically different from zero) is consistent with existing survey evidence showing that

subjective return expectations are acyclical (Nagel and Xu, 2022) or even procyclical (Greenwood

and Shleifer, 2014; Adam et al., 2016), contrary to the countercyclical discount rate variation

implied by rational models (Cochrane, 2017). In standard asset pricing models, discount rates

reflect the firm’s market-based cost of capital, such as the weighted average cost of debt and

cost of equity (WACC). In contrast, survey evidence suggests that CFOs likely rely on internal

discount rates that are persistent and often unresponsive to market conditions, even when firms

are not financially constrained (Gormsen and Huber, 2025). My findings extend this evidence

to labor markets, where hiring decisions appear similarly detached from subjective beliefs about

risk premia or financial constraints.

6 Cross-Sectional Decomposition of the Hiring Rate

To analyze the sources of dispersion in hiring across firms, I implement a cross-sectional de-

composition of the log hiring rate based on the same theoretical framework developed for the

time-series decomposition. The log hiring rate for each firm can be constructed using the em-

ployment accumulation equation:

hli,t = log

(
qtVi,t

Li,t

)
= log

(
Li,t+1

Li,t

− (1− δli,t)

)
(23)

where Li,t uses data from Compustat number of employees (EMP) and δli,t uses JOLTS industry-

level job separation rate. The hiring rate captures the fraction of new hires per existing employee,

conditional on vacancies being filled at rate qt. This demeaned hiring rate is then decomposed
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into three components:18

h̃li,t = −
h∑

j=1

ρj−1Ft[r̃i,t+j]︸ ︷︷ ︸
Discount Rate
≡ Ft[r̃i,t,t+h]

+

[
ẽli,t +

h∑
j=1

ρj−1Ft[∆ẽi,t+j]

]
︸ ︷︷ ︸

Cash Flow
≡ Ft[ẽi,t,t+h]

+ ρhFt

[
p̃ei,t+h

]
︸ ︷︷ ︸

Future Price-Earnings

≡ Ft[p̃ei,t,t+h]

(24)

where ρ = exp(pe)/(1 + exp(pe)) is the time discount factor from the log-linearization. The

first term represents cross-sectional dispersion in expected returns, which affect the discount rate

at which future expected cash flows are converted to present value. The second term captures

dispersion in the current earnings per worker, ẽli,t, and the sum of expected earnings growth

over the forecast horizon h. The third term is the dispersion in expected future price-earnings

ratios, which is a terminal value that captures longer-run influences not already captured in

discount rates and expected cash flows by horizon h. All expectations are formed using either

survey (subjective expectation) or machine learning forecasts (rational expectation benchmark).

To isolate cross-sectional variation, I demean each variable across firms indexed by I, defining

h̃li,t = hli,t − 1
I

∑
j∈I hlj,t, so that the decomposition isolates the extent to which deviations from

the average hiring rate can be traced to each component.

Under stationarity, the econometrician can estimate these shares using OLS coefficients from

regressing Ft[r̃i,t,t+h], Ft[ẽi,t,t+h], and Ft[p̃ei,t,t+h] on the current log hiring rate h̃li,t, respectively.

I estimate the decomposition using a panel of 10 value-weighted portfolios sorted by the firm’s

idiosyncratic shock, which serve as representative groups for capturing cross-sectional dispersion

in subjective beliefs across firms. Aggregating firms to portfolios smooths out firm-level measure-

ment errors and occasional negative values for earnings (De La O et al., 2024). At each point in

time, firms are assigned to one of 10 bins based on their ranking in their idiosyncratic shock, and

portfolio-level variables are computed using value weights. The sample covers all common stocks

(share code 10 and 11) listed on NYSE, AMEX, and NASDAQ, restricted to firms that have suf-

ficient data to construct total employee counts (EMP) from Compustat and the median analyst

stock return and earnings growth forecasts at the five-year horizon from IBES, as described in

Section 2. For each portfolio, I construct the hiring rate by fixing portfolio membership at time

t based on lagged idiosyncratic shock sorting, then measuring the change in total employment

from t to t+ 1 for firms in each portfolio.

Figure 6 shows that under subjective expectations, cross-sectional dispersion in the hiring

18See Appendix Section B.2 for a derivation. Note that the signs on each component are reversed compared to
the vacancy filling rate decomposition in equation (22). The flipped sign reflects the distinction between how easy
it is to fill vacancies (vacancy filling rate) versus how much hiring actually occurs (hiring rate). Good economic
conditions make vacancies harder to fill but increase overall hiring activity.
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rate is dominated by differences in expected cash flows. At the five-year horizon, 72.9% of the

cross-sectional variance is explained by the expected cash flows. In contrast, only -8.2% of the

variation is explained by discount rates, and 38.7% is attributed to differences in the terminal

future price-earnings expectation. Under subjective beliefs, a higher discount rate is associated

with a higher hiring rate, a direction that is not consistent with the predictions of the search

model. These results indicate that firms sorted into different idiosyncratic shock deciles have

sharply different expectations about future cash flows when expectations are subjective, and

these differences in beliefs translate into differences in perceived hiring incentives. The combined

contribution of the three components sums to 103.4% at the five-year horizon, a value close to

100.0% suggesting that the approximations used in the decomposition are reasonably accurate

despite being freely estimated without imposing this constraint.

Figure 6: Cross-Sectional Decomposition of the Hiring Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components from the cross-sectional decomposition of
the hiring rate. Firms have been sorted into 10 value-weighted portfolios by their idiosyncratic shocks. Light bars show contributions
under rational expectations; dark bars show contributions under subjective expectations. Subjective expectations Ft are constructed
from IBES analyst forecasts (discount rates and cash flows). Rational expectations Et are based on machine learning forecasts from
Long Short-Term Memory (LSTM) neural networks. x-axis denotes the forecast horizon h. The sample is quarterly from 2005Q1 to
2023Q4. Each bar shows 95% confidence intervals under two-way clustering by portfolio and quarter.

Under rational expectations, the decomposition reverses. At horizon five, 31.1% of cross-

sectional variation in hiring is explained by differences in expected discount rates, while only

5.4% is explained by expected cash flows. This pattern is consistent with existing estimates

showing that, under rational expectations, much of the variation across firms in asset valuations

comes from dispersion in risk premia rather than expected cash flows (De La O et al., 2024).

Finally, the contribution of the terminal price-earnings component is 61.0%, which is sizeable
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and is larger than the same component estimated under subjective beliefs.

Taken together, the results reveal that under subjective beliefs, cross-sectional variation in

hiring is driven primarily by firms overreacting to news about their future cash flows. This

provides a micro-foundation for the aggregate results by showing that the same type of belief

distortion that drives fluctuations in aggregate unemployment also operates at the firm level,

where hiring decisions are actually made.19

7 Model of Constant-Gain Learning

In this section, I introduce a model of hiring in which firms form subjective beliefs about cash

flows and prices using a constant-gain learning rule.20 The model embeds belief distortions in

a search-and-matching framework from Section 4. The distortions shape firms’ vacancy posting

decisions and drive variation in hiring and vacancy filling rates. Simulations from the model

generate decompositions that can match those estimated from the data in Sections 5 and 6.

Cash Flow Process Firms do not have full knowledge of the stochastic processes governing

their cash flows. Instead, they form beliefs about their long-run mean using constant-gain learn-

ing. Assume that the firm’s cash flow process consists of aggregate and idiosyncratic components.

Firm i’s earnings at time t are given by:

Ei,t = Et · Ẽi,t = exp(et + ẽi,t) (25)

The aggregate component follows an AR(1) process:

et = µ+ ϕet−1 + ut, ut ∼ N (0, σ2
u) (26)

where µ is the unknown long-run mean, ϕ < 1 is the known persistence parameter, and ut is

an i.i.d. Gaussian innovation. This specification captures both persistent variation in aggregate

earnings and stochastic fluctuations. The idiosyncratic component also follows an AR(1) process:

ẽi,t = µ̃i + ϕ̃ẽi,t−1 + vi,t, vi,t ∼ N (0, σ2
v) (27)

where µ̃i is a firm-specific long-run mean in earnings (unknown to the firm), ϕ̃ < 1 is a known

persistence parameter, and vi,t is an i.i.d. idiosyncratic shock.

19The cross-sectional results suggest that much of the dispersion in hiring rates reflects belief-driven forecast
errors. Such distorted expectations can act as a wedge that misallocates labor by inducing over-hiring at optimistic
firms and under-hiring at pessimistic firms (Ma et al., 2020; David et al., 2022; Ropele et al., 2024).

20For applications of constant-gain learning in macroeconomics, see Evans and Honkapohja (2001) and Marcet
and Sargent (1989). For applications in asset pricing, see Adam et al. (2016), Nagel and Xu (2021), and De La O
et al. (2024).
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Subjective Expectations Under Learning Objectively, mean growth is identical across

firms: µ = µ̃i = 0. Under subjective beliefs, however, agents do not observe the true long-

run mean µ and µ̃i. Instead, they form beliefs and update these beliefs recursively as new

information arrives. I assume firms employ constant-gain learning, which places greater weight

on recent forecast errors. The updating rules are:

Ft[µ] = Ft−1[µ] + ν (∆et − Ft−1[∆et]) (28)

Ft[µ̃i] = Ft−1[µ̃i] + ν (∆ẽi,t − Ft−1[∆ẽi,t]) (29)

where ν is the constant gain parameter and governs the speed of learning.21 A higher ν implies

greater responsiveness to new data. The term Ft[µ] denotes the firm’s time-t belief about the

aggregate long-run mean, and ∆et ≡ et−et−1 is the realized growth in aggregate earnings, which

the firm observes at time t. Both updating rules use the same learning rate ν for parsimony.

Existing estimates of the learning rate are deliberately small, ensuring slow learning that allows

subjective beliefs to remain persistently distorted even after large forecast errors (Malmendier and

Nagel, 2015; Adam et al., 2016).22 This persistence can generate the sustained belief distortions

needed to explain fluctuations in hiring.

Constant-gain learning assigns exponentially decreasing weights to past observations, causing

memory to fade over time. Beliefs never fully converge to rational expectations, even in stationary

environments. This avoids the unrealistic declining volatility implied by other learning schemes

such as OLS learning, while allowing for beliefs to adapt to potential regime shifts.23 The

mechanism generates overreaction to economic news because agents cannot distinguish temporary

shocks (ut, vi,t) from permanent changes to the long-run mean (µ, µ̃i). They misattribute recent

surprises to persistent shifts in underlying growth rates, over-extrapolating short-run fluctuations

and creating persistent belief distortions that amplify valuation and hiring responses. Given these

beliefs, firms forecast future aggregate earnings growth using:

Ft[∆et+h] = ϕh−1(Ft[µ] + (ϕ− 1)et) (30)

Ft[∆ẽi,t+h] = ϕ̃h−1(Ft[µ̃i] + (ϕ̃− 1)ẽi,t) (31)

21The baseline model assumes agents learn only about cash flows. Appendix Section B.4 shows qualitatively
similar results when agents employ constant-gain learning to update beliefs about both earnings growth rates
gt = gt−1 + ν(Et−1/Et−2 − gt−1) and stock price growth rates mt = mt−1 + ν(Pt−1/Pt−2 −mt−1).

22This constant-gain learning specification is supported by empirical evidence presented in Appendix A.2,
which shows that survey respondents update their long-run earnings expectations only gradually following short-
term earnings surprises. Specifically, the response of 5-year-ahead forecasts to earnings news is small and often
statistically insignificant, consistent with the slow, partial updating implied by constant-gain learning.

23Constant-gain learning can be micro-founded using an overlapping generations model where agents learn from
recent experience across generations, where the average expectation closely approximates a constant-gain learning
rule (Nagel and Xu, 2021).
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This reflects the fact that agents know the process is AR(1) with known persistence ϕ and ϕ̃

but uncertain µ and µ̃i, and project the process forward using current levels of earnings and the

estimated perceived long-run mean. The forecast of firm-level earnings growth is then:

Ft[∆ei,t+h] = Ft[∆et+h] + Ft[∆ẽi,t+h] (32)

These expectations will feed directly into the firm’s market value, which in turn influences their

vacancy posting decisions through the hiring equation (10).

Aggregate Stock Price and Returns Firms use their beliefs about future earnings to form

expectations about asset returns and valuations. I assume that the economy is governed by a

representative household such that the log stochastic discount factor (SDF) is:

mt+1 = −rf −
1

2
γ2σ2

u − γut+1 (33)

where rf is the risk-free rate, γ is the coefficient of relative risk aversion, and ut+1 is the aggregate

earnings shock from the earnings process. The stochastic discount factor determines how firms

value future cash flows. −rf reflects time discounting, where future payoffs are worth less than

current payoffs because investors can always earn the risk-free rate. −1
2
γ2σ2

u is the price of

uncertainty, where uncertainty about the future aggregate shock ut+1 lowers the discounted

value of risky payoffs. −γut+1 is the price of risk, making the SDF high in bad times and low

in good times depending on the aggregate shock ut+1. During bad economic shocks (ut+1 < 0),

the SDF is high because an extra dollar is highly valued. Risk aversion γ amplifies these effects,

making the SDF more sensitive to aggregate shocks.

Let P
(h)
t denote the time t price for an aggregate strip of a one-dollar payoff received h

periods in the future. The strip price reflects the discounted value of a dollar paid at horizon h,

with beliefs about long-run growth embedded in the recursive coefficients. I guess and verify a

log-linear solution:24

P
(h)
t = Ft[Mt+1P

(h−1)
t+1 ] = exp

{
A(h) +B(h)Ft[µ] + ϕhet

}
(34)

This expression implies that strip prices depend on current earnings et, beliefs about the aggregate

long-run mean Ft[µ], and constants A(h), B(h) that evolve recursively. These recursive coefficients

24In constant-gain learning models, fading memory breaks the law of iterated expectations, making the buy-and-
hold and resale valuation methods non-equivalent. While the former values long-run payoffs using only today’s
beliefs, the resale method prices assets iteratively using updated, one-period-ahead expectations. Following Nagel
and Xu (2021), I adopt the resale method because it is time-consistent and better reflects trading among agents
with evolving beliefs. For consistency between firm decisions and asset pricing, I assume both the manager and
the representative investor share the same beliefs and use this valuation approach.
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are computed using the method of undetermined coefficients:

A(h) = A(h−1) − rf +
1

2
C(h)

[
C(h) − 2γ

]
σ2
u (35)

B(h) = B(h−1) + ϕh−1 =
1− ϕh

1− ϕ
(36)

C(h) = νB(h−1) + ϕh−1 (37)

where A(0) = B(0) = C(0) = 0. A(h) captures discounting and risk premia, pushing down long-

horizon strip prices. B(h) measures sensitivity to beliefs about long-run cash flow growth µ,

with its influence rising in the horizon. C(h) reflects the effect of constant-gain learning, where

recent forecast errors are overweighted, distorting valuations relative to rational expectations.

The aggregate strip price implies the realized return on the strip:

R
(h)
t+1 =

P
(h−1)
t+1

P
(h)
t

= exp{[A(h−1) − A(h)] + C(h)(µ− Ft[µ] + ut+1)} (38)

The expected return on a strip of horizon h is then:

Ft[R
(h)
t+1] = exp

{
rf + C(h)γσ2

u

}
(39)

which shows that expected returns decline with horizon h when agents believe earnings growth

is persistent (ϕ < 1) and learning slows perceived mean reversion. Since C(h) = νB(h−1) + ϕh−1,

a smaller learning rate ν makes C(h) decline more quickly, muting the influence of long-horizon

strip returns. The aggregate stock price is the sum of strip prices across all future periods:

Pt =
∞∑
h=1

P
(h)
t (40)

The aggregate stock return realized between t and t+1 is defined as the value-weighted average

return across all strips maturing from h = 1 onwards:

Rt+1 =

∑∞
h=1 P

(h−1)
t+1∑∞

h=1 P
(h)
t

=
∞∑
h=1

wt,hR
(h)
t+1, wt,h =

P
(h)
t∑∞

k=1 P
(k)
t

(41)

where R
(h)
t+1 = P

(h−1)
t+1 /P

(h)
t is the return on the h-period strip, and wt,h is the share of total

market value accounted for by strip h. I assume that, under subjective beliefs, the expected strip

weights are approximately constant: wt+j−1,h ≈ wt,h. This assumption reflects the idea that

subjective beliefs simplify their expectations by projecting a constant term structure of asset
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values forward.25 Then the expected aggregate return at time t for horizon j ≥ 1 is:

Ft[Rt+j] ≈
∞∑
h=1

wt,hFt[Ft+1[. . .Ft+j−1[R
(h)
t+j]]] =

∞∑
h=1

wt,h exp
{
rf + C(h)γσ2

u

}
(42)

To obtain the expected log return, I apply the log approximation: Ft[rt+j] ≈ log(Ft[Rt+j]).

Firm Stock Price and Returns Each firm’s total value is the sum of expected discounted

future cash flows. Let Pi,t be the ex-dividend value of firm i, which is the sum of strip prices

across all future periods:

Pi,t =
∞∑
h=1

P
(h)
i,t , P

(h)
i,t = Ft[Mt+1P

(h−1)
i,t+1 ] = Ft[Mt+1 . . .Ft+h−1[Mt+hEt+hẼi,t+h]] (43)

Assuming independence between aggregate discounting and idiosyncratic earnings:

P
(h)
i,t = P

(h)
t · Ft[. . .Ft+h−1[Ẽi,t+h]] (44)

Firm-level strip price implies realized next-period return on the strip:

R
(h)
i,t+1 =

P
(h−1)
i,t+1

P
(h)
i,t

=
P

(h−1)
t+1 Ft+1[. . .Ft+h−1[Ẽi,t+h]]

P
(h)
t Ft[. . .Ft+h−1[Ẽi,t+h]]

(45)

= R
(h)
t+1 exp

{
C̃(h)(µ̃i − Ft[µ̃i] + vi,t+1)−

1

2
ϕ̃2(h−1)σ2

v

}
(46)

where C̃(h) ≡ ϕ̃h−1 + ν 1−ϕ̃h−1

1−ϕ̃
. Then the expected return on the firm-level strip is:

Ft[R
(h)
i,t+1] = Ft[R

(h)
t+1] exp

{
1

2
((C̃(h))2 − ϕ̃2(h−1))σ2

v

}
(47)

= exp

{
rf + C(h)γσ2

u +
1

2
((C̃(h))2 − ϕ̃2(h−1))σ2

v

}
(48)

The firm-level stock return realized between t and t+ 1 is defined as the value-weighted average

return across all strips maturing from h = 1 onwards:

Ri,t+1 =

∑∞
h=1 P

(h−1)
i,t+1∑∞

h=1 P
(h)
i,t

=
∞∑
h=1

wi,t,hR
(h)
i,t+1, wi,t,h =

P
(h)
i,t∑∞

k=1 P
(k)
i,t

(49)

25It can be shown that the assumption holds approximately in the small-gain limit. As ν → 0, strip prices

move proportionally to changes in cash flows: P
(h)
t+1/P

(h)
t ≈ exp{ϕh(et+1 − et)}. Since the strip price of all

maturities shift by the same factor raised to different powers ϕh, relative strip weights wt,h = P
(h)
t /

∑
k P

(k)
t

remain approximately constant over time.
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where R
(h)
i,t+1 = P

(h−1)
i,t+1 /P

(h)
i,t is the return on the h-period strip, and wi,t,h is the share of total

market value accounted for by strip h. Assuming that expected strip weights are approximately

constant under subjective beliefs wi,t+j−1,h ≈ wi,t,h, the expected firm-level return is:

Ft[Ri,t+j] ≈
∞∑
h=1

wi,t,hFt[Ft+1[. . .Ft+j−1[R
(h)
i,t+j]]] (50)

=
∞∑
h=1

wi,t,h exp

{
rf + C(h)γσ2

u +
1

2
((C̃(h))2 − ϕ̃2(h−1))σ2

v

}
(51)

Subjective Firm Valuation The firm’s equilibrium stock price under subjective beliefs is the

sum of its strip prices:

Pi,t =
∞∑
h=1

P
(h)
i,t =

∞∑
h=1

exp
{
A

(h)
i +B(h)Ft[µ] + B̃(h)Ft[µ̃i] + ϕhet + ϕ̃hẽi,t

}
(52)

where the coefficients are defined as A
(h)
i = A(h) + 1

2
σ2
v
1−ϕ̃2h

1−ϕ̃2
and B̃(h) = 1−ϕ̃h

1−ϕ̃
. The equation

shows that the firm’s value rises with expected cash flow intercepts Ft[µ] and Ft[µ̃i]. The belief

distortions captured in these expectation terms will affect the firm’s hiring decisions through its

valuation.

Hiring Condition I close the model by connecting asset valuations to firm hiring behavior.

The connection to labor markets operates through the hiring condition. As shown in Section 4,

firms post vacancies until the marginal cost of hiring equals its marginal value:

κ

qt︸︷︷︸
Cost of Hiring

=
Pi,t

Li,t+1︸ ︷︷ ︸
Value of Hiring

(53)

where κ is the cost per vacancy posting, qt is the vacancy filling rate, and Li,t+1 denotes em-

ployment. Overly pessimistic beliefs about expected cash flows (low Ft[µi]) lower the firm value

Pi,t, which reduces the value of hiring and leads to fewer job postings. The resulting decrease in

vacancy creation drives up the vacancy filling rate qt and unemployment Ut.

Given values for κ, δ, B, η, Pi,t and initial values for employment Li,0, one can construct the

sequence of vacancies Vi,t, employment Li,t+1, labor market tightness θt, vacancy filling rates qt,

and unemployment rate Ut by solving for the employment accumulation (5), firm valuation (52),

and optimal hiring (53) equations under a Cobb-Douglas matching function (4).

1. Initialize labor market tightness: θ
(0)
t = 1
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2. At iteration s, use labor market tightness θ
(s)
t to construct vacancy filling rate by using the

Cobb-Douglas matching function in equation (4):

q
(s)
t = B(θ

(s)
t )−η (54)

3. Update each firm’s employment policy using the hiring equation (53):

L
(s)
i,t+1 =

Pi,tq
(s)
t

κ
(55)

where Pi,t is determined by the firm valuation equation (52) under the constant-gain learn-

ing rules in equations (28) and (29).

4. Update each firm’s vacancy posting using the employment accumulation equation (5):

V
(s)
i,t =

1

q
(s)
t

(L
(s)
i,t+1 − (1− δ)Li,t) (56)

5. Aggregate firm-level variables over the set of firms I:

V
(s)
t =

∑
i∈I

V
(s)
i,t , L

(s)
t+1 =

∑
i∈I

L
(s)
i,t+1, U

(s)
t = 1−

∑
i∈I

Li,t (57)

6. Update labor market tightness: θ
(s+1)
t =

V
(s)
t

U
(s)
t

. Check convergence: |θ(s+1)
t − θ

(s)
t | < ε for

some small tolerance ε > 0. If not, return to step 2 with the updated values.

Model-Implied Decompositions I use simulated data implied by the model to decompose

the vacancy filling rate at the aggregate level (Section 5) and hiring rates at the firm level

(Section 6). The time-series decomposition of the aggregate vacancy filling rate qt is given by:

log qt =
h∑

j=1

ρj−1Ft[rt+j]︸ ︷︷ ︸
Discount Rate

−

[
elt +

h∑
j=1

ρj−1Ft[∆et+j]

]
︸ ︷︷ ︸

Cash Flow

− ρhFt [pet+h]︸ ︷︷ ︸
Future Price-Earnings

(58)

where xt =
∑

i∈I xi,t aggregates firm-level variable xi,t. eli,t ≡ ei,t − li,t+1 = logEi,t − logLi,t+1

denotes log earnings per worker. To analyze heterogeneity across firms, I estimate a cross-

sectional decomposition of hiring rates using simulated firm-level data:

h̃li,t = −
h∑

j=1

ρj−1Ft[r̃i,t+j]︸ ︷︷ ︸
Discount Rate

+

[
ẽli,t +

h∑
j=1

ρj−1Ft[∆ẽi,t+j]

]
︸ ︷︷ ︸

Cash Flow

+ ρhFt

[
p̃ei,t+h

]
︸ ︷︷ ︸

Future Price-Earnings

(59)
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where x̃i,t = xi,t − 1
I

∑
i xi,t denotes a cross-sectional deviation from the mean at time t.26

Subjective expectations will over-weight the role of the cash flow channel relative to the

discount rate channel, in contrast to the pattern observed under rational expectations. Under

rational expectations, agents know the true long-run mean, making these belief distortions zero.

Any distortions in beliefs about the intercept terms µ−Ft[µ] (aggregate) and µ̃i−Ft[µ̃i] (idiosyn-

cratic) could serve as a common driving force behind the cash flow component and the vacancy

filling rate qt. The distortion then drives fluctuations in expected cash flow growth Ft[∆et+j]

and Ft[∆ẽi,t+j] through equations (30) and (31), respectively, with persistent effects on hiring

decisions over time through the firm’s hiring condition in equation (53).

The expected return at both the aggregate (42) and firm level (51) is driven by the term

C(h)γσ2
u. This component is constant over time for fixed parameters and horizon h, so the

implied risk premium is effectively time-invariant. Hence the subjective discount rate exhibits

only minor variation, arising only through changes in portfolio weights wt,h if those are not

treated as constant. This supports the conclusion that belief distortions primarily affect the cash

flow channel rather than the discount-rate channel.

Simulation Details To evaluate the model’s quantitative performance, I simulate a panel of

300 firms over 500 periods, where the first 150 periods are discarded as a burn-in to eliminate the

influence of initial conditions. Each firm updates its beliefs using constant-gain learning based

on the updating rules in equations (28) and (29). All expectations, returns, and decompositions

are computed at an annual frequency using the model equations derived above. At each horizon

h, I compute the model-implied time-series decomposition of the aggregate vacancy filling rate

based on equation (18) and the cross-sectional decomposition of the firm-level hiring rates (59).

I then compare these model-implied decompositions to those estimated from the observed data

from Figures 4 and 6.

Model Estimation Table 2 reports the parameter values used in the quantitative model along

with the empirical moments they are calibrated to or sourced from. The model is calibrated at

an annual frequency. The persistence ϕ and volatility σu of aggregate earnings growth is set

to match the autocorrelation and standard deviation of aggregate S&P 500 earnings growth for

26Note that the decomposition consists of expectations of the future values of the three components, not the
contemporaneous values. The free-entry condition of the search model pins down the current value of pei,t+ eli,t,
but it does not necessarily eliminate cross-sectional variation in forward-looking expectations. These subjective
beliefs can differ across firms even when the current sum is identical.
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the period between 1983 to 2022 (De La O et al., 2024).27 The persistence ϕ̃ and volatility

σv of idiosyncratic earnings growth is set to match the autocorrelation and standard deviation

of earnings growth across 10 value-weighted idiosyncratic shock sorted portfolios over the same

period, after cross-sectionally demeaning the variable. The risk-free rate rf and risk aversion

γ match the average level and volatility of aggregate S&P 500 stock returns (De La O et al.,

2024). The time discount rate ρ = exp(pe)/(1 + exp(pe)) = 0.98 is chosen to be consistent with

a steady-state price-earnings ratio from the Campbell and Shiller (1988) present value identity,

where pe is the long-run average of the log price-earnings ratio.

Table 2: Model Parameters

Parameter Value Moments

ν 0.018 Constant-gain learning (Malmendier and Nagel (2015))
ϕ 0.856 Autocorrelation aggregate earnings growth
σu 0.268 S.D. aggregate earnings growth

ϕ̃ 0.698 Autocorrelation firm-level earnings growth
σv 0.194 S.D. firm-level earnings growth
rf 0.046 Average risk-free rate
γ 1.586 Average and S.D. aggregate return
ρ 0.980 Average price-earnings ratio
B 0.562 Matching function efficiency (Kehoe et al. (2023))
η 0.500 Matching function elasticity (Kehoe et al. (2023))
δ 0.286 Separation rate (Kehoe et al. (2023))
κ 0.314 Per worker hiring cost (Elsby and Michaels (2013))

Notes: Table reports the parameter values used in the quantitative model along with the empirical moments they are calibrated to
or sourced from. The model is calibrated at an annual frequency.

The speed at which agents discount past observations of realized cash flow growth depends

on the constant gain parameter ν in the learning rule. This parameter shapes the persistence

and volatility of the price-earnings ratio and the extent of return predictability. I take the value

directly from survey-based estimates in Malmendier and Nagel (2015), setting it to ν = 0.018 at

the quarterly frequency.28 This implies that in forming expectations, agents assign a weight of

0.018 to the most recent growth surprise and 1 − ν = 0.982 to their previous estimate, making

the perceived growth rate evolve slowly over time.29

27See Section A.6 for a mapping from the AR(1) level parameters to the implied moments of earnings growth.
28Malmendier and Nagel (2015) estimate ν = 0.018 at the quarterly frequency, while the model is simulated

annually. Using this value unchanged does not materially alter the implied speed of learning: for small gains,
the difference between quarterly and annual updating is second order (De La O et al., 2024). Thus, applying the
quarterly estimate at the annual frequency still yields an effective half-life of roughly a decade, consistent with
the survey evidence.

29Appendix A.6 describes an alternative estimation using the Method of Simulated Moments (MSM), where
ν is disciplined jointly with other structural parameters by matching model-implied and empirical moments.
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Labor market parameters are mainly from Kehoe et al. (2023). Following Shimer (2005), I

normalize the value of labor market tightness θ to one in the deterministic steady state, which

implies an efficiency of the matching function B = 0.562 by noting from the matching function

that q = Bθ−η. I set the elasticity of the matching function to η = 0.5 following Ljungqvist and

Sargent (2017). I use an annual job separation rate of δ = 0.286, which is the annualized value

of the Abowd-Zellner corrected estimate by Krusell et al. (2017) based on data from the Current

Population Survey (CPS). Following Elsby and Michaels (2013), per-worker vacancy posting

cost 0.314 is targeted to match a per-worker hiring cost κ/q equal to 14 percent of the quarterly

worker compensation. In the context of the annual calibration of this model, this implies a value

approximately equal κ = 4×0.14× q = 0.314, where 4×0.14 is the annualized percent of worker

compensation, while q = 0.562 is the long-run average of the vacancy filling rate in the historical

sample from 1983 to 2023.

Model vs. Data: Variance Decompositions The model successfully replicates the empir-

ical variance decompositions from the data. Figure 7 shows that the model can reproduce the

finding that subjective beliefs over-estimate the role of expected cash flows and underestimate

the role of discount rates in explaining labor market fluctuations.

Panel (a) presents the time-series decomposition of the vacancy filling rate, comparing con-

tributions under subjective and rational expectations. The model captures the empirical pattern

where subjective expectations (dark bars) assign a larger role to cash flows compared to rational

expectations (light bars). The model-implied values (circles and triangles) align closely with the

empirical estimates, demonstrating the model’s ability to match the data. The large estimated

discount rate component under rational beliefs is consistent with existing search models formu-

lated under rational expectations, which have emphasized time-varying discount rates to match

the volatility of unemployment fluctuations.

Panel (b) shows the cross-sectional decomposition of hiring rates across firms. Again, the

model captures the empirical pattern that subjective beliefs over-estimate the contribution of

earnings expectations and under-estimate the variation in firm-level discount rates. This cross-

sectional fit is particularly important as it shows that the model can explain not just aggregate

patterns but also the heterogeneity in hiring behavior across different firms.

The MSM results yield learning rate estimates that are close in magnitude to the calibrated survey-based value
(ν̂MSM = 0.13), providing independent support for the baseline choice of ν.
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Figure 7: Model vs. Data: Variance Decompositions

(a) Time-Series Decomposition of the Vacancy Filling Rate
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(b) Cross-Sectional Decomposition of the Hiring Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of
the aggregate vacancy filling rate (panel (a)) and cross-sectional decomposition of the hiring rate (panel (b)). Light bars show
contributions under rational expectations; dark bars show contributions under subjective expectations. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4. Circle and triangle dots show the values of
rational and subjective expectations implied by the model, respectively.

Model vs. Data: Moments Table 3 demonstrates that the constant-gain learning model

successfully matches both asset market and labor market moments. The table compares moments

generated by the learning model against those generated from a rational model under no learning,

where all agents have full information rational expectations. To generate simulations under the

rational model, I employ the same sequence of shocks as in the baseline learning specification

but set the learning rate parameter to zero. This eliminates belief updating and, conditional on

the true initial values, reduces the model exactly to its rational expectations counterpart.

Panel (a) reports time-series and cross-sectional moments for asset prices. The learning model

broadly matches the mean and volatility of price-earnings ratios, the persistence in valuations,

and the volatility of returns and expected returns. In contrast, the rational expectations model

severely understates price-earnings volatility and generates virtually no variation in expected
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Table 3: Model vs. Data: Asset Market and Labor Market Moments

Moment Data Learning Model Rational Model

(a) Asset Market

SD(pet)× 100 47.0 43.5 13.0
AC(pet) 0.75 0.84 0.92
SD(rt)× 100 16.0 12.3 3.0
SD(Ft[rt+1])× 100 1.1 1.4 0.5
SD(Ft[∆et+1])× 100 26.8 24.3 7.2
SDi(pei,t)× 100 22.6 21.1 4.2
SDi(ri,t)× 100 5.7 3.1 1.2
SDi(Ft[ri,t+1])× 100 2.6 0.2 0.2
SDi(Ft[∆ei,t+1])× 100 14.0 16.6 3.9

(b) Labor Market

SD(ut)× 100 2.10 1.28 0.34
AC(ut) 0.91 0.95 0.99
SD(qt)× 100 8.70 6.16 0.91
AC(qt) 0.94 0.83 0.99
Corr(ut, qt) -0.82 -0.86 -0.99
SDi(hli,t)× 100 15.70 10.39 4.65

Notes: This table compares empirical moments with model-generated moments with and without constant-gain learning. SD(·)
denotes the time-series standard deviation of aggregate variables. SDi(·) denotes the cross-sectional standard deviation across firms
at each point in time, averaged over time. AC(·) denotes the first-order autocorrelation coefficient. Corr(·) denotes the correlation
between two time series. pet is the log price-earnings ratio, rt is the log stock return, ∆et is log earnings growth, qt is the job-filling
rate, ut is the unemployment rate, and hli,t is the firm-level hiring rate. Ft[·] denotes subjective expectations formed at time t.
Data column reports empirical moments estimated from historical data. Learning model reports moments from simulations of the
constant-gain learning model. Rational model reports moments from the rational expectations benchmark where agents have perfect
knowledge of the earnings process.

returns, confirming that belief distortions are essential for matching observed financial market

behavior (Adam et al., 2016). For the cross-sectional moments, the learning model captures

the dispersion in price-earnings ratios, expected earnings growth, and returns. These moments

confirm that the firm-specific beliefs Ft[µ̃i] can generate realistic heterogeneity in firm valuations

and expectations. The rational expectations model, by construction, produces substantially

smaller cross-sectional variation in expectations.

Panel (b) reports moments related to the labor market. The learning model broadly matches

key labor market statistics including the volatility and persistence of the vacancy filling rate qt and

unemployment rate ut. The constant-gain learning model only slightly undershoots the volatility

of the unemployment rate, which is a substantial improvement over the rational expectations

model where unemployment volatility is nearly an order of magnitude too small. The learning

model’s ability to match these moments demonstrates that the constant-gain learning mechanism

provides a coherent explanation for both asset market and labor market fluctuations.
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Figure 8: Impulse responses to a one standard deviation innovation in expected cash flow growth

Notes: Red solid line: model-based IRFs from simulated series under constant-gain learning. Blue solid line: model-based IRFs from
simulated series under rational expectations. Black dashed line: data-based IRFs. Shaded area: 90% bootstrap confidence interval
for the data VAR. Sample: 1984Q1-2023Q4.

Response to 1 Std. Dev. Shock to Cash Flow Growth Expectation To examine

the dynamic implications of the model and compare them with the data, Figure 8 estimates a

four-variable VAR where the observation vector includes expected cash flow growth, expected

returns, expected price-earnings, and the job-filling rate. The VAR is estimated using both the

actual survey data and the simulated series generated from the model. For identification, I apply

a recursive (Cholesky) scheme in which expected cash flow growth is ordered first, so that the

estimated impulse responses trace out the effect of a one standard deviation shock to cash flow

growth expectations.

The impulse response functions in Figure 8 reveal several notable patterns. Expectations

of cash flow growth jump immediately on impact and then gradually decay back toward zero.

Subjective expected returns exhibit a flat response consistent with a near constant subjective

discount rate. The subjective price-earnings ratio rises initially before decaying back to zero.

Finally, the job-filling rate falls immediately after the shock and then slowly converges back to

its baseline level.
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8 Robustness Checks and Extensions

This section presents additional results that reinforce the main finding. Across multiple ro-

bustness checks, the evidence consistently shows that firms overweight expected cash flows and

underweight discount rates under subjective expectations.

Profits per Worker Response to Idiosyncratic Shocks Figure 9 examines how profits per

worker respond to idiosyncratic shocks to distinguish between subjective belief formation and

existing rational risk-based explanations, as these two mechanisms generate qualitatively different

predictions for firm-level profitability dynamics. For the response under subjective beliefs, I use

survey forecast revisions to estimate local projections of the following form:

yi,t+h = αi + τt + βh(Ft[∆ei,t+1]− Ft−1[∆ei,t+1]) + γ ′
hXi,t + εi,t+h (60)

The dependent variable yi,t ≡ logEi,t − logLi,t measures profits per worker for firm i at time

t. The regressor captures forecast revisions Ft[∆ei,t+1]− Ft−1[∆ei,t+1] representing the change in

expected idiosyncratic cash flow growth between periods t − 1 and t. As shown in the Coibion

and Gorodnichenko (2015) regression of Table 1, these forecast revisions capture belief over- or

under-reaction to idiosyncratic shocks. The specification includes firm fixed effects αi and time

fixed effects τt to control for systematic differences across firms and common time trends. The

control vector Xi,t includes lags of profits per worker and the forecast revision variable. For the

response under rational beliefs, I use machine forecast revisions in discount rates to estimate

local projections of the following form:

yi,t+h = αi + τt + βh(Et[ri,t+1]− Et−1[ri,t+1]) + γ ′
hXi,t + εi,t+h (61)

The coefficient βh provides a direct test of expectation formation mechanisms. Under rational ex-

pectations with hiring frictions, positive idiosyncratic shocks should lead to temporary increases

in profits per worker as firms face time costs in adjusting employment. This predicts βh ≥ 0.

Conversely, under subjective expectations where firms systematically overreact to good idiosyn-

cratic news, we expect overhiring relative to the optimal level. This behavior would generate a

decline in profits per worker following positive forecast revisions, implying βh < 0.

Figure 9 presents the impulse response functions comparing our data to model predictions

under both rational and subjective expectations. The blue dashed line shows the data impulse

response function under rational expectations (proxied by machine forecasts), while the red solid

line displays results under subjective expectations (proxied by survey forecasts). The results

42



show that, consistent with the predictions, profits per worker do not decline under rational ex-

pectations, while under subjective expectations they drop significantly. This pattern is consistent

with firms over-hiring in response to overly optimistic cash flow beliefs, generating predictable

declines in profits per worker.

Figure 9: Profits per Worker Response to Forecast Revision

Notes: Blue dash (red solid) line: data IRF under rational (subjective) expectations proxied by machine
(survey) forecasts. Shaded area: 90% bootstrap confidence interval for data IRF. Data sample: 1984Q1–2023Q4.

Predictability of Unemployment and Hiring Section A.5 extends the baseline analysis to

the unemployment rate and to firm-level employment growth. Starting from the unemployment

accumulation equations, I derive predictive regressions linking future unemployment directly to

subjective and rational expectations of discount rates and cash flows. I derive similar predictive

firm-level regressions using the employment accumulation equation. Distortions in subjective

cash flow expectations emerge as the strongest single predictor both in the time series and

the cross section, improving both in-sample fit and out-of-sample performance. In the cross-

section, employment growth across idiosyncratic shock sorted portfolios also loads heavily on

cash flow distortions: firms with overly optimistic beliefs hire more aggressively, while those

with pessimistic beliefs retrench. These results are not consistent with subjective beliefs being

observationally equivalent to rational expectations, and instead point to heterogeneous, distorted
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forecasts that crowd out rational discount rate variation as the main driver of hiring fluctuations

Decomposition of Price-Earnings Ratios The decomposition of price-earnings ratios de-

veloped by De La O and Myers (2021) and De La O et al. (2024) provides a natural benchmark

for thinking about distorted beliefs in financial markets. Their analysis applies the Campbell

and Shiller (1988) identity to the aggregate price-earnings ratio and shows that subjective ex-

pectations systematically understate the role of discount rates while overstating the importance

of cash flows. In Section A.4, I replicate this exercise using my data and learning model. The re-

sulting decompositions parallel findings for the vacancy filling rate: under rational expectations,

most variation in the price-earnings ratio is attributed to discount rate news, while under sub-

jective expectations the weight shifts strongly toward cash flows. The similarity in magnitudes

across the two decompositions underscores that they are consistent views of the same underlying

belief distortions. The main difference lies in interpretation. The price-earnings decomposition

highlights how distorted beliefs manifest in asset valuations, whereas the vacancy filling rate and

hiring rate decompositions show how those same distorted beliefs translate into hiring decisions

and unemployment fluctuations.

Subjective vs. Risk-Neutral Expectations A natural question is whether subjective be-

liefs implied by survey expectations reflect a risk-neutral measure rather than genuine belief

distortions (Cochrane, 2017). While one might argue that these survey forecasts reflect a risk

premium, this interpretation is inconsistent with several lines of evidence.

First, decompositions using risk-neutral expectations implied by futures prices show that sub-

jective expectations overweight long-horizon cash flows even relative to risk-neutral counterparts

(Figure A.9). Under rational expectations, any indirect effect of cash-flow news on hiring that

operates through discount-rate news is allocated to the discount-rate term, while the direct effect

appears in the cash-flow term. Under subjective beliefs, the cash-flow term absorbs much of the

variation that, under rational beliefs, would have been attributed to this indirect channel. Im-

portantly, subjective beliefs are not simply a reallocation of the same indirect effect. Comparing

survey-based cash-flow expectations to a risk-neutral benchmark from futures prices shows that

subjective cash-flow expectations exert a much stronger influence on hiring than implied by the

risk-neutral measure. Risk-neutral expectations from market prices already embed any indirect

effect of cash flows on discount rates in asset valuations. The persistent over-weighting of cash

flows in survey data therefore points to genuine belief distortions, not just another measure of

the same underlying relationships.
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Second, survey forecasts of stock returns consistently exceed risk-free rates, and the expected

excess returns they imply vary predictably over time (Adam et al., 2021). Moreover, rather than

being systematically pessimistic, these forecasts are often predictably optimistic, contradicting

the idea that they reflect ambiguity aversion or robustness-driven pessimism. These findings

are inconsistent with rational or risk-neutral pricing and suggest that subjective beliefs reflect

genuine behavioral distortions rather than a rational risk-neutral measure.

Financial Constraints To assess whether financial frictions confound the decomposition of

hiring variation, Figure A.12 controls for five firm-level financial constraint proxies, firm size,

payout ratio, the SA index, expected free cash flow, and the Whited-Wu index, aggregated to

deciles of idiosyncratic shock sorted portfolios. Controlling for these measures modestly reduces

the contribution of expected earnings to hiring under subjective expectations, but leaves most of

the decomposition intact. In contrast, under rational expectations, the contribution of discount

rates drops substantially once financial constraints are accounted for, consistent with constraint-

induced variation in internal discount rates. These results suggest that while financial frictions

matter, distortions in subjective beliefs continue to play an independent role in shaping hiring.

Capital Investment Appendix Section A.8 extends the baseline framework to include firm

investment decisions, distinguishing between tangible and intangible capital. Firms choose in-

vestment and hiring jointly to maximize value, facing convex adjustment costs and forming

expectations over future productivity, returns, and earnings. A decomposition of investment

rates in Figures A.16 (time-series) and A.17 (cross-section) reveals that distortions in subjec-

tive beliefs play a central role in driving capital allocation, mirroring results for hiring. Using

IBES and Compustat data, the decomposition shows that subjective expectations substantially

overstate the role of expected earnings and understate the importance of discount rates.

Regional Model using Shift-Share Instrument Appendix Section A.7 strengthens the

causal interpretation of belief distortions by using a Bartik shift-share instrument to isolate

exogenous variation in subjective expectations. Specifically, I interact national industry-level be-

liefs about future cash flows (and discount rates) with historical state-industry level employment

shares. This instrument affects local vacancy filling rates only through its impact on perceived

expectations. State-level regressions reveal that subjective forecasts of earnings growth respond

strongly to these local shocks, even after controlling for state and time fixed effects, while dis-

count rates respond less (Table A.10). The results confirm that belief distortions, especially
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overreaction to perceived cash flow opportunities, are not merely correlated with labor demand,

but can causally influence hiring decisions across regions.

Additional Results Figure A.1 and Table A.1 report summary statistics for each variable

used in the empirical analysis. Table A.2 shows that survey respondents only partially incorpo-

rate short-term earnings surprises into their long-run expectations, demonstrating gradual belief

adjustment consistent with constant-gain learning rather than rational expectations.

The baseline variance decomposition of the vacancy filling rate (Table A.3) is robust to al-

ternative specifications: Allowing for an explicit residual term that collects errors from model

misspecification and log-linear approximations (Table A.4 and Figure A.2), first-differences (Fig-

ure A.3), using Vector Autoregressions (Figure A.4), including all publicly listed firms instead

of restricting to the S&P 500 (Figure A.5), extended historical sample from 1983Q4 to 2023Q4

(Figure A.6), replacing machine learning forecasts with their ex-post realized values (Figure A.7),

alternative survey sources (Tables A.6 and A.7), time-varying estimates over rolling subsamples

(Figure A.13), decreasing returns to scale in the firm’s production function (Figure A.18), and

on-the-job search (Figure A.19).

Figure A.10 shows that subjective beliefs strongly overstate cash flow effects for low book-

to-market (growth) firms and small firms. Figure A.11 shows that the main results of the cross-

sectional decomposition also holds when firms are sorted by Fama-French 49 industry portfolios.

Figure A.20 and Table A.11 show that survey-based wage expectations are far less cyclical than

realized wages, leading firms to perceive the user cost of labor as relatively rigid over the business

cycle. As a result, firms may perceive the user cost of labor to remain excessively high during a

recession and discourage job creation.

9 Conclusion

This paper examines how belief distortions can explain the volatility of unemployment fluctu-

ations by comparing survey-based subjective expectations with machine learning forecasts that

proxy for rational expectations. I first establish that survey forecasts overreact to news about

cash flows, with upward revisions in survey forecasts predicting subsequent negative forecast er-

rors. Building on this evidence of distorted beliefs, the paper reinterprets hiring behavior through

the lens of a Diamond-Mortensen-Pissarides search-and-matching model, allowing firms to form

beliefs that deviate from full-information rational expectations.

Using a decomposition of the vacancy filling rate grounded in the search model, I uncover

a stark contrast between how subjective and rational beliefs drive unemployment fluctuations.
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Under subjective expectations, firms’ hiring decisions are driven almost entirely by predictable

errors in expected future cash flows. Subjective cash-flow expectations account for up to 96.7% of

variation in the aggregate vacancy filling rate and 72.9% of the cross-sectional dispersion in hiring

at the five-year horizon. Subjective discount rates play only a limited role. This pattern reverses

completely under rational expectations, where discount rates dominate both time-series and

cross-sectional variation, explaining up to 69.1% and 31.1% of hiring fluctuations, respectively.

To interpret these findings, I develop a model in which firms engage in constant-gain learning

about the long-run growth of their cash flows. Firms slowly update their beliefs in response to

forecast errors and base hiring decisions on these evolving expectations. The model reproduces

the empirical patterns observed in the data: subjective expectations overestimate the importance

of cash flow news in explaining hiring behavior, both in the aggregate and across firms. The

learning model can generate realistic fluctuations in aggregate unemployment, improving on

standard rational models that underpredict unemployment volatility by an order of magnitude.

These results suggest that labor market fluctuations are shaped by distortions in belief for-

mation. Accounting for these distortions can help reconcile the sharp and persistent spikes in

unemployment during downturns that standard models struggle to explain. More broadly, the

findings highlight a behavioral channel through which expectations formed under limited infor-

mation and learning can amplify unemployment volatility. Incorporating subjective beliefs into

macroeconomic models can thus offer a more realistic account of labor market dynamics.
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the Business Cycle,” American Economic Review, November 2017, 107 (11), 3447–76.

Kudlyak, Marianna, “The cyclicality of the user cost of labor,” Journal of Monetary Economics, 2014, 68,
53–67.

Kuehn, Lars-Alexander, Mikhail Simutin, and Jessie Jiaxu Wang, “A Labor Capital Asset Pricing
Model,” The Journal of Finance, 2017, 72 (5), 2131–2178.

Kuhn, Moritz, Iourii Manovskii, and Xincheng Qiu, “The Geography of Job Creation and Job Destruc-
tion,” Working Paper 29399, National Bureau of Economic Research October 2021.

51

https://ssrn.com/abstract=4892475


Lettau, Martin and Sydney Ludvigson, “Time-varying risk premia and the cost of capital: An alternative
implication of the Q theory of investment,” Journal of Monetary Economics, 2002, 49 (1), 31–66.

Lewellen, Jonathan and Katharina Lewellen, “Investment and Cash Flow: New Evidence,” The Journal of
Financial and Quantitative Analysis, 2016, 51 (4), 1135–1164.

Lintner, John, “Distribution of Incomes of Corporations Among Dividends, Retained Earnings, and Taxes,”
The American Economic Review, 1956, 46 (2), 97–113.

Liu, Yukun, “Labor-based asset pricing,” SSRN, 2021.

Ljungqvist, Lars and Thomas J. Sargent, “The Fundamental Surplus,” American Economic Review, Septem-
ber 2017, 107 (9), 2630–65.

Ludvigson, Sydney C. and Serena Ng, “The empirical risk-return relation: A factor analysis approach,”
Journal of Financial Economics, January 2007, 83 (1), 171–222.

Ma, Yueran, Tiziano Ropele, David Sraer, and David Thesmar, “A Quantitative Analysis of Distortions
in Managerial Forecasts,” Working Paper 26830, National Bureau of Economic Research March 2020.

Malmendier, Ulrike and Stefan Nagel, “Learning from Inflation Experiences,” The Quarterly Journal of
Economics, 10 2015, 131 (1), 53–87.

Mankiw, N. Gregory and Ricardo Reis, “Sticky Information versus Sticky Prices: A Proposal to Replace
the New Keynesian Phillips Curve,” The Quarterly Journal of Economics, 11 2002, 117 (4), 1295–1328.

Manning, Alan and Barbara Petrongolo, “How Local Are Labor Markets? Evidence from a Spatial Job
Search Model,” American Economic Review, October 2017, 107 (10), 2877–2907.

Marcet, Albert and Thomas J Sargent, “Convergence of least squares learning mechanisms in self-referential
linear stochastic models,” Journal of Economic Theory, 1989, 48 (2), 337–368.

Meeuwis, Maarten, Dimitris Papanikolaou, Jonathan L Rothbaum, and Lawrence D.W. Schmidt,
“Time-Varying Risk Premia, Labor Market Dynamics, and Income Risk,” Working Paper 31968, National
Bureau of Economic Research December 2023.

Menzio, Guido, “Stubborn Beliefs in Search Equilibrium,” NBER Macroeconomics Annual, 2023, 37, 239–297.

Merz, Monika and Eran Yashiv, “Labor and the Market Value of the Firm,” American Economic Review,
September 2007, 97 (4), 1419–1431.

Mitra, Indrajit and Yu Xu, “Time-Varying Risk Premium and Unemployment Risk across Age Groups,” The
Review of Financial Studies, 10 2019, 33 (8), 3624–3673.

Mortensen, Dale T., “The Matching Process as a Noncooperative Bargaining Game,” in “The Economics
of Information and Uncertainty” NBER Chapters, National Bureau of Economic Research, Inc, May 1982,
pp. 233–258.

Mueller, Andreas I., Johannes Spinnewijn, and Giorgio Topa, “Job Seekers’ Perceptions and Employment
Prospects: Heterogeneity, Duration Dependence, and Bias,” American Economic Review, January 2021, 111
(1), 324–63.

Nagel, Stefan and Zhengyang Xu, “Asset Pricing with Fading Memory,” The Review of Financial Studies,
08 2021, 35 (5), 2190–2245.

and , “Dynamics of Subjective Risk Premia,” Working Paper 29803, National Bureau of Economic Research
2 2022.

O, Ricardo De La and Sean Myers, “Subjective Cash Flow and Discount Rate Expectations,” The Journal
of Finance, 2021, 76 (3), 1339–1387.

52



, Xiao Han, and Sean Myers, “The Cross-section of Subjective Expectations: Understanding Prices and
Anomalies,” SSRN, 2024.

Petrosky-Nadeau, Nicolas, Lu Zhang, and Lars-Alexander Kuehn, “Endogenous Disasters,” American
Economic Review, 8 2018, 108 (8), 2212–45.

Pissarides, Christopher A., “The Unemployment Volatility Puzzle: Is Wage Stickiness the Answer?,” Econo-
metrica, 2009, 77 (5), 1339–1369.

Ropele, Tiziano, Yuriy Gorodnichenko, and Olivier Coibion, “Inflation Expectations and Misallocation
of Resources: Evidence from Italy,” American Economic Review: Insights, June 2024, 6 (2), 246–61.

Shimer, Robert, “The Cyclical Behavior of Equilibrium Unemployment and Vacancies,” American Economic
Review, 3 2005, 95 (1), 25–49.

, “Reassessing the ins and outs of unemployment,” Review of Economic Dynamics, 2012, 15 (2), 127–148.

Solon, Gary, Robert Barsky, and Jonathan A. Parker, “Measuring the Cyclicality of Real Wages: How
Important is Composition Bias,” The Quarterly Journal of Economics, 1994, 109 (1), 1–25.

Timmermann, Allan G., “How Learning in Financial Markets Generates Excess Volatility and Predictability
in Stock Prices,” The Quarterly Journal of Economics, 1993, 108 (4), 1135–1145.

Venkateswaran, Venky, “Heterogeneous information and labor market fluctuations,” Available at SSRN
2687561, 2014.

Whited, Toni M. and Guojun Wu, “Financial Constraints Risk,” The Review of Financial Studies, 01 2006,
19 (2), 531–559.

53



A Appendix: Additional Results

A.1 Stylized Facts
Vacancy filling rate, discount rate, and expected cash flows Figure A.1 compares subjective and machine
expectations for discount rates and cash flows, plotted against the vacancy filling rate. These series represent the specific
theoretical components that drive hiring decisions in the search model.

Figure A.1: Vacancy Filling Rates, Discount Rates, and Expected Cash Flows

Notes: Figure plots h = 5 year ahead survey forecasts Ft[·] and machine learning forecasts Et[·] of discount rates rt,t+h and annual
cash flow growth ∆et,t+h (left axis) against the annual log growth in the vacancy filling rate qt (right axis). x axis denotes the
date on which each forecast has been made and the vacancy filling rate was realized. Subjective expectations Ft are based on survey
forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are based on machine learning
forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose parameters βh,t are estimated in real time
using Xt, a large scale dataset of macroeconomic, financial, and textual data. The out-of-sample forecast testing period is quarterly
and spans 2005Q1 to 2023Q4. NBER recessions are shown with gray shaded bars.

Machine expectations of discount rates exhibit a strong positive relationship with vacancy filling rates, particularly
around the Global Financial Crisis. This pattern aligns with the theoretical prediction that higher discount rates (reflecting
greater compensation for risk) should coincide with lower hiring as firms perceive a lower present discounted value of
employment. Survey expectations of discount rates, by contrast, are relatively flat and display little sensitivity to the
business cycle, consistent with studies that find acyclical subjective risk premia (Nagel and Xu, 2022).

For cash flows, the pattern reverses. Survey expectations show exaggerated cyclical variation, becoming sharply
pessimistic during downturns, such as the Global Financial Crisis, when vacancy filling rates are high. Machine forecasts
also vary cyclically but to a much lesser extent, indicating that survey respondents tend to overreact to macroeconomic
conditions when forming cash flow expectations. This overreaction manifests in the decomposition as an outsized role for

1



subjective cash flow news in explaining vacancy filling rate variation, even when a model under rational beliefs suggests
that discount rate changes should be the primary driver of hiring fluctuations.

Summary Statistics Appendix Table A.1 summarizes the distributions of survey-based and machine learning forecasts
for the key components of the variance decomposition. The most notable pattern is the contrast in time-series volatility
and cross-sectional dispersion between the two sources of expectations. In the time series, 5-year survey-based discount
rate expectations Ft[rt,t+5] are substantially less volatile than machine forecasts, with standard deviations of 0.037 and
0.118, respectively. In contrast, 5-year survey-based cash flow expectations Ft[et,t+5] exhibit much higher volatility than
machine forecasts, with standard deviations of 0.299 and 0.058, respectively.

Table A.1: Summary statistics

Obs Mean St. Dev. Min p25 Median p75 Max

rt,t+5 72 0.284 0.283 -0.279 0.131 0.330 0.464 0.789
Ft[rt,t+5] 72 0.226 0.037 0.147 0.195 0.229 0.251 0.327
Et[rt,t+5] 72 0.287 0.118 0.036 0.209 0.284 0.362 0.572
et,t+5 72 3.739 0.300 2.353 3.741 3.777 3.905 4.288
Ft[et,t+5] 72 3.908 0.299 3.264 3.768 3.892 4.101 4.423
Et[et,t+5] 72 3.801 0.058 3.704 3.763 3.793 3.823 3.936
pet+5 72 3.553 0.294 3.084 3.332 3.527 3.642 4.594
Ft[pet,t+5] 72 3.654 0.146 3.321 3.537 3.686 3.761 3.925
Et[pet,t+5] 72 3.603 0.284 2.864 3.408 3.590 3.803 4.208
qt 72 0.596 0.236 0.211 0.408 0.587 0.731 1.202
Ut 72 0.061 0.021 0.036 0.046 0.054 0.078 0.130
θt 72 0.598 0.315 0.160 0.339 0.558 0.747 1.438
δt 72 0.350 0.058 0.265 0.316 0.354 0.370 0.689

Notes: This table reports summary statistics for ex-post realized outcomes (Actual), subjective expectations (Survey), and machine
expectations (Machine) of key variables used in the variance decomposition. The forecasted variables are h = 5 year present discounted
values of discount rates rt,t+h, cash flows et,t+h, and price-earnings ratios pet,t+h, as defined in equation (17). Aggregate labor market
variables include the vacancy filling rate qt, unemployment rate Ut, vacancy-to-unemployment ratio θt, and job separation rate δt.
Portfolio-level variables are constructed by aggregating employment and forecast data across firms within each book-to-market group,
holding portfolio assignment fixed at the time of portfolio formation. Subjective expectations at the aggregate level Ft are based on
survey forecasts from the CFO survey for stock returns and from IBES for earnings growth. Subjective expectations at the portfolio
level Ft are based on survey forecasts from the IBES survey for both stock returns and earnings growth. Machine expectations Et

are based on forecasts from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), where parameters βh,t are estimated in
real time using Xt, a large-scale dataset of macroeconomic, financial, and textual data. The sample is quarterly and spans 2005Q1
to 2023Q4.
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A.2 Gradual Adjustment of Expectations
To provide evidence on the dynamics of belief formation, this section examines how survey respondents revise their
expectations about future earnings following an earnings surprise. The following regression estimates the responsiveness
of long-horizon forecasts to short-term earnings news:

Ft+j [x̃i,t+h]− Ft+j−1[x̃i,t+h] = αh,j + γh,j(x̃i,t+1 − Ft[x̃i,t+1]) + ηh,t+j ,

where Ft+j [x̃i,t+h] denotes the expectation formed at time t+ j for earnings-related variable x̃ at horizon h, and x̃i,t+1 −
Ft[x̃i,t+1] captures the earnings surprise. The coefficient γh,j measures how much of the surprise is incorporated into
expectations for long-run outcomes.

Table A.2 reports estimates for two forward-looking variables: (a) long-run earnings growth, and (b) the long-run ratio
of earnings to employment. The target horizon is fixed at h = 5 years, while the revision horizon j ranges from 1 to 4 years.
The estimated γh,j coefficients are uniformly small and often statistically insignificant, indicating that respondents only
partially incorporate short-term earnings news into their long-run expectations. This pattern is consistent with models of
belief formation under constant-gain learning, in which agents update expectations gradually and exhibit fading memory.
In such models, a fixed updating gain leads to persistent deviations from rational expectations and a breakdown of the
law of iterated expectations.

Table A.2: Gradual adjustment of expectations

Target Horizon h (Years) 5 5 5 5
Revision Horizon j (Years) 1 2 3 4

Survey Forecast Revisions: Ft+j [x̃i,t+h]− Ft+j−1[x̃i,t+h] = αh,j + γh,j(x̃i,t+1 − Ft[x̃i,t+1]) + ηh,t+j

(a) Earnings Growth 0.0929 0.0934 0.1121 0.1245
(0.0734) (0.0455) (0.0776) (0.0743)

(b) Earnings to Employment 0.0600 0.0508 0.0697 0.0745
(0.1281) (0.0725) (0.0321) (0.0419)

Notes: Table shows the gradual adjustment of expectations about future earnings x̃i,t+h after an earnings surprise at t+ 1. Sample:
2005Q1 to 2023Q4. Newey-West t-statistics with lags = 4 reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.3 Variance Decomposition of Vacancy Filling Rate

A.3.1 Baseline Specification

Table A.3 reports a variance decomposition of the aggregate vacancy filling rate based on equation (22). Under rational
expectations, discount rate fluctuations explain the largest share of variation, accounting for 69.1% at the five-year horizon.
Under subjective expectations, cash flow beliefs dominate at all horizons, accounting for 96.7% in the five-year horizon.

Table A.3: Time-Series Decomposition of the Vacancy Filling Rate

Horizon h (Years) 1 2 3 4 5

(a) Rational Expectations: log qt = cq + Et[rt,t+h]− Et[et,t+h]− Et[pet,t+h]

Discount Rate 0.187∗∗∗ 0.309∗∗∗ 0.585∗∗∗ 0.653∗∗∗ 0.691∗∗∗

t-stat (3.310) (4.708) (5.977) (6.974) (6.659)

(-) Cash Flow 0.027 0.026 0.051 0.055 0.066
t-stat (0.090) (0.181) (0.364) (0.459) (0.472)

(-) Price-Earnings 0.799∗∗∗ 0.720∗∗∗ 0.415∗∗∗ 0.331∗∗∗ 0.201∗∗

t-stat (5.620) (4.322) (3.332) (2.845) (1.716)

Residual −0.013 −0.054 −0.051 −0.039 0.042
t-stat (−0.030) (−0.141) (−0.076) (−0.046) (0.049)

N 76 76 76 76 76

(b) Subjective Expectations: log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

Discount Rate −0.007 −0.005 −0.019 −0.014 −0.010
t-stat (−0.457) (−0.130) (−0.400) (−0.157) (−0.091)

(-) Cash Flow 0.325∗∗∗ 0.641∗∗∗ 0.717∗∗∗ 0.892∗∗∗ 0.967∗∗∗

t-stat (3.939) (4.500) (4.661) (5.572) (7.097)

(-) Price-Earnings 0.629∗∗∗ 0.366∗∗∗ 0.206∗∗∗ 0.068 0.028
t-stat (8.383) (4.231) (2.896) (0.701) (0.313)

Residual 0.052 −0.002 0.096 0.054 0.015
t-stat (0.186) (−0.008) (0.292) (0.126) (0.039)

N 76 76 76 76 76

Notes: This table reports variance decompositions of the aggregate vacancy filling rate under rational expectations (panel (a)) or
subjective expectations (panel (b)). Each row reports the share of the variation in vacancy filling rates that can be explained by
h-year expected present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios
pet,t+h, as defined in equation (17). Residual term represents the variation in vacancy filling rates that are not captured by the
other components. Positive numbers in the Cash Flow and Price-Earnings rows represent the negative of the regression coefficients,
ensuring that all variance shares are positive and sum to unity. Subjective expectations Ft are based on survey forecasts of CFOs and
IBES financial analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM)
neural networks. The sample is quarterly from 2005Q1 to 2023Q4. Newey-West corrected t-statistics with lags = 4 are reported in
parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.

A.3.2 Role of Model Misspecification and Approximation Errors

We introduce an explicit error term in the Campbell and Shiller (1988) decomposition to test whether approximation
or misspecification could influence the baseline results. For any horizon h ≥ 1,

pet = ρhpet+h +

h∑
j=1

ρj−1(∆et+j − rt+j

)
+ υt,h, (A.1)

where ρ ∈ (0, 1) is the log-linearization constant and υt,h is a residual. This residual collects any log-linearization errors or
pricing errors due to misspecification of the stochastic discount factor. Substituting (A.1) into the hiring condition (and
absorbing constants) yields

log qt︸ ︷︷ ︸
Vacancy Filling Rate

= cq + Ft[rt,t+h]︸ ︷︷ ︸
Discount Rate

−Ft[et,t+h]︸ ︷︷ ︸
Cash Flow

− Ft[pet,t+h]︸ ︷︷ ︸
Future Price-Earnings

− υt,h︸︷︷︸
Residual

, (A.2)
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which implies the variance decomposition

1 =
Cov(Ft[rt,t+h], log qt)

Var(log qt)︸ ︷︷ ︸
Discount Rate News

− Cov(Ft[et,t+h], log qt)

Var(log qt)︸ ︷︷ ︸
Cash Flow News

− Cov(Ft[pet,t+h], log qt)

Var(log qt)︸ ︷︷ ︸
Future Price-Earnings News

− Cov(υt,h, log qt)

Var(log qt)︸ ︷︷ ︸
Residual

. (A.3)

The cross-sectional decomposition for h̃li,t from equation (6) similarly includes an analogous residual term υ̃i,t,h. We
report the residual as its own component in all figures and tables.

Table A.4 shows that any approximation or misspecification captured by υt,h does not materially affect the conclusions.
The residual component is approximately orthogonal to each component, so attributions are not contaminated by cross-
covariances. Time-series correlations with the components are small: corr(υt,h, log qt) = 0.015, corr(υt,h,Ft[rt,t+5]) = 0.026,
corr(υt,h,Ft[et,t+5]) = 0.078, and corr(υt,h,Ft[pet,t+5]) = −0.001, with similar magnitudes in the cross-section. Figure A.2
confirms that the residual does not drive the decomposition: the variance share of the residual is small at all horizons
under both rational and subjective belief measures.

Table A.4: Correlation with Residual Term

Component Time-Series Cross-Sectional

Dependent Variables
Vacancy Filling Rate 0.015 —
Hiring Rate — 0.015

Decomposition Components
Discount Rate Ft[rt,t+5] 0.026 0.032
Cash Flow Ft[et,t+5] 0.078 0.089
Future Price-Earnings Ft[pet,t+5] −0.001 −0.033

Notes: This table reports correlations between residuals and each component. Time-series correlations use aggregate data over 350
periods. Cross-sectional correlations use firm-level deviations from the corresponding time-t means.

Figure A.2: Variance Decomposition of Vacancy Filling Rate: Residual Contribution
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Notes: Each panel reports the share of the variation in vacancy filling rates explained by the residual component in the time series
(left panel) and in the cross section (right panel), as defined in equation (A.2). Light (dark) bars show the contribution under rational
(subjective) expectations. Subjective expectations Ft are based on survey forecasts of CFOs and IBES financial analysts. Rational
expectations Et are based on machine-learning forecasts from long short-term memory (LSTM) neural networks. The sample is
quarterly from 2005Q1 to 2023Q4. Each bar shows bootstrapped 95% confidence intervals.
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A.3.3 Belief Distortions and Vacancy Filling Rate

To directly quantify the importance of belief distortions in subjective beliefs, I consider predictive regressions of belief
distortions in subjective expectations of discount rates, cash flows, and price-earnings ratios on the vacancy filling rate.
I define the belief distortion as the difference between subjective and machine expectations. Table A.5 reports estimates
β1,B from regressing belief distortions in subjective discount rate, cash flow, and log price-earnings expectations on the
vacancy filling rate:

Ft[yt+h]− Et[yt+h] = β0,B + β1,B log qt + εt,B , y = r, e, pe

The results indicate that distortions in survey forecasts are important contributors to fluctuations in vacancy filling rates,
especially at longer horizons. At the five-year horizon, distortions in cash flow expectations lead survey respondents to
over-weight 90.1% of the variation in vacancy filling rates to the cash flow component. This mis-perception is counteracted
by distortions in subjective discount rate expectations, which leads survey respondents to under-weight 70.1% of the
variation in the vacancy filling rate. These findings emphasize the importance of belief distortions in driving labor market
fluctuations. The profile of the response across forecast horizons is broadly consistent with the profile of the MSE ratios
across horizons in Figure 1. For discount rate and cash flow expectations, the machine outperformed the survey by a wider
margin over longer horizons, suggesting that the belief distortions in survey responses likely play a bigger role over these
longer horizons.

Table A.5: Belief Distortions in Subjective Beliefs and the Vacancy Filling Rate

Horizon h (Years) 1 2 3 4 5

Belief Distortions: Ft[yt+h]− Et[yt+h] = β0,B + β1,B log qt + εt,B , y = r, e, pe

Discount Rate −0.194 −0.313∗∗ −0.604∗∗∗ −0.667∗∗∗ −0.701∗∗∗

t-stat (−1.574) (−2.167) (−2.896) (−2.918) (−2.740)

(-) Cash Flow 0.299 0.615∗∗∗ 0.666∗∗∗ 0.837∗∗∗ 0.901∗∗∗

t-stat (1.421) (5.476) (5.703) (7.365) (6.665)

(-) Price-Earnings −0.170 −0.354∗∗ −0.209 −0.262 −0.174
t-stat (−0.464) (−2.373) (−0.503) (−0.479) (−0.292)

Residual −0.065 −0.052 −0.147 −0.093 0.026
t-stat (−0.148) (−0.219) (−0.306) (−0.154) (0.040)

N 76 76 76 76 76

Notes: This table reports estimates β1,B from regressing the survey belief distortion Ft[yt+h]−Et[yt+h] on the vacancy filling rate qt.
yt+h denotes the dependent variable of type j to be predicted h years ahead of time t. The components of the decomposition are h-
year present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h. The
residual term captures variation in the vacancy filling rate that cannot be explained by the three components. Subjective expectations
Ft are based on survey forecasts from the CFO survey for stock returns, and IBES for earnings growth. Machine expectations are
based on machine learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose parameters βh,t
are estimated in real time using Xt, a large scale dataset of macroeconomic, financial, and textual data. The belief distortion is
defined as the difference between subjective and machine expectations: Ft − Et. The sample is quarterly from 2005Q1 to 2023Q4.
Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.3.4 First Differences

The decomposition in equation (22) may be more accurate in first differences than in levels, as low-frequency variation
in the vacancy filling rate or subjective expectations can introduce measurement error. This concern is similar to the
argument in Cochrane (1991), who points to low-frequency changes in fundamentals as a potential source of measurement
error in the context of the q-theory of investment. Figure A.3 estimates the variance decomposition of the vacancy filling
rate from equation (22) in first differences:

∆ log qt = ∆Et[rt,t+h]−∆Et[et,t+h]−∆Et[pet,t+h]

∆ log qt = ∆Ft[rt,t+h]−∆Ft[et,t+h]−∆Ft[pet,t+h]

Under rational expectations, discount rate fluctuations explain the largest share of variation, accounting for 58.7% at the
five-year horizon. Under subjective expectations, cash flow beliefs dominate, accounting for 90.6% at the five-year horizon.

Figure A.3: Variance Decomposition of Vacancy Filling Rate: First Differences
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate in first differences. Each panel reports the share
of the variation in vacancy filling rates that can be explained by h-year expected present discounted values of discount rates rt,t+h,
(negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation (17). Light (dark) bars show the
contribution under rational (subjective) expectations. Subjective expectations Ft are based on survey forecasts of CFOs and IBES
financial analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural
networks. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4
quarters.
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A.3.5 VAR Estimates

To validate the robustness of the variance decompositions, I estimate a Vector Autoregression (VAR) for the log
vacancy filling rate log qt and its forward-looking components under subjective or rational expectations. For the case of
subjective beliefs, the VAR is estimated using survey expectations for future returns, earnings growth, and price-earnings
ratios:

Xt+1 = AXt + εt+1, Xt = [Ft[rt,t+1] Ft[et,t+1] Ft[pet,t+1] log qt]
′
.

From the theoretical framework in Section 4, the log vacancy filling rate can be decomposed as:

log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− ρhFt[pet+h]

where the expected present values Ft[rt,t+h] and Ft[et,t+h] are constructed recursively using the VAR forecast. As h → ∞,
the terminal value ρhFt[pet+h] converges to zero under a transversality condition, yielding the long-run decomposition:

log qt = cq + Ft[rt,t+∞]− Ft[et,t+∞].

The same procedure is repeated using machine learning forecasts Et[·] to obtain the decomposition under rational expec-
tations. Figure A.4 reports variance shares across horizons h = 1 to h = 5, as well as the full-horizon case h = ∞. Under
rational expectations, discount rate fluctuations explain an increasing share of variation, rising to 78.1% at long horizons.
Under subjective expectations, cash flow beliefs dominate at all horizons, accounting for 102.0% in the long run.

Figure A.4: Variance Decomposition of Vacancy Filling Rate: VAR Estimates
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate based on a Vector Autoregression (VAR). Each
panel reports the share of the variation in vacancy filling rates that can be explained by h-year expected present discounted values
of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation (17). Light
(dark) bars show the contribution under rational (subjective) expectations. Subjective expectations Ft are based on survey forecasts
of CFOs and IBES financial analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term
Memory (LSTM) neural networks. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows bootstrapped 95% confidence
intervals.
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A.3.6 All Listed Firms

Figure A.5 reports the variance decomposition of the vacancy filling rate from equation (22) using an expanded defi-
nition of subjective expectations that includes all publicly listed firms with IBES analyst coverage, rather than restricting
to the S&P 500. Subjective cash flow expectations are computed as value-weighted aggregates of IBES median forecasts
of long-horizon earnings growth across all covered firms. Subjective discount rate expectations are constructed analo-
gously, using the same survey-based measures as in the baseline but applying the expanded firm universe for consistency
in coverage.

The results are similar to the baseline. Under rational expectations, discount rate fluctuations explain 63.0% of the
variation in vacancy filling rates at the five-year horizon, while under subjective expectations, distorted cash flow beliefs
remain dominant, accounting for 96.3%. The similarity in results suggests that the dominance of cash flow distortions
under subjective beliefs is not specific to large-cap firms in the S&P 500 but holds more broadly across publicly listed firms
with analyst coverage.

While this paper focuses on publicly listed firms due to data limitations, preliminary evidence suggest that similar
patterns likely emerge among smaller private businesses. A 2010 report from the National Federation of Independent Busi-
ness (NFIB) on small business credit during the recession shows that hiring decisions were primarily driven by pessimism
about future sales rather than financing constraints. At the time, 51% of small employers cited weak sales expectations
as their top concern, compared to just 8% who cited access to credit (Dennis, 2010). To the extent that access to credit
capture financial frictions that would show up in discount rates, this survey suggests that subjective beliefs about future
cash flows also shape employment decisions in the small business sector.

Figure A.5: Variance Decomposition of Vacancy Filling Rate: All Listed Firms
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate using forecasts aggregated over all publicly listed
firms with IBES analyst coverage. Each panel reports the share of the variation in vacancy filling rates that can be explained by
h-year expected present discounted values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios
pet,t+h, as defined in equation (17). Light (dark) bars show the contribution under rational (subjective) expectations. Subjective
expectations Ft are based on IBES survey forecasts of financial analysts aggregated over all covered firms. Rational expectations
Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural networks. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4 quarters.
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A.3.7 Extended Historical Sample

Figure A.6 reports the variance decomposition of the vacancy filling rate from equation (22) using an extended
quarterly sample from 1983Q4 to 2023Q4. Subjective cash flow expectations are measured using IBES survey forecasts of
earnings growth, available from 1983Q4. Subjective discount rate expectations are extended by extracting a common latent
component from multiple historical survey sources from Table A.7 using a state-space model estimated via the Kalman
filter. The latent state St is interpreted as the one-year-ahead expected stock return, Ft[rt+1]. To construct the five annual
forecasts needed for the present-value sum rt,t+h, I impose a flat term-structure assumption and set Ft[rt+j ] = St for
j = 1, . . . , 5. This approach ensures that all horizons are anchored by the common latent factor while remaining consistent
with the information set of the historical surveys. The extended sample results are consistent with the baseline. Under
rational expectations, discount rate fluctuations explain 66.9% of vacancy filling rate variation at the five-year horizon.
Under subjective expectations, distorted cash flow beliefs dominate, accounting for 89.6%.

Figure A.6: Variance Decomposition of Vacancy Filling Rate: Extended Sample 1983Q4–2023Q4
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Notes: Figure reports variance decompositions of the aggregate vacancy filling rate using an extended sample from 1983Q4 to 2023Q4.
Each panel reports the share of the variation in vacancy filling rates that can be explained by h-year expected present discounted
values of discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation
(17). Light (dark) bars show the contribution under rational (subjective) expectations. Subjective expectations Ft are based on
survey forecasts of CFOs and IBES financial analysts. Rational expectations Et are based on machine learning forecasts from Long
Short-Term Memory (LSTM) neural networks. Each bar shows Newey-West 95% confidence intervals with lags = 4 quarters.
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A.3.8 Ex-post Decomposition

Since the log-linear decomposition of the vacancy filling rate holds both ex-ante and ex-post, a variance decomposition
of the vacancy filling rate can also be estimated using ex-post realized data, under the assumption of the firm’s perfect
foresight:

1 ≈ Cov [rt,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate news

− Cov [et,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [pet,t+h, log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

Table A.7 reports the estimates. For the main sample covering 2005Q1 to 2023Q4, at the 5 year horizon, 79.4% of the
variation in the vacancy filling rate is driven by discount rate news. In contrast, cash flow news has a smaller effect,
contributing only 10.3% over the same period. For the full sample covering 1965Q1 to 2023Q4, at the 5 year horizon,
78.6% of the variation in the vacancy filling rate is driven by discount rate news. In contrast, cash flow news has a smaller
effect, contributing only 9.5% over the same period.

Figure A.7: Variance Decomposition of Vacancy Filling Rate: Ex-Post Measure 1965Q1–2023Q4
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Notes: Figure reports variance decompositions of the vacancy filling rate from equation using ex-post realized outcomes. Each
panel reports the share of the variation in vacancy filling rates that can be explained by h-year expected present discounted values of
discount rates rt,t+h, (negative) cash flows et,t+h, and (negative) price-earnings ratios pet,t+h, as defined in equation (17). Light bars
show the contribution under rational expectations. The sample is quarterly from 1965Q1 to 2023Q4. Each bar shows Newey-West
95% confidence intervals with lags = 4 quarters.
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A.3.9 Risk Premia vs. Risk-Free Rate

Risk-free rates play only a small role in explaining fluctuations in vacancy filling rates. Figure A.8 plots estimates from
regressing subjective expectations implied by forecasts from the Survey of Professional Forecasters (SPF), and machine
expectations of h year ahead annualized log 3-month Treasury bill rates on the vacancy filling rate. Under all measures of
beliefs and all horizons considered, the contribution from risk-free rates explain less than 5% of the variation in vacancy
filling rates. The result suggests that the significant contribution of rational discount rates in Table A.3 is driven by
fluctuations in risk premia instead of risk-free rates.

Figure A.8: Variance Decomposition of Vacancy Filling Rate: Risk Premia vs. Risk-Free Rate
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Notes: Figure plots estimates from regressing h year present discounted value of annualized log 3-month Treasury bill rates∑h
j=1 ρ

j−1rft+j on the vacancy filling rate under alternative assumptions about the firm’s beliefs. Subjective expectations Ft of
risk-free rates are based on survey forecasts from the Survey of Professional Forecasters. Subjective expectations of the equity risk
premium is defined as the difference between CFO survey S&P 500 stock return forecast and the SPF risk-free rate forecast. Machine
expectations are based on machine learning forecasts Et from Long Short-Term Memory (LSTM) neural networks G(Xt,βh,t), whose
parameters βh,t are estimated in real time using Xt, a large scale dataset of macroeconomic, financial, and textual data. The sample
is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.

A.3.10 Risk-Neutral Measure Implied by Futures Prices

To address whether forecast errors simply reflect risk compensation rather than belief distortions, I re-evaluate the
decomposition using risk-neutral expectations extracted from futures prices. Under risk-neutral pricing, forecast errors
should equal risk premia plus noise, with no patterns beyond those explained by time-varying risk compensation. In
contrast to subjective survey forecasts, which may reflect belief distortions, risk-neutral expectations are extracted directly
from financial market prices and reflect the valuations of marginal investors in the economy. The decomposition parallels
the earlier analysis based on subjective beliefs but replaces the expectations operator Ft[·] with the risk-neutral operator
EQ
t [·], where Q denotes the risk-neutral probability measure. I begin with the ex-post decomposition of the vacancy filling

rate log qt, which can be expressed as:

log qt = cq +

h∑
j=1

ρj−1rt+j −

(
dlt +

h∑
j=1

ρj−1∆dt+j

)
− ρhpdt+h

where rt+j denotes the return on the S&P 500 index, ∆dt+j denotes the change in log dividends, and pdt+h is the terminal
log price-dividend ratio. Since market-based risk-neutral expectations are available for dividends but not for earnings, I
re-write the decomposition in terms of dividend growth. To evaluate this decomposition under the risk-neutral measure,
I replace each future variable with its risk-neutral expectation. Using the standard no-arbitrage pricing result that the
futures price equals the risk-neutral expectation of the future spot price (Ait-Sahalia et al., 2001), I compute the expected
return over horizon h using log differences of S&P 500 futures prices:

EQ
t [rt,t+h] =

h∑
j=1

ρj−1(fsp500
t,t+j − fsp500

t,t+j−1)

12



where fsp500
t,t+j denotes the log futures price of the S&P 500 at time t for delivery at t + j, and fsp500

t,t ≡ pt is the log spot
price. This expression captures the risk-neutral expectation of the capital-gain component of returns. In principle, total
returns also include the dividend yield. However, since dividends represent only a small fraction of S&P 500 total returns
over this sample period, and reliable dividend futures are limited in maturity and liquidity, I abstract from this component
and focus on the capital gain for tractability. Similarly, I measure expected dividend growth using dividend futures:

EQ
t [dt,t+h] = dlt +

h∑
j=1

ρj−1(fdiv
t,t+j − fdiv

t,t+j−1)

where fdiv
t,t+j is the log price of the dividend future for maturity t + j, and fdiv

t,t ≡ dt is the log of current dividends. To

compute the terminal price-dividend ratio EQ
t [pdt+h], I apply a forward iteration of the log-linear price-dividend identity:

EQ
t [pdt+h] =

1

ρh
pdt −

1

ρh

h∑
j=1

ρj−1(cpd + EQ
t [∆dt+j ]− EQ

t [rt+j ])

where cpd is a constant from the log-linearization. Since market data on futures prices is typically limited to near-term
maturities (e.g., 1-year ahead), I extrapolate longer-horizon expectations using fitted values from autoregressive models.
Specifically, I estimate first-order predictive regressions of the 1-year forward S&P 500 return and dividend growth on the
lagged spot value:

fsp500
t,t+1 − pt = µsp500 + ρsp500(pt − pt−1) + εt

fdiv
t,t+1 − dt = µdiv + ρdiv(dt − dt−1) + εt

and then forecast growth at horizons j > 1 recursively using the standard multi-step formula for an AR(1) process:

fsp500
t,t+j − fsp500

t,t+j−1 =
µsp500(1− ρj−1

sp500)

1− ρsp500
+ ρj−1

sp500(f
sp500
t,t+1 − pt)

fdiv
t,t+j − fdiv

t,t+j−1 =
µdiv(1− ρj−1

div )

1− ρdiv
+ ρj−1

div (fdiv
t,t+1 − dt)

Using these forward-imputed values, I compute the full set of risk-neutral expectations required for the decomposition.
The results of this exercise are shown in Figure A.9. Compared to subjective expectations, risk-neutral expectations

attribute a smaller role to future cash flows and a greater role to discount rates in explaining the variation in the vacancy
filling rate. This contrast suggests that belief distortions in survey forecasts may overweight the informational content of
short-term earnings outlooks and underweight changes in risk premia, leading to distorted hiring incentives.
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Figure A.9: Variance Decomposition of Vacancy Filling Rate: Risk-Neutral Expectations
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of the
aggregate vacancy filling rate. Light bars show the contribution under risk-neutral expectations implied by S&P 500 and dividend
futures. Dark bars show the contribution under subjective expectations. The sample is quarterly from 2005Q1 to 2023Q4. Each bar
shows Newey-West 95% confidence intervals with lags = 4.
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A.3.11 Time-Series Decomposition of Hiring Rate by Book-to-Market and Size Portfolios

Figure A.10 shows that belief distortions play a significant role in explaining the cross-sectional variation in hiring
across book-to-market portfolios (panel (a)) and size portfolios (panel (b)). I run the time-series decomposition of the
hiring rate separately for each of the portfolios. The decomposition reveals that under subjective expectations, distorted
beliefs about future cash flows account for a larger share of hiring rate variation, particularly among low book-to-market
(growth) firms and small firms. This pattern is consistent with the idea that growth firms and small firms are more sensitive
to subjective beliefs about long-term fundamentals, amplifying the role of distorted expectations in their hiring decisions.
In contrast, for high book-to-market (value) firms and large firms, the contribution of cash flow expectations remains
relatively stable across subjective and rational benchmarks, suggesting their hiring is less exposed to belief distortions.

Figure A.10: Time-Series Decomposition of Hiring Rate by Portfolio

(a) By Book-to-Market Portfolio
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(b) By Size Portfolio
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Notes: Figure estimates time-series decomposition of hiring rate separately for each of the five book-to-market (panel (a)) and size
(panel (b)) portfolios. Firms have been sorted into five value-weighted portfolios by book-to-market ratio or size (market capitaliza-
tion). Light bars show contributions under rational expectations; dark bars show contributions under subjective expectations. The
sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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A.3.12 Cross-Sectional Decomposition of Hiring Rate: By Industry

Figure A.11 shows that belief distortions play a significant role in explaining the cross-sectional variation in hiring
across Fama-French 49 industry portfolios.

Figure A.11: Cross-Sectional Decomposition of Hiring Rate: By Industry
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Notes: Figure estimates a cross-sectional decomposition of the hiring rate across Fama-French 49 industry portfolios. Light bars show
contributions under rational expectations; dark bars show contributions under subjective expectations. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.

A.3.13 Financial Constraints

A natural concern is that variation in hiring may reflect differences in financial constraints rather than distortions in
beliefs. In a rational expectations model, financial constraints appear as a Lagrange multiplier that tightens the firm’s
stochastic discount factor (SDF), raising internal hurdle rates and suppressing hiring (Kehoe et al., 2019). In this setting,
constraint-induced fluctuations in hiring would be rationally attributed to higher discount rates. By contrast, under
subjective expectations, survey respondents may misattribute the effect of constraints to lower future cash flows, especially
if internal hurdle rates are persistent, upward-biased, and unresponsive to market conditions (Gormsen and Huber, 2025).
Financial constraints could also allow the effects of belief distortions to persist by limiting arbitrage that would otherwise
correct them (De La O et al., 2024).

Measures of Financial Constraints To test these hypotheses, I incorporate firm-level financial constraint measures
into the decomposition framework:

� Firm Size (Total Assets): Firms in the bottom tertile of the asset size distribution are classified as financially
constrained, while those in the top tertile are unconstrained (Erickson and Whited, 2000).

� Payout Ratio: Defined as dividends plus stock repurchases scaled by total assets. Firms with the lowest (highest)
payout ratios are classified as constrained (unconstrained), consistent with the idea that constrained firms conserve
internal funds (Fazzari et al., 1988).

� SA Index: The size-age index developed by Hadlock and Pierce (2010), constructed as SA = −0.737 · Size + 0.043 ·
Size2 − 0.040 · Age, where Size is log real assets and Age is years since listing. Higher SA values indicate tighter
constraints.

� Expected Free Cash Flow: Based on Lewellen and Lewellen (2016), firms are sorted into constraint groups using
predicted free cash flow, estimated from cross-sectional regressions on lagged characteristics. Low expected FCF
implies tighter constraints.

� WW Index: The Whited-Wu index (Whited and Wu, 2006), a linear combination of cash flow, dividend status,
leverage, size, and sales growth, where higher index values imply greater constraints.
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Each measure is updated annually and firms are classified based on terciles or continuous index values. Each measure is
aggregated to the portfolio level and standardized before entering the regression as controls.

Decomposition with Financial Constraints I modify the baseline decomposition regression as follows:

Ft[ei,t,t+h] = β · hli,t + Γ · FCi,t + αi + αt + εi,t

where FCi,t is a vector of standardized financial constraint measures for portfolio i at time t, aggregated from firm-
level values to 10 value-weighted idiosyncratic shock sorted portfolios. As before, the parameter of interest is β, which
captures the share of variation in the hiring rate hli,t explained by subjective expectations, but this time conditional on
financial constraints. I run analogous regressions to estimate the contributions of discount rate expectations and future
price-earnings ratios. I also replace survey forecasts with machine learning forecasts to estimate the decomposition under
rational expectations, again controlling for financial constraints using the same specification.

Results Figure A.12 presents the decomposition estimates with and without financial constraint controls, under both
subjective and rational expectations. Under subjective expectations, the contribution of expected earnings to hiring
variation remains large and significant, with only a modest reduction in explanatory power after controlling for financial
constraints. This suggests that distorted beliefs about cash flows persist even after adjusting for observable constraint-
related fundamentals. These findings are consistent with the view that constrained firms overreact to cash flow news or
internalize persistent pessimism about earnings. Under rational expectations, however, the contribution of discount rate
expectations drops substantially once constraint controls are included. This is consistent with a rational model in which
financial constraints tighten the SDF and raise internal hurdle rates. When this variation is accounted for, the rational
model assigns less importance to discount rate news in explaining hiring variation. The results supports the interpretation
that financial constraints can explain a nontrivial share, but do not fully explain, variation in hiring. While rational
forecasts attribute constraint effects to discount rates, subjective expectations appear to reflect persistent pessimism about
cash flows.

Figure A.12: Cross-Sectional Decomposition of Hiring Rate: Control for Financial Constraints
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Notes: Figure estimates cross-sectional decomposition of hiring rate, controlling for measures of financial constraints. Light bars
show contributions under rational expectations; dark bars show contributions under subjective expectations. Financial constraint
controls include firm size, payout ratio, SA index, expected free cash flow, and the Whited-Wu index. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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A.3.14 Time-Varying Parameters

Figure A.13 estimates time-series variance decompositions of the vacancy filling rate over rolling samples of trailing
15-year windows. The estimated rational discount rate component is large and the rational cash flow component is small
throughout the rolling samples. In contrast, the subjective discount rate component is small and the subjective cash
flow component is large throughout the rolling samples. The persistent dominance of subjective cash flow expectations
across all time periods confirms that belief distortions are not episodic phenomena but represent and enduring features of
expectation formation.

Nevertheless, there is notable variation in the estimated components over time, as the subjective cash flow component
shows large increases during recessions. The sharp increases in the subjective cash flow component during recession
periods indicate that firms respond to economic downturns by becoming excessively pessimistic about future cash flows.
The rational discount rate component exhibits a gradual decline over the sample period, potentially reflecting structural
changes in risk premia or monetary policy regimes.

Figure A.13: Time-Series Decomposition of Vacancy Filling Rate: Time-Varying Parameters
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Notes: Figure estimates time-series decomposition of the vacancy filling rate over rolling samples of trailing 15-year windows. Grey
line show the contribution under rational expectations. Dark line show the contribution under subjective expectations. Each dashed
line shows Newey-West 95% confidence intervals with lags = 4. NBER recessions are shown with light gray shaded bars.
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A.3.15 Alternative Survey Measures of Subjective Cash Flow Expectations

The large role played by subjective cash flow expectations in explaining the vacancy filling rate holds more generally
across alternative survey forecasts of earnings growth. Table A.6 re-estimates the subjective variance decomposition while
replacing IBES survey forecasts of earnings growth with the corresponding forecast from the Bloomberg (BBG) and CFO
surveys. The forecast horizon for the CFO survey has been limited to h = 1 year ahead and the sample covers a shorter
period over 2002Q1 to 2019Q3 due to missing earnings growth forecasts in the CFO survey.

To summarize the alternative survey measures into a single series, I construct Filtered Investor (FI) expectations by
extracting the common component of subjective cash-flow beliefs using a Kalman filter. The latent state variable is defined
as the h-month-ahead expected earnings growth, St ≡ Ft[∆et+h], which captures investors’ subjective beliefs about future
cash flows. The observation vector Xt contains survey measures of expected earnings growth over the next h periods from
IBES, Bloomberg, and CFO surveys. The Kalman filter then estimates the latent St as the optimal linear combination
of these noisy survey indicators St = C(Θ) + T (Θ)St−1 + R(Θ)εt, where C, T,R are matrices of the model’s primitive
parameters Θ = (α, ρ, σε)

′. εt is an innovation to the latent expectation that was unpredictable from the point of view of
the forecaster. α is the intercept, ρ is the persistence, and σε is the standard deviation of the latent innovation error. The
Observation equation takes the form Xt = D + ZSt + Uvt, where h is a fixed forecast horizon. The observation vector
Xt contains measures of survey expected cash flows from IBES, BBG, and CFO surveys over the next h periods. vt is a
vector of observation errors with standard deviations in the diagonal matrix U . Z and D are parameters that have been
set to 1s and 0s, respectively. I use the Kalman filter to estimate the remaining parameters α, ρ, σε, U . Since some of our
observable series are not available at all frequencies and/or over the full sample, the state-space estimation fills in missing
values using the Kalman filter.

Table A.6: Variance Decomposition of Vacancy Filling Rate: Alternative Subjective Cash Flow Expectations

Horizon h (Years) 1 2 3 4 5

Subjective Expectations: log qt = cq + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

(a) Filtered Investor (FI) Expectations
(-) Cash Flow 0.578∗∗∗ 0.625∗∗∗ 0.684∗∗∗ 0.887∗∗∗ 0.933∗∗∗

t-stat (3.046) (4.275) (4.894) (6.019) (7.612)
N 76 76 76 76 76

(b) Bloomberg (BBG) Survey
(-) Cash Flow 0.586∗∗∗ 0.830∗∗∗ 0.851∗∗∗ 0.896∗∗∗ 0.949∗∗∗

t-stat (8.476) (8.317) (7.213) (5.288) (4.541)
N 76 76 76 76 76

(c) CFO Survey
(-) Cash Flow 0.637∗

t-stat (1.934)
N 71

Notes: Table reports variance decompositions of the vacancy filling rate while replacing IBES earnings growth forecast with alternative
surveys as measures of subjective cash flows. FI summarizes the alternative survey measures into a single series using a Kalman
filter. The sample for BBG and FI is quarterly from 2005Q1 to 2023Q4. The sample for CFO is quarterly from 2002Q1 to 2019Q3.
Newey-West corrected t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.3.16 Alternative Survey Measures of Subjective Discount Rates

The small role played by subjective discount rate expectations in explaining the vacancy filling rate holds more
generally across alternative survey forecasts of stock returns. Table A.7 reports estimates from regressing 1 year ahead
survey expectations of stock returns Ft[rt,t+h] on the log vacancy filling rate qt under alternative survey forecasts of stock
returns. In all survey measures, the estimates suggest a weak relationship between subjective stock return expectations
Fs
t [rt,t+h] and the vacancy filling rate qt.

rt,t+h denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from time t to t+ h, depending
on the concept that survey respondents are asked to predict: log stock returns for CB, SOC, Gallup/UBS, and CFO; log
price growth for Livingston. Fs

t [rt,t+h] denotes subjective expectations of stock returns or price growth from survey s. CoC
and Hurdle denotes corporate cost of capital and hurdle rates constructed in Gormsen and Huber (2023). The forecast
horizon has been limited to 1 year ahead due to limited data availability in the alternative surveys. The sample is quarterly
over 2005Q1 to 2023Q4 when considering the NX, CB, SOC, and CFO surveys, 2005Q1 to 2008Q4 for Gallup/UBS, and
semi-annual over 2005Q1 to 2023Q4 from Q2 and Q4 of each calendar year for Livingston.

To summarize the alternative survey measures into a single series, the Filtered Invesotr (FI) series extracts the
common component of subjective discount rates using a Kalman filter. The state variable is a latent h-month ahead
expected stock return capturing investors’ subjective beliefs St ≡ Ft[rt+h], which evolves according to an AR(1) state
equation St = C(Θ)+T (Θ)St−1 +R(Θ)εt, where C, T,R are matrices of the model’s primitive parameters Θ = (α, ρ, σε)

′.
εt is an innovation to the latent expectation that was unpredictable from the point of view of the forecaster. α is the
intercept, ρ is the persistence, and σε is the standard deviation of the latent innovation error. The Observation equation
takes the form Xt = D+ZSt +Uvt, where h = 12 months is a fixed forecast horizon. The observation vector Xt contains
measures of survey expected returns listed above over the next h periods. vt is a vector of observation errors with standard
deviations in the diagonal matrix U . Z and D are parameters that have been set to 1s and 0s, respectively. I use the
Kalman filter to estimate the remaining parameters α, ρ, σε, U . Since some of our observable series are not available at all
frequencies and/or over the full sample, the state-space estimation fills in missing values using the Kalman filter.

Table A.7: Variance Decomposition of Vacancy Filling Rate: Alternative Discount Rates

Horizon h (Years) 1 1 1 1 1 1 1 1

Subjective Expectations: log qt = cq + Fs
t [rt,t+h]− Ft[et,t+h]− Ft[pet,t+h]

Survey s FI NX CB SOC Gallup Liv CoC Hurdle

Discount Rate 0.013 −0.011 0.026 0.002 −0.065 0.067 0.024 0.013
t-stat (0.614) (−0.249) (0.504) (0.103) (−0.922) (0.181) (0.734) (0.522)

Adj. R2 0.070 0.012 0.069 0.009 0.216 0.045 0.232 0.154
N 76 76 76 76 16 40 76 76

Notes: Table reports slope (β1) estimates from regressing h = 1 year ahead survey expectations of stock returns Ft[rt,t+h] on the
log vacancy filling rate qt. rt,t+h denotes h year CRSP stock returns (with dividends) or S&P 500 price growth from time t to
t + h, depending on the concept that survey respondents are asked to predict: log stock returns for CB, SOC, Gallup/UBS, and
CFO; log price growth for Livingston. Fs

t [rt,t+h] denotes subjective expectations of stock returns or price growth from survey s.
CoC and Hurdle denotes corporate cost of capital and hurdle rates constructed in Gormsen and Huber (2023). Filtered Investor
(FI) expectations summarize the alternative survey measures into a single series using a Kalman filter. The sample is quarterly over
2005Q1 to 2023Q4 when considering the NX, CB, SOC, and CFO surveys, 2005Q1 to 2008Q4 for Gallup/UBS, and semi-annual over
2005Q1 to 2023Q4 from Q2 and Q4 of each calendar year for Livingston. Newey-West corrected t-statistics with lags = 4 are reported
in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.4 Decomposition of Price-Earnings Ratios
The decomposition of the price-earnings ratio developed by De La O and Myers (2021) and De La O et al. (2024)

provide a useful benchmark for thinking about the role of distorted beliefs in financial markets. Their analysis applies
the Campbell and Shiller (1988) identity to the aggregate price-earnings ratio and shows that subjective expectations
systematically understate the role of discount rates while overstating the importance of cash flows.

Figure A.14 shows that the decompositions for price-earnings ratios and vacancy filling rates yield broadly similar
magnitudes. In both cases, rational expectations attribute most variation to discount-rate news, while subjective expec-
tations shift the weight strongly toward cash flows. The parallel magnitudes underscore that the two decompositions
are consistent, but the economic implications differ. Whereas the price-earnings decomposition highlights distortions in
asset valuations, the vacancy filling rate decomposition shows how these same distortions translate into fluctuations in job
creation and unemployment.

Figure A.14: Variance Decomposition of the Price-Earnings Ratio

(a) Aggregate decomposition
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(b) Cross-sectional decomposition
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Notes: Panels (a) and (b) illustrate the discount rate, cash flow, and future price-earnings components of the time-series and cross-sectional decompositions
of the price-earnings ratio. Firms are sorted into five value-weighted portfolios by book-to-market ratio in the cross-sectional case. Light bars show
contributions under rational expectations; dark bars show contributions under subjective expectations. The sample is 2005Q1–2023Q4. Each bar shows
Newey-West 95% confidence intervals with lags = 4. Circle and triangle dots show the values of rational and subjective expectations implied by the
model, respectively.
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A.5 Predictability of Unemployment and Hiring Rates
Time-Series Predictability of Aggregate Unemployment Rate To complement the decomposition of the
vacancy filling rate, this section analyzes the unemployment rate directly. While the vacancy filling rate captures the main
driver of unemployment dynamics in search models, the unemployment rate is the key macroeconomic outcome of interest
and the direct target of policy. Start from the unemployment accumulation equation of the search model in Section 4:

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (A.4)

which states that the number of unemployed workers at the beginning of next period Ut+1 equals the number of unemployed
worker who fail to find a job in the current period (1−qtθt)Ut plus the number of employed workers who lose their jobs due
to separations δt(1−Ut). Log-linearize around the steady state and substitute in equation (17), which is a decomposition
of the vacancy filling rate qt into discount rate, cash flow, and future price-earnings components. As shown in Section B.3,
the log unemployment rate ut+1 satisfies the following predictive relationship:

ut+1 = α+ βrFt[rt,t+h] + βeFt[et,t+h] + γ′Xt + εs,t+1 (A.5)

where Xt ≡ [ut, log θt, log δt]
′ collects labor market factors including the lagged log unemployment rate ut, vacancy-to-

unemployment ratio log θt, and job separation rate log δt. The coefficients of interest, βr and βe, quantify the effect of
subjective expectations about discount rates and cash flows, respectively, on future unemployment.

To isolate the contribution of belief distortions, I further decompose each subjective expectation Ft into its rational
expectation Et and its distortion Ft − Et:

ut+1 = α+ βr,EEt[rt,t+h] + βr,F(Ft[rt,t+h]− Et[rt,t+h])

+ βe,EEt[et,t+h] + βe,F(Ft[et,t+h]− Et[et,t+h]) + γ′Xt + εs,t+1

(A.6)

I estimate equation (A.6) using multivariate OLS regressions, allowing the data to inform the relative importance of each
component. The future price-earnings ratio term Ft[pet,t+h] has been omitted in the multivariate regression because it is
nearly collinear with future discount rates Ft[rt,t+h] and cash flows Ft[et,t+h] as long as the Campbell and Shiller (1988)
present value identity holds in equation (16). To ensure stationarity and remove seasonal effects, I estimate the regression
in log growth rates relative to the same quarter of the previous year. The regression is designed to test whether perceived
shocks to discount rates or earnings forecasts help predict fluctuations in unemployment rates. If firms form distorted
beliefs about future returns or earnings, they should manifest in hiring behavior and thus influence unemployment.

Table A.8 reports the results. Column (1) predicts the unemployment rate based on a benchmark model using
only machine-based forecasts of discount rates and cash flows. Rational discount rates Et[rt,t+h] significantly predict
unemployment (coefficient 0.551), consistent with rational models that introduce time-varying discount rates to generate
realistic fluctuations in unemployment. The rational cash flow expectation Et[et,t+h] is not a significant predictor (-0.041),
consistent with the unemployment volatility puzzle where productivity shocks on its own struggle to generate sufficient
unemployment fluctuations. Overall, the sign of the estimated coefficients are consistent with the implications of the search
model, since higher discount rates or low expected cash flows depress the expected discounted value of job creation, leading
to reduced hiring and higher future unemployment.

Column (2) extends the baseline model by incorporating belief distortions in subjective discount rate and cash flow
expectations. The distortion in subjective cash flow expectation Ft[et,t+h]−Et[et,t+h] emerges as the strongest predictor of
future unemployment, with a large statistically significant coefficient of -0.701.The inclusion of belief distortions improves
model performance substantially. The adjusted R2 increases from 0.528 to 0.745 in-sample and the out-of-sample R2

increases from 0.149 to 0.254, where the out-of-sample R2 implies an improvement in the MSE ratio relative to the
Survey of Professional Forecasters (SPF) by 0.254 − 0.149 = 0.105. Traditional labor market factors including lagged
unemployment, labor market tightness, and separations explain only a modest portion of unemployment fluctuations, with
an in-sample adjusted R2 of 0.260. In terms of out-of-sample performance, a model that excludes expectations entirely
performs worse than the Survey of Professional Forecasters (SPF) benchmark with a negative OOS R2 of −0.094. These
results suggest that the distortions embedded in survey expectations contain valuable information not captured by other
rational forecasts and pre-existing labor market factors.

Strikingly, distortions in subjective cash flow expectations drive out the predictive power of the machine-based discount
rate forecast, whose coefficient has been reduced to 0.236 and is no longer statistically significant. This result suggests that
behavioral factors can crowd out rational forces in driving labor market fluctuations, consistent with models of behavioral
overreaction where salient signals can dominate decision making (Bordalo et al., 2020). Since machine forecasts already
incorporate a high-dimensional set of real-time predictors, this displacement likely reflect misperceptions of underlying
economic shocks rather than statistical bias due to omitted variables.

Figure A.15 illustrates the result by plotting the actual annual change in unemployment against its model-implied
decomposition using both rational expectations and belief distortions based on equation (A.6). Fluctuations in unemploy-
ment closely track the component attributed to the distortion in expected cash flows. In particular, the cash flow distortion
component captures the sharp rise and fall in unemployment during the global financial crisis and COVID-19 recessions
with considerable precision.
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Table A.8: Time-Series and Cross-Sectional Predictability

Forecast Target: Unemployment Growth ∆ut+1

(1) (2)

Et[rt,t+h] 0.551∗∗∗ 0.236
t-stat (5.046) (0.893)

Et[et,t+h] −0.041 −0.018
t-stat (−0.108) (−0.050)

Ft[rt,t+h]− Et[rt,t+h] −0.006
t-stat (−0.033)

Ft[et,t+h]− Et[et,t+h] −0.701∗∗∗

t-stat (−5.584)

Labor Market Factors Yes Yes
N 76 76
Adj. R2 0.528 0.745
OOS R2 0.149 0.254

Forecast Target: Employment Growth ∆l̃i,t+1

(3) (4)

Et[r̃i,t,t+h] −0.498∗∗∗ −0.119
t-stat (−3.058) (−0.734)

Et[ẽi,t,t+h] 0.154 0.053
t-stat (1.304) (0.754)

Ft[r̃i,t,t+h]− Et[r̃i,t,t+h] −0.043
t-stat (−0.410)

Ft[ẽi,t,t+h]− Et[ẽi,t,t+h] 0.759∗∗∗

t-stat (6.412)

Labor Market Factors Yes Yes
N 380 380
Adj. R2 0.135 0.253
OOS R2 0.207 0.447

Notes: This table reports predictive regressions of log annual growth in the unemployment rate (time-series) and employment growth
(cross-section) from equation (A.6), under subjective or rational expectations. Labor market factors in the time-series regression
Xt include the log annual growth of lagged log unemployment rate ut, log labor market tightness log θt and log job separation rate
log δt; cross-sectional regressions include the same set of controls at the portfolio level. The sample is quarterly from 2005Q1 to
2023Q4. OOS R2 is defined as 1−MSEModel/MSEBenchmark. Out-of-sample forecasts are constructed as 1-year-ahead predictions
using model parameters estimated over a rolling 10-year window. MSEModel/MSEBenchmark denotes the ratio of each model’s
out-of-sample mean squared forecast error to that of a benchmark, which is the Survey of Professional Forecasters (SPF) consensus
for time-series predictions and an AR(1) model for cross-sectional predictions. Newey-West corrected (time-series) and two-way
clustering by portfolio and quarter (cross-sectional) t-statistics with lags = 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%.
∗∗∗sig. at 1%.

Cross-Sectional Predictability of Employment Growth To complement the aggregate analysis, I examine
whether belief distortions also explain cross-sectional differences in hiring behavior across firms. Start from the employment
accumulation equation:

Li,t+1 = (1− δi,t)Li,t +Hi,t (A.7)

for firm i, where δi,t is the job separation rate and Hi,t denotes hires. Then we can approximate employment growth
∆li,t+1 ≡ ∆logLi,t+1 as:

∆li,t+1 ≈ hli,t − δi,t (A.8)

where hi,t = Hi,t/Li,t is the hiring rate. As shown in Section 4, the hiring rate reflects the firm’s valuation of a job match
and embeds forward-looking expectations of return, cash flow, and terminal value:

hli,t = −Ft[ri,t,t+j ] + Ft[ei,t,t+j ] + Ft[pei,t,t+j ], (A.9)

where expectations are formed under the firm’s subjective belief measure Ft. Substituting into the employment growth
approximation yields a predictive regression:

∆l̃i,t+1 = αi − β1Ft[r̃i,t,t+j ] + β2Ft[ẽi,t,t+j ] + β3δ̃i,t + εi,t+1, (A.10)

where αi denotes a firm fixed effect, and δi,t is included directly as a control for firm-level separations. The terminal
price-earnings term Ft[p̃ei,t,t+j ] has been dropped due to its near collinearity with expected returns and expected earnings
growth under the Campbell and Shiller (1988) present value identity. The sample consists of the 10 idiosyncratic shock
sorted portfolios, which serve as representative groups for capturing belief heterogeneity across firms (Section 6). To isolate
cross-sectional variation, I demean each variable across the portfolios, defining x̃i,t = xi,t− 1

5

∑5
j=1 xj,t for variable x. This

specification can be estimated using panel methods with firm and time fixed effects. To isolate the contribution of belief
distortions, I further decompose each subjective expectation Ft into its rational expectation Et and its distortion Ft − Et:

∆l̃i,t+1 = αi − β1,EEt[r̃i,t,t+j ]− β1,F (Ft[r̃i,t,t+j ]− Et[r̃i,t,t+j ])

+ β2,EEt[ẽi,t,t+j ] + β2,F (Ft[ẽi,t,t+j ]− Et[ẽi,t,t+j ]) + β3δ̃i,t + εi,t+1.
(A.11)
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Figure A.15: Time-Series Decomposition of the U.S. Unemployment Rate

Notes: Figure plots decompositions of log annual growth in the unemployment rate from equation (A.81), using rational expectations
Et and belief distortions Ft − Et of expected cash flows and discount rates. Labor market factors include the log annual growth of
lagged unemployment ∆ut, labor market tightness ∆θt and job separations ∆δt. Residual (dark gray) represents the variation in
vacancy filling rates that are not captured by the other components. Subjective expectations Ft are based on survey forecasts from
CFOs and IBES financial analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory
(LSTM) neural networks. NBER recessions are shown with light gray shaded bars.

If firms overreact to news about cash flows, we expect significant positive coefficients on β2,F, reflecting inflated expectations
of future cash flows that induce excessive hiring. Similarly, if firms overreact to news about discount rates, we may observe
large distortions in β1,F.

Table A.8 column (3) predicts portfolio-level employment growth using only machine forecasts of future returns and
earnings growth. Rational return expectations Et[r̃i,t,t+j ] predict future employment growth (coefficient -0.498), consistent
with the search model’s implication that firms hire more when the expected value of a match rises due to lower discounting.
In contrast, the rational cash flow expectation Et[ẽi,t,t+j ] is not a significant predictor, although the size of the estimate
remains nontrivial (coefficient 0.154).

Column (4) extends the baseline model by incorporating belief distortions in subjective return and cash flow expecta-
tions. Strikingly, distortions in subjective cash flow expectations Ft[ẽi,t,t+j ]−Et[ẽi,t,t+j ] emerge as the dominant predictor
of future employment growth, with a large and statistically significant coefficient of 0.759. At the same time, the coefficient
on the machine return forecast falls to -0.119 and becomes statistically insignificant. The inclusion of belief distortions
substantially improves the model’s predictive accuracy. The adjusted R2 rises from 0.135 to 0.253 in-sample, and the out-
of-sample R2 rises from 0.207 to 0.443, indicating that distorted expectations provide explanatory power beyond what is
captured by rational benchmarks. These cross-sectional findings reinforce the aggregate evidence that survey expectations
embed economically meaningful belief distortions driven by boom-bust cycles that help explain differences in hiring across
firms.

Discussion The results can be informative about whether the survey-based subjective expectation is observationally
equivalent to rational expectations. If subjective beliefs differ from rational beliefs only through a change of measure based
on a Radon–Nikodym derivative that preserves its pricing implications, then subjective and rational forecasts should have
equal predictive power for unemployment and hiring. While the gap Ft − Et might initially appear to represent a risk
premium that should affect hiring, the crucial constraint is that pricing implications are preserved. This requires both
return and cash flow expectations to move in perfect lock-step, canceling out their individual effects on the hiring decision.
In that case, the difference between the two expectations should be pure noise and should not improve predictions.

However, the predictive regressions show that the belief distortion component Ft − Et has a highly significant ex-
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planatory power for both aggregate unemployment and cross-sectional employment growth. These results reject the null
of observational equivalence and suggest that the implied stochastic discount factor under subjective beliefs is distinct
from the one used under rational expectations. This difference implies that deviations from rational expectations can
meaningfully influence real decisions.

In particular, the cross-sectional predictability results point to a meaningful departure from standard search models
that assume a common, rational stochastic discount factor across firms. Rather than rational variation in discount rates,
the evidence indicates that distorted beliefs about future cash flows are the main driver of both aggregate unemployment
fluctuations and cross-sectional differences in hiring. If subjective and rational beliefs differed only by a change of measure,
they would have similar predictive power. The result that belief distortions in cash flows predict cross-sectional differences
in hiring better than rational discount rate forecasts suggests that the distortion term varies substantially across firms.
Firm-specific differences in the distortion term implies that subjective beliefs influence the perceived value of job creation
in firm-specific ways, possibly reflecting differences in perceived patience or risk even when fundamentals are held constant.
These findings suggest the need for models that allow for heterogeneous and biased beliefs, rather than relying on a uniform
stochastic discount factor with no distortions.

A.6 Method of Simulated Moments Estimation
This section describes the Method of Simulated Moments (MSM) implementation for the constant-gain learning model.

The estimation proceeds in three steps: (i) define the parameters to be estimated, (ii) specify the empirical statistics SN

to be matched, and (iii) derive the model-implied counterparts S(θ) that map parameters into moments.

Parameters estimated. The MSM estimation targets a parameter vector

θ ≡ (ν, ϕ, σu, rf , γ, ϕe, σv) ,

where ν is the constant-gain learning rate, (ϕ, σu) govern the aggregate earnings process, rf is the risk-free rate, γ is
relative risk aversion, and (ϕe, σv) govern the idiosyncratic earnings process. Other parameters (e.g., separation rate,
matching-function elasticity) are calibrated externally as described in Table 2.

Empirical statistics. The set of empirical statistics SN used in the objective function consists of twelve moments:
the volatility and autocorrelation of aggregate price–earnings ratios, the volatility of aggregate stock returns, the volatility
of aggregate earnings growth, the volatility of the vacancy filling rate, three statistics for idiosyncratic earnings growth
(variance, autocorrelation, and cross-sectional dispersion), the volatility of idiosyncratic stock returns, the volatility of
idiosyncratic price–earnings ratios, the mean price–earnings ratio, and the Coibion–Gorodnichenko regression slopes at
horizons h = 4 and h = 8. The degrees of freedom for the over-identification test therefore correspond to twelve matched
moments and seven free parameters.

Model mappings. The model delivers simulated analogs S(θ) for each of the nine empirical statistics. These mappings
tie the data moments directly to the estimated parameters. For the earnings growth block, aggregate earnings follow the
process

et = µ+ ϕet−1 + ut, ut ∼ N (0, σ2
u),

so that ∆et = (ϕ − 1)et−1 + ut. In the stationary distribution, the variance of earnings is Var(et) = σ2
u/(1 − ϕ2). This

leads to exact mappings for the variance and autocorrelation of growth:

Var(∆et) =
(ϕ− 1)2

1− ϕ2
σ2
u + σ2

u, (A.12)

ρ∆e(1) =
(ϕ− 1)2 ϕ

1−ϕ2 σ
2
u + (ϕ− 1)σ2

u

(ϕ−1)2

1−ϕ2 σ2
u + σ2

u

. (A.13)

These moments provide direct information about the persistence and volatility parameters (ϕ, σu). For expected returns,
strip prices are given by

P
(h)
t = exp{A(h) +B(h)Ft[µ] + ϕhet},

where the coefficients are defined recursively as

A(h) = A(h− 1)− rf + 1
2
C(h)

(
C(h)− 2γ

)
σ2
u, (A.14)

B(h) =
1− ϕh

1− ϕ
, (A.15)

C(h) = νB(h− 1) + ϕh−1. (A.16)
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The expected return on a strip of maturity h is then

Ft[R
(h)
t+1] = exp{rf + C(h)γσ2

u}. (A.17)

The aggregate stock return is constructed as the value-weighted average of strip returns,

Rt+1 =
∑
h≥1

wt,hR
(h)
t+1, wt,h =

P
(h)
t∑

k≥1 P
(k)
t

. (A.18)

Simulation of (A.17)-(A.18) yields the model-implied mean and volatility of returns, and thereby helps to identify γ jointly
with (ϕ, σu). For the price-earnings ratio, the Campbell-Shiller log-linearization implies

pet = cpe − rt+1 +∆et+1 + ρpet+1, (A.19)

Simulating (A.19) provides the model-implied volatility and persistence of pet, which are jointly informative about ν, ϕ,
and γ. For the Coibion and Gorodnichenko (2015) regression coefficient, start by noting that earnings follow an AR(1)
process

et = µ+ ϕet−1 + ut, ut ∼ N (0, σ2
u),

so that
∆et = (ϕ− 1)et−1 + ut.

Beliefs update with constant gain ν according to

Ft[µ]− Ft−1[µ] = ν
(
∆et − Ft−1[∆et]

)
.

The one-step forecast error is
FEt,1 = ∆et − Ft−1[∆et] = ut − Ft−1[µ],

and the h-step forecast revision is

Revt,h = Ft[∆et+h]− Ft−1[∆et+h] = ϕh−1ν FEt,1 + ϕh−1(ϕ− 1)∆et.

Iterating the updating recursion gives

Ft[µ] = ν

∞∑
j=0

(1− ν)jut−j ,

which implies
Var(Ft[µ]) =

ν
2−ν

σ2
u, Var(FEt,1) =

2
2−ν

σ2
u.

The covariance between earnings growth and the forecast error is

Cov(∆et,FEt,1) = σ2
u − (ϕ− 1)

ν

1− ϕ(1− ν)
σ2
u,

so that
Cov(∆et,FEt,1)

Var(FEt,1)
=

2− ν

2
· 1− ϕ+ ν

1− ϕ+ ϕν
.

Therefore the CG slope is

βCG(h) =
Cov(Revt,h,FEt,1)

Var(FEt,1)
= ϕh−1

[
ν + (ϕ− 1)

2− ν

2
· 1− ϕ+ ν

1− ϕ+ ϕν

]
.

These statistics discipline the constant-gain parameter ν.

MSM criterion. The estimator minimizes the distance between empirical and model-implied moments:

θ̂N = argmin
θ

(SN − S(θ))′W−1
N (SN − S(θ)).

In the first step, the weighting matrix WN is set to the identity. In the second step, it is replaced by a heteroskedasticity
and autocorrelation robust covariance matrix of the empirical moments, with regression-based moments adjusted by the
delta method. The minimized criterion also yields a test of overidentifying restrictions with degrees of freedom equal to
the number of moments minus the number of estimated parameters.

Estimation results. Table A.9 reports the results of the MSM estimation. Panel A compares each data moment to
its model counterpart and reports the t-statistic of the difference based on the step two weighting matrix. Panel B lists
the estimated values of the parameters ν, ϕ, σu, rf , and γ. Panel C reports the parameters that are held fixed during
estimation, such as the time discount factor ρ, matching efficiency B, matching elasticity η, separation rate δ, and vacancy
posting cost κ. The final rows of Panel B report the minimized value of the MSM criterion and the associated p-value
of the overidentification test. These results summarize how the model parameters map into the observed dynamics of
earnings, returns, price-earnings ratios, and learning coefficients, providing a joint test of the model’s ability to replicate
the empirical moments.
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Table A.9: Model Estimation Outcome

Moment or parameter Data Model t statistic

Panel A: Moments

Mean log stock return 0.072 0.088 -0.510
SD log stock return 0.160 0.118 0.568
Mean log risk free rate 0.046 0.045 0.144
Mean of log price earnings 2.980 2.392 0.424
SD of log price earnings 0.285 0.293 -0.084
AC of log price earnings 0.750 0.798 -0.457
SD of aggregate earnings growth 0.268 0.294 -0.455
AC of aggregate earnings growth -0.144 -0.142 -0.045
SD of idiosyncratic earnings growth 0.112 0.091 0.388
AC of idiosyncratic earnings growth -0.027 -0.023 -0.304
CG slope h = 4 aggregate -0.263 -0.266 0.063
CG slope h = 8 aggregate -0.463 -0.454 -0.040

Panel B: Estimated Parameters

Gain coefficient ν 0.013
AR coefficient aggregate ϕ 0.854
AR coefficient idiosyncratic ϕe 0.936
Aggregate shock standard deviation σu 0.271
Idiosyncratic shock standard deviation σv 0.086
Risk free rate rf 0.045
Risk aversion γ 1.647

Test statistic WN 728.457
p value of WN 0.000

Panel C: Assigned Parameters

Time discount factor ρ (Campbell and Shiller (1988)) 0.980
Matching function efficiency B (Kehoe et al. (2023)) 0.562
Matching function elasticity η (Kehoe et al. (2023)) 0.500
Separation rate δ (Kehoe et al. (2023)) 0.286
Per worker hiring cost κ (Elsby and Michaels (2013)) 0.314

Notes: This table reports data moments, moments from the estimated model, parameter estimates, and test statistics. The model is
calibrated at an annual frequency.
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A.7 Regional Model and Shift-Share Instrument
The aggregate analysis in Section 5 shows that belief distortions in subjective expectations play an important role in

explaining hiring fluctuations. This section extends that analysis by exploiting cross-sectional variation in state-level data
to strengthen identification and test whether the theoretical mechanism generalizes beyond aggregate dynamics.

Overview While the aggregate-level variance decompositions are informative, they cannot establish causality. The
limited number of business cycles in the time series also restricts inference. This section addresses these challenges by
extending the aggregate model to a regional framework. In estimating the regional model, I introduce a Bartik shift-share
instrument for survey expectations to address endogeneity challenges in identifying the relative importance of subjective
discount rate and cash flow expectations. Specifically, I investigate whether regional labor markets characterized by more
distorted subjective cash flow expectations experience larger swings in vacancy filling rates. This analysis is motivated
by empirical evidence of substantial geographic variation in unemployment dynamics, especially during crises (Beraja et
al., 2019, Kehoe et al., 2019; Chodorow-Reich and Wieland, 2020). While existing work studies these regional differences
under a rational expectations framework, differences in subjective beliefs may also be an important explanatory factor.

Regional Model To guide the empirical strategy, I extend the baseline search model to a multi-region, multi-sector
environment, building from the models in Kehoe et al. (2019) and Chodorow-Reich and Wieland (2020). The economy
consists of a continuum of islands indexed by s. Each island produces a differentiated variety of tradable goods that is
consumed everywhere and a nontradable good. Both of these goods are produced using intermediate goods. Each consumer
is endowed with one of two types of skills which are used in different intensities in the nontradable and tradable goods
sectors. Labor is immobile across islands but can switch sectors. This assumption aligns with empirical evidence indicating
that labor markets are predominantly local in nature (Manning and Petrongolo, 2017). Consumers receive utility from
a composite consumption good that is either purchased in the market or produced at home. Consumers and firms are
ex-ante homogeneous and share the same subjective belief measure Ft[·]. The islands only differ in the shocks that hit
them.

Predictability of Regional Unemployment Rates In this environment, the log unemployment rate us,t+1 in
region s approximately satisfies the following predictive relationship:

us,t+1 = βrFt[rs,t,t+h] + βeFt[es,t,t+h] + γ′Xs,t + αs + αt + εs,t+1 (A.20)

where Xs,t ≡ [us,t, log θs,t, log δs,t]
′ collects standard labor market controls: the lagged unemployment rate us,t, the log

vacancy-to-unemployment ratio log θs,t, and the log separation rate log δs,t. The cross-sectional unit s corresponds to U.S.
states, and time t is measured at the monthly frequency. Following Korniotis (2008), each firm is assigned to the state in
which it is headquartered. The regression includes state fixed effects αs to absorb time-invariant regional heterogeneity
and time fixed effects αt to capture national shocks. The coefficients of interest, βr and βe, quantify the effect of subjective
expectations about discount rates and cash flows, respectively, on future unemployment.

This regional equation extends the aggregate specification in equation (A.6), and is designed to test whether perceived
shocks to discount rates or earnings forecasts help explain variation in unemployment across local labor markets. If firms
form biased beliefs about future returns or earnings, those belief distortions should manifest in regional hiring behavior
and thus influence unemployment at the state level. A counterpart regression can be estimated under rational expectations
by replacing Ft[·] with machine learning-based forecasts Et[·].

Empirical Specification: OLS As a baseline, I estimate the regression above using multivariate OLS applied to
a panel of state-level data. This allows for a direct assessment of whether variation in firm-level beliefs, aggregated to
the state level, predicts changes in unemployment. The future price-earnings ratio term Ft[pes,t,t+h] is omitted from
the regression due to its near collinearity with forecasted discount rates and cash flows via the present-value identity of
Campbell and Shiller (1988). State-level forecasts of discount rates Ft[rs,t,t+h] are constructed from IBES price target
forecasts. These targets are used to infer expected returns by back-solving from analysts’ price projections. Forecasts are
assigned to states based on firm headquarters and then aggregated using value-weighted averages. Expected cash flows
Ft[es,t,t+h] are constructed analogously from IBES analyst forecasts of earnings per share.

Regional labor market variables are constructed from publicly available BLS datasets. Unemployment rates us,t are
sourced from the Local Area Unemployment Statistics (LAUS). The vacancy-to-unemployment ratio θs,t is computed
using job openings from the state-level Job Openings and Labor Turnover Survey (JOLTS) combined with unemployment
counts from LAUS. Separation rates δs,t are also taken from JOLTS. Monthly series are time-aggregated to the quarterly
frequency by averaging values within each quarter.

Empirical Specification: Bartik Shift-Share Instrument A key challenge in estimating the regional decompo-
sition is that regional labor market conditions and subjective expectations may be jointly determined, potentially leading
to biased estimates. For example, firms might revise their beliefs in response to local shocks in unemployment or hiring,
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making it difficult to separate cause from effect. Additionally, state-level aggregates of firm-level forecasts may suffer from
measurement error if the geographic scope of a firm’s operations does not align with the location of its headquarters.

To address these concerns, I construct a leave-one-out Bartik-style shift-share instrument F̂t[ys,t,t+h] that isolates
plausibly exogenous variation in subjective expectations at the regional level, while avoiding mechanical feedback between
local shocks and the national forecast component:

F̂t[ys,t,t+h] =
∑
i∈I

ϕs,i,t−1 · F−s
t [yi,t+h], ϕs,i,t =

Ls,i,t∑
i′∈I Ls,i′,t

, y ∈ {r, e} (A.21)

Here, ϕs,i,t denotes the lagged employment share of industry i in state s, sourced from the Quarterly Census of
Employment and Wages (QCEW). F−s

t [yi,t+h] is the national IBES forecast for industry i constructed by excluding all firms
headquartered in state s. The leave-one-out structure ensures that local shocks in state s do not mechanically influence the
national industry-level forecasts used to construct the instrument, strengthening the validity of the exogeneity assumption.
Using the leave-one-out Bartik instrument, I estimate the following predictive regression:

us,t+1 = βrF̂t[rs,t,t+h] + βeF̂t[es,t,t+h] + γ′Xs,t + αs + αt + εs,t+1 (A.22)

The coefficients βr and βe now reflect the causal effect of variation in subjective discount rate and earnings expectations
that is exogenous to state-specific labor market conditions.

Identification Assumptions Compared to the OLS specification, the Bartik approach offers stronger identification
by addressing both measurement error and endogeneity concerns. First, it reduces measurement error by replacing noisy
state-level aggregates of firm-level forecasts with industry-level forecasts weighted by predetermined employment shares.
Second, it mitigates endogeneity by exploiting the fact that national industry trends in expectations are unlikely to respond
to contemporaneous state-level labor market shocks.

For example, consider a scenario where national energy sector earnings expectations surge due to geopolitical devel-
opments. The shift-share instrument would assign Texas (with high energy employment shares) a much larger increase
in instrumented expectations than Vermont (with minimal energy exposure). Crucially, this variation stems from pre-
determined industrial composition interacted with national sectoral trends, rather than from endogenous responses to
Texas-specific labor market conditions or measurement error in aggregating individual firm forecasts within Texas.

The identifying assumption is that, conditional on fixed effects and controls, there are no omitted factors that si-
multaneously affect both national industry-level expectations and local hiring behavior in states more exposed to those
industries. While many shift-share designs rely on the exogenous shocks assumption, in our setting the exogenous shares
assumption is likely more appropriate. In sectors where specific regions have large exposures to (e.g., Texas in oil energy),
national energy industry-level expectations Ft[ei,t,t+h] may be influenced by news from firms headquartered in those re-
gions. Even with the leave-one-out construction, regional developments can create spillover effects that contaminate the
national industry shock. For example, a slowdown in hiring or disappointing earnings guidance from large Texas energy
firms could cause IBES analysts to revise downward their national energy sector earnings forecasts. If so, the national
shock would be endogenous to Texas-specific developments, violating the exogenous shock assumption. In contrast, the
state-level industry shares ϕs,i,t−1, measured using lagged QCEW employment data, reflect slow-moving industrial struc-
ture and are plausibly predetermined. We therefore treat industry shares as conditionally exogenous and interpret our
identification through the lens of the exogenous shares assumption following Borusyak et al. (2025).

This assumption would be violated, for example, if pre-existing trends in local demand systematically coincided with
national shocks. To mitigate this concern, I include a rich set of controls and fixed effects. Specifically, state fixed effects αs

absorb time-invariant differences in labor market characteristics across states. Time fixed effects αt account for common
national shocks such as business cycles or federal policy changes. By leveraging only the cross-sectional variation in
state exposure to national shocks, the Bartik specification helps isolate the exogenous component of belief-driven hiring
fluctuations.

Cross-Sectional Decomposition of the State-Level Unemployment Rate Table A.10 reports regression
estimates that evaluate the predictive power of state-level expectations for future unemployment. Each column adds
different combinations of rational or subjective forecasts for discount rates and cash flows, with all specifications controlling
for standard labor market factors and including both state and time fixed effects.

The estimates demonstrate that subjective earnings expectations are not only informative about regional unemploy-
ment but crowd out the predictive power of rational components. Column (1) shows that rational discount rate expec-
tations Et[rs,t,t+5] significantly predict unemployment, with a coefficient of 0.725 and R2 of 0.414. This implies that a
one standard deviation increase in rational discount rate expectations predicts a 0.240 percentage point increase in the
unemployment rate. Column (2) shows that among subjective forecasts, only expected earnings Ft[es,t,t+5] matter, with
a large negative coefficient (−0.817) and higher explanatory power (R2 = 0.558). A one standard deviation increase in
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expected earnings predicts a 0.129 percentage point decrease in the unemployment rate. Column (3) includes both sets
of expectations. Subjective earnings dominate: their coefficient remains significant (−0.791), while rational expectations
become insignificant.

Column (4) repeats the rational-only regression using Bartik instruments; the discount rate remains significant (0.572),
implying a 0.181 percentage point increase in unemployment per standard deviation increase in instrumented discount rate
expectations. In Column (5), only instrumented subjective earnings are significant (−0.690), with a standard deviation
of 0.168 implying a 0.116 percentage point decrease in unemployment. Column (6) confirms that instrumented subjective
earnings expectations (−0.708) continue to drive out all other predictors, implying a 0.119 percentage point decline in
unemployment for a one standard deviation increase.

The shift-share estimates are generally smaller in magnitude than their OLS counterparts, as expected, since the shift-
share instrument isolates only variation that is plausibly exogenous to regional labor market conditions. The attenuation
suggests that some of the OLS signal reflects endogenous responses to regional shocks, such as changes in local labor supply,
that amplify belief-driven dynamics. Nevertheless, the fact that the earnings coefficient remains large and significant
under instrumentation supports a causal interpretation: belief distortions about cash flows play a central role in driving
unemployment fluctuations across regions.

Taken together, the results provide robust evidence that distorted beliefs about future earnings are a key driver of re-
gional labor market volatility. The strong and consistent link between subjective earnings expectations and unemployment,
even when instrumented, suggests that firms’ hiring decisions are shaped not only by fundamentals but also by biased
beliefs. Regions where firms overreact to cash flow news experience deeper hiring cuts during downturns and more aggres-
sive expansions during booms, thereby driving business cycle volatility. These findings indicate that persistent regional
differences in unemployment may arise not only from structural characteristics such as industry mix or demographics, but
also from variation in how firms perceive and respond to economic signals.

Table A.10: Predictability of the State-Level Unemployment Rate

Dependent Variable: Log Unemployment Rate ut+1

OLS Shift-Share Instrument

(1) (2) (3) (4) (5) (6)

Et[rs,t,t+h] 0.725∗∗∗ 0.470 0.572∗∗∗ 0.207
(0.235) (0.780) (0.222) (0.240)

Et[es,t,t+h] -0.247 -0.065 -0.064 0.005
(0.499) (0.182) (0.075) (0.168)

Ft[rs,t,t+h] 0.248 0.233 0.052 0.052
(0.297) (0.300) (0.228) (0.228)

Ft[es,t,t+h] -0.817∗∗∗ -0.791∗∗∗ -0.690∗∗∗ -0.708∗∗∗

(0.236) (0.242) (0.160) (0.200)

R2 0.414 0.558 0.558 0.414 0.549 0.549
State FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Labor Market Factors Yes Yes Yes Yes Yes Yes
N 4,358 4,358 4,358 4,358 4,358 4,358

Notes: Labor market factors include the log annual growth of lagged log unemployment rate us,t, log labor market tightness log θs,t
and log job separation rate log δs,t. The sample is quarterly from 2005Q1 to 2023Q4. Newey-West corrected t-statistics with lags
= 4 are reported in parentheses: ∗sig. at 10%. ∗∗sig. at 5%. ∗∗∗sig. at 1%.
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A.8 Capital Investment
This section extends the baseline model by incorporating firm investment decisions and distinguishing between tangible

and intangible capital. I show how belief distortions about future returns and earnings influence not only hiring decisions,
but also capital investment behavior. I then decompose the investment rate into components associated with discount
rates and cash flows.

Model Setup I assume firms produce output using a Cobb-Douglas production function that depends on both capital
and labor inputs:

Yi,t = Ai,tK
α
i,tL

1−α
i,t

where Ai,t denotes total factor productivity, Ki,t = Kphy
i,t +K int

i,t is total capital input composed of tangible and intangible
capital, and Li,t is labor input. Following Hall (2001) and Hansen et al. (2005), I treat tangible and intangible capital as
perfect substitutes. Earnings are defined as:

Ei,t = Yi,t −Wi,tLi,t − κVi,t − Ii,t − ϕ

(
Ii,t
Ki,t

)
Ki,t

where Wi,t is the wage rate, κVi,t is the vacancy posting cost, Ii,t = Iphyi,t + I inti,t is total investment, and ϕ(·) denotes
convex adjustment costs. I adopt a piecewise-quadratic specification for ϕ(·) with different coefficients for expansion and
contraction:

ϕ

(
Ii,t
Ki,t

)
=


c+
k
2

(
Ii,t
Ki,t

)2
if Ii,t ≥ 0

c−
k
2

(
Ii,t
Ki,t

)2
if Ii,t < 0

Firms choose investment Ii,t and vacancies Vi,t to maximize firm value:

V (Ai,t,Ki,t, Li,t) = max
Ii,t,Vi,t

{Ei,t + Ft [Mt+1V (Ai,t+1,Ki,t+1, Li,t+1)]}

subject to both capital and employment accumulation equations:

Ki,t+1 = (1− δki,t)Ki,t + Ii,t

Li,t+1 = (1− δli,t)Li,t + qtVi,t

The first order condition with respect to investment implies:

1 + ϕ′

(
Ki,t+1 − (1− δki,t)Ki,t

Ki,t

)
=

Pi,t

Ki,t+1

where Pi,t = Ft[Mt+1V (Ai,t+1,Ki,t+1)] is the ex-dividend firm value.

Recovering Intangible Capital To estimate intangible capital, I construct a panel of 10 value-weighted portfolios
sorted by their idiosyncratic shock. For each portfolio, I measure realized data on physical capitalKphy

i,t , tangible investment

Iphyi,t , depreciation rates δki,t, and market value Pi,t. The physical capital stock Kphy
i,t is measured using Compustat’s PPEGT

item, and tangible investment Iphyi,t is measured using capital expenditures (CAPX). The depreciation rate δki,t is calculated
as depreciations (DP) as a share of physical capital stock (PPEGT), and applied to both tangible and intangible capital
(Hall, 2001). I construct the firm’s total market value Pi,t as the sum of the market value of equity, the book value of debt,
minus current assets. Starting from an initial value Ki,1970Q1 = Pi,1970Q1, I recursively solve the first order condition for
Ki,t+1, using observed investment, depreciation, and market value. Intangible capital is then recovered as the residual:

K int
i,t = Ki,t −Kphy

i,t
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Decomposition of Investment Rates Taking logs and linearizing the first order condition:

log

(
1 + ck

Ii,t
Ki,t

)
≈ log ck + log

(
Ii,t
Ki,t

)
= log

(
Pi,t

Ki,t+1

)
I decompose the right-hand side into price-to-earnings and earnings-to-capital terms:

log

(
Ii,t
Ki,t

)
︸ ︷︷ ︸

iki,t

= − log ck + log

(
Pi,t

Ei,t

)
︸ ︷︷ ︸

pei,t

+ log

(
Ei,t

Ki,t+1

)
︸ ︷︷ ︸

eki,t

Using a Campbell and Shiller (1988) log-linear approximation for the price-earnings ratio:

pei,t =

h∑
j=1

ρj−1(cpe +∆ei,t+j − ri,t+j) + ρhpei,t+h

Substituting yields the final decomposition:

iki,t = cik −
h∑

j=1

ρj−1ri,t+j +

(
eki,t +

h∑
j=1

ρj−1∆ei,t+j

)
+ ρhpei,t+h

where cik ≡ cpe(1−ρh)

1−ρ
− log ck. To separately analyze tangible and intangible investment, I define ikm

i,t ≡ log(
Imi,t
Ki,t

) and

smi,t ≡ log(
Imi,t
Ii,t

) so that:

ikm
i,t = smi,t + iki,t, m = phy, int

implying the decomposition structure remains unchanged up to an additive shift smi,t. I estimate the decomposition
separately for tangible and intangible investment. The time-series decomposition of the aggregate investment rate is:

ikm
t ≈ −

h∑
j=1

ρj−1Ft[rt+j ] +

(
ekt +

h∑
j=1

ρj−1Ft[∆et+j ]

)
+ ρhFt[pet+h]

where xt =
∑

i∈I xi,t aggregates firm-level variable xi,t. For the cross-section, demeaned variables yield:

ĩk
m

i,t ≈ −
h∑

j=1

ρj−1Ft[r̃i,t+j ] +

(
ẽki,t +

h∑
j=1

ρj−1Ft[∆ẽi,t+j ]

)
+ ρhFt[p̃ei,t+h]

where x̃i,t = xi,t −
∑

i∈I xi,t cross-sectionally demeans variable xi,t.

Results The empirical results mirror those for hiring rates, both in the time series (Figure A.16) and the cross-section
(Figure A.17). Subjective expectations substantially overstate the contribution of cash flows and understate that of discount
rates, both for tangible and intangible investment. Notably, the distortions are stronger for intangible investment, consistent
with greater uncertainty and measurement error in expectations about intangible value creation. These findings highlight
how belief distortions affect not only labor demand but also capital allocation decisions across asset types.
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Figure A.16: Time-Series Decomposition of Capital Investment

(a) Tangible Capital Investment Rate
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(b) Intangible Capital Investment
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of the
aggregate tangible and intangible capital investment rate. Light bars show contributions under rational expectations; dark bars show
contributions under subjective expectations. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95%
confidence intervals with lags = 4.
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Figure A.17: Cross-Sectional Decomposition of Capital Investment

(a) Tangible Capital Investment Rate
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(b) Intangible Capital Investment

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e 
of

 In
ta

ng
ib

le
 In

ve
st

m
en

t V
ar

ia
nc

e

1 2 3 4 5
Horizon (Years)

Discount Rates

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
Horizon (Years)

Cash Flows

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
Horizon (Years)

Future Price-Earnings

Subjective Expectations Rational Expectations

Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the cross-sectional decomposition to the
dispersion of the current tangible and intangible capital investment rate. Firms have been sorted into 10 value-weighted portfolios by
their idiosyncratic shock. Light bars show contributions under rational expectations; dark bars show contributions under subjective
expectations. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.
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A.9 Decreasing Returns to Scale and Composition Effects
Stock market valuations reflect average profits, while hiring decisions depend on marginal profits (Borovickova and

Borovička, 2017). Decreasing returns to scale can amplify unemployment fluctuations even under a rational framework
by making the marginal value of hiring more sensitive to productivity shocks, prompting firms to adjust vacancies more
aggressively in response (Elsby and Michaels, 2013; Kaas and Kircher, 2015). Allowing for decreasing returns to scale
introduces the notion of firm size. Changes in the equilibrium firm size distribution can thus introduce a composition effect
that also contributes to fluctuations in the vacancy filling rate (Solon et al. (1994)).

This section relaxes the constant returns to scale (CRS) assumption by allowing for decreasing returns to scale (DRS)
in the production function. Assume that firm i’s output is Yi,t = F (Li,t) = Ai,tL

α
i,t, where Ai,t is an exogenous productivity

process and 0 < α < 1. This introduces a “DRS wedge” between marginal and average profits:

πi,tLi,t − κVi,t = αAi,tL
α
i,t −Wi,tLi,t − κVi,t = Ei,t − (1− α)Yi,t

where Ei,t ≡ Πi,t − κVi,t is the firm’s earnings, Πi,t ≡ Yi,t −Wi,tLi,t = Ai,tL
α
i,t −Wi,tLi,t is the total profit before wages

Wi,tLi,t and vacancy posting costs κVi,t, and πi,t =
∂Πi,t

∂Li,t
is the marginal profit from hiring. The second term (1− α)Yi,t

is a “DRS wedge” that captures the gap between the average profit and marginal profit. Under DRS, the firm’s hiring
condition becomes:

κ

qt
= Ft

[
∞∑
j=1

1

Ri,t,t+j

(
Ei,t+j

Li,t+1
− (1− α)

Yi,t+j

Li,t+1

)]

where firm i takes the aggregate vacancy filling rate qt as given. Express aggregate earning-employment and output-
employment ratios as the employment-weighted average of firm-level ratios:

κ

qt
= Ft

[ ∑
i

∞∑
j=1

1

Ri,t,t+j

( Ei,t+j

Li,t+1
− (1− α)

Yi,t+j

Li,t+1

) Li,t+1

Lt+1

]

Define Si,t+1 ≡ Li,t+1

Lt+1
as the employment share, ELi,t+j ≡ Ei,t+j/Li,t+1 the earnings-employment ratio, and Y Li,t+j ≡

Yi,t+j/Li,t+1 the output-employment ratio of firm i. Log linearize the expression around the steady state:

log qt =

∞∑
j=1

∑
i

[
Ft [wr,i,jri,t,t+j ]︸ ︷︷ ︸

Discount Rate

− Ft [wel,i,jeli,t+j ]︸ ︷︷ ︸
Cash Flow

(Earnings-Employment)

+ Ft [wyl,i,jyli,t+j ]︸ ︷︷ ︸
Cash Flow

(Output-Employment)

− Ft [ws,i,jsi,t+1]︸ ︷︷ ︸
Employment Share

]
(A.23)

where ri,t,t+j , eli,t+j , yli,t+j , and si,t+1 denote log deviations of Ri,t,t+j , ELi,t+j , Y Li,t+j , and Si,t+1 from the steady state

state, respectively. The coefficients wr,i,j = ws,i,j ≡ q
κ

(ELi+(1−α)Y Li)·Si

R
j
i

, wel,i,j ≡ q
κ

ELi·Si

R
j
i

, and wyl,i,j ≡ (1− α) q
κ

Y Li·Si

R
j
i

are functions of steady-state values and linearization constants. Note that si,t+1 is constant in j and that the effective
weight is the sum of the ws,i,j ’s. α = 0.72 comes from the labor share, κ = 0.133 comes from the flow vacancy cost (Elsby
and Michaels, 2013). q = 0.631, Ri = 1.04, EL = 0.014, Y L = 0.074 are long-run sample averages. Finally, approximate
the infinite sum by truncating up to h periods.

The expected output-employment ratio Ft[yli,t+j ] captures the DRS wedge, and the employment share si,t+1 captures
composition effects of changes in the firm size distribution. I measure the expected output-employment ratio Ft[yli,t+j ] by
using IBES sales forecasts. Figure A.18 shows that under subjective expectations, the output-employment term accounts
for roughly 30% of the variation in the vacancy filling rate, while the earnings-employment term explains slightly less than
60%. The compositional term is small. These results confirm that even under DRS, subjective cash flow expectations,
whether expressed in average or marginal terms, remain the dominant driver of hiring fluctuations.

A.10 On-the-Job Search
The baseline model assumes that all hires come from the pool of unemployed workers. However, measured earnings

and hiring flows reflect contributions from both unemployed-to-employed (UE) and job-to-job (J2J) transitions. To better
capture the sources of observed hiring, this section extends the baseline model to allow for on-the-job search. This
modification draws on recent work modeling labor market flows with job-to-job transitions (Kuhn et al., 2021; Faberman
et al., 2022). Let a fraction ϕ of employed workers search for jobs each period, in addition to the unemployed. The total
number of searchers is:

St = Ut + ϕLt = Ut + ϕ(1− Ut), (A.24)
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Figure A.18: Time-Series Decomposition of the Vacancy Filling Rate: Decreasing Returns to Scale
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Notes: This figure illustrates the components of the time-series decomposition of aggregate vacancy filling rate under decreasing
returns to scale, based on equation (A.23). The components of the decomposition are expected present discounted values of discount
rate, earnings-employment ratio, output-employment ratio, and the employment share. The light bars show the contributions to the
vacancy filling rate obtained under rational expectations. The dark bars show the contributions to the time-series variation in the
vacancy filling rate obtained in subjective expectations. Subjective expectations Ft are based on survey forecasts of CFOs and IBES
financial analysts. Rational expectations Et are based on machine learning forecasts from Long Short-Term Memory (LSTM) neural
networks. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4.

where Ut is the unemployment rate and Lt = 1−Ut is the employment rate. Vacant firms post Vt vacancies, and matches
form via a constant returns to scale matching function M(St, Vt). Not all on-the-job searchers who receive an offer accept
it. Let χ ∈ (0, 1) denote the fraction of employed searchers who accept a job offer. The effective hiring efficiency from the
firm’s perspective is:

φt =
Ut + χϕ(1− Ut)

Ut + ϕ(1− Ut)
. (A.25)

The law of motion for employment becomes:

Lt+1 = (1− δt)Lt + qtφtVt, (A.26)

where δt is the separation rate and qt =
M(St,Vt)

Vt
is the vacancy filling rate. The Bellman equation for the firm’s value is

updated to reflect turnover due to J2J transitions:

V(At, Lt) = max
Vt,Lt+1

{Et + (1− ϕχft)Ft [Mt+1V(At+1, Lt+1)]} , (A.27)

subject to the employment accumulation equation above. The term 1 − ϕχft reflects the retention rate, accounting for
voluntary separations from employed workers who successfully switch jobs. Under constant returns to scale, the firm’s
optimal vacancy posting condition implies:

κ

qtφt
= (1− ϕχft) ·

Pt

Lt+1
, (A.28)

where Pt = Ft [Mt+1V(At+1, Lt+1)] is the ex-dividend firm value and κ is the flow cost of posting a vacancy. Taking logs
and rearranging, the log vacancy filling rate can be written as:

log qt = cq − log(1− ϕχft) + Ft[rt,t+h]− Ft[et,t+h]− Ft[pet,t+h], (A.29)

where cq = log κ− logφt − cpe(1−ρh)

1−ρ
is a constant, rt,t+h is the present value of expected discount rates, et,t+h is expected

cumulative earnings growth, and pet,t+h is the expected terminal price-earnings ratio. This decomposition extends the
Campbell and Shiller (1988) present value identity to account for hiring frictions due to job-to-job transitions. The vacancy
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filling rate qt is computed as the ratio of total hires to vacancies qt = Ht
Vt

using JOLTS data for hires and job openings.
The total search pool St includes both unemployed and a fraction ϕ = 0.12 of employed workers, based on estimates
from Kuhn et al. (2021) and Faberman et al. (2022). The job finding rate is then inferred from the matching function as
ft = qt · θt, where labor market tightness is defined as θt = Vt

St
= Vt

Ut+ϕ(1−Ut)
. I assume that χ = 0.75 of employed job

seekers accept offers. These parameter values imply an endogenous efficiency term φt and a retention rate 1−ϕχft, which
are used to adjust the firm’s hiring incentives and derive the decomposition. Subjective expectations of earnings growth
are from IBES, which aggregates analyst forecasts of total firm earnings and therefore reflect both UE and J2J hires.

Figure A.19 presents the decomposition of the vacancy filling rate under this extended model with on-the-job search.
Consistent with the baseline analysis, the cash flow component remains the dominant driver of variation in the vacancy
filling rate under subjective expectations. However, accounting for job-to-job transitions modestly shifts the decomposition:
the log retention rate term log(1 − ϕχft) explains 8.9% of the variation in log qt. This adjustment reflects the influence
of selective separations on firms’ incentives to post vacancies. Overall, the results reinforce the finding that distorted
cash flow expectations are the primary driver of hiring fluctuations. The extension confirms that even when allowing
for endogenous separations due to on-the-job search, subjective belief distortions about firm-level earnings continue to
dominate the variation in hiring behavior.

Figure A.19: Time-Series Decomposition of the Vacancy Filling Rate: On-the-Job Search
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of
the aggregate vacancy filling rate. Light bars show contributions under rational expectations; dark bars show contributions under
subjective expectations. The sample is quarterly from 2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with
lags = 4.

A.11 Subjective User Cost of Labor
Overview The previous sections show that firms’ hiring decisions are heavily influenced by subjective cash flow ex-
pectations. This section examines whether expectations about the user cost of labor also contribute to hiring behavior,
since it is a key component of the firm’s cash flows. Using survey data, I show that subjective wage expectations are
significantly less cyclical than realized wages, implying that firms perceive labor costs as more rigid than they actually
are. To account for the possibility that wages depend on the economic conditions at the start of the job, I use survey
expectations from the SCE to measure the user cost of labor under subjective expectations. See Section C for more details
about its measurement.

In the search and matching model, the user cost of labor is the difference in the expected present value of wages
between two firm-worker matches that are formed in two consecutive periods. Existing work assumes full information
rational expectations and show that this user cost is more cyclical than flow wages, as workers hired in recessions earn
lower wages both when hired and over time (Kudlyak, 2014; Bils et al., 2023). This section relaxes that assumption by using
survey-based measures of subjective wage expectations. If firms and workers perceive the future path of wages as rigid,
the subjective user cost of labor may remain high even during recessions, dampening hiring and amplifying unemployment
fluctuations.

Time-series evidence Figure A.20 compares realized real wage growth with 1-year-ahead subjective wage growth
forecasts from three sources: the Livingston Survey, the CFO Survey, and the Survey of Consumer Expectations (SCE).
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Actual wage growth is clearly cyclical, with declines during downturns and strong rebounds during recoveries. In contrast,
subjective wage forecasts are far more stable over time. Even during major shocks, such as the 2008 financial crisis and
the COVID-19 recession, survey respondents anticipated only modest wage adjustments. Forecast errors are persistent
and systematically biased: wage growth forecasts overestimate during downturns and underestimate during expansions.

Figure A.20: Real Wage Growth: Actual vs. Subjective Expectations

Notes: This figure plots ex-post realized outcomes (Actual) and 1-year ahead subjective expectations (Survey) of real wage growth.
x axis denotes the date on which actual values were realized and the period on which the survey forecast is made, making the vertical
distance between the actual and survey lines the forecast error. Subjective expectations Ft are based on survey forecasts. Left panel
compares actual values of annual log real wage growth against the median consensus forecasts from the Livingston survey, where
wages are measured using average weekly earnings of production and nonsupervisory employees, manufacturing (CES3000000030).
Right panel compares annual log real wage growth against median consensus forecasts from the CFO survey and the subjective user
cost of labor measured from the Survey of Consumer Expectations (SCE), where wages are measured using average hourly earnings
of production and nonsupervisory employees, total private (CEU0500000008). Actual values are deflated using the Consumer Price
Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of nominal wage growth are deflated using median consensus
forecasts of CPI inflation from the Livingston, SPF, and SCE surveys, respectively. The sample period for Livingston is semi-annual
spanning 1961S1 to 2022S2, CFO survey is quarterly spanning 2001Q4 to 2023Q4, SCE is monthly spanning 2015M5 to 2022M12.
NBER recessions are shown with gray shaded bars.

To formally assess the cyclicality of real wage growth, Table A.11 panel (a) compares the relationship between changes
in the unemployment rate and real wage growth across rational and subjective expectations. As a rational expectations
benchmark, I use historical data on actual real wage growth to estimate the following regression, replicating existing
estimates in the literature (e.g., Bils, 1985; Solon et al., 1994; Gertler et al., 2020):

∆ logwt = β0 + β1∆ut + εt

where ∆ logwt represents the actual annual log growth rate of real wages, ∆ut is the annual change in the unemployment
rate, and εt is the error term. β1 is the coefficient of interest and captures the cyclicality of real wage growth.

Under subjective expectations, I use survey data on expected real wage growth to estimate:

Ft−1[∆ logwt] = β0 + β1Ft−1[∆ut] + εt

where Ft−1[∆ logwt] is the median survey forecast for the annual log growth rate of real wages, where the surveys are
either from Livingston, CFO, or SCE. Ft−1[∆ut] is the median survey forecast of the annual change in the unemployment
rate from the Survey of Professional Forecasters (SPF). The coefficient of interest β1 measures the cyclicality of expected
real wage growth as perceived by survey respondents.

Table A.11 panel (a) reports the estimates. Under rational expectations, actual real wage growth is clearly cyclical
since it is significantly negatively related to changes in unemployment rates. The magnitude of the estimate is also
consistent with prior estimates in the literature, with elasticities ranging from -3.05 to -3.46 depending on the sample
period (Solon et al., 1994). In contrast, subjective wage growth expectations are acyclical, with small and statistically
insignificant coefficients across all survey sources and sample periods. Notably, the magnitude of the estimated elasticity
is an order of magnitude smaller, ranging from -0.20 to -0.97 depending on the survey measure and sample period.
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Table A.11: Cyclicality of Real Wage Growth: Actual vs. Subjective Expectations

(a) Aggregate Time-Series
Actual: ∆ logwt = β0 + β1∆ut + εt

Subjective: Ft−1[∆ logwt] = β0 + β1Ft−1[∆ut] + εt

1961S1-2022S2 2001Q4-2023Q4 2015M5-2022M12

Actual

Survey
Median
(Liv) Actual

Survey
Median
(CFO) Actual

Survey
User Cost
(SCE)

(1) (2) (3) (4) (5) (6)

Unemployment Rate −0.0340∗∗∗ −0.0020 −0.0305∗∗∗ 0.0006 −0.0346∗∗∗ −0.0086
t-stat (−3.8684) (−0.1568) (−4.2477) (0.0800) (−6.6994) (−1.6332)

Adj. R2 0.1021 0.0003 0.2557 0.0001 0.4719 0.0498
N 124 124 85 85 92 92
Frequency SA SA Q Q M M
Sector Mfg Mfg Pvt Pvt Pvt Pvt

(b) Worker-Level New Hire Effect
Subjective: Ft−1[∆ logwi,t] = β0 + β1Ft−1[∆ut] + Ft−1[I{Ni,t = 1}] · [β2 + β3Ft−1[∆ut]] + εi,t

2015M5-2022M12

Survey
(SCE)

Survey
(SCE)

(1) (2)

First
Difference

Fixed
Effects

Unemployment Rate -0.0048 -0.0028
(0.0029) (0.0026)

New Hire 0.0036∗∗∗ 0.0003
(0.0009) (0.0013)

Unemployment Rate × New Hire -0.0026 -0.0059
(0.0020) (0.0035)

Adj. R2 0.0011 0.0036
N 39,832 39,832
Frequency M M
Sector Pvt Pvt

Notes: Table reports estimates from time-series and worker-level regressions of annual log real wage growth on unemployment
growth. Subjective expectations Ft are based on survey forecasts. Panel (a) reports estimates from time-series regressions using
the aggregate series. Panel (a) Columns (1)-(2) compare actual values of annual log real wage growth against the median consensus
forecasts from the Livingston survey, where wages are measured using average weekly earnings of production and nonsupervisory
employees, manufacturing (CES3000000030). Panel (a) Columns (3)-(6) compare compares annual log real wage growth against
median consensus forecasts from the CFO survey and the subjective user cost of labor measured from the Survey of Consumer
Expectations (SCE), where wages are measured using average hourly earnings of production and nonsupervisory employees, total
private (CEU0500000008). Panel (b) reports worker-level estimates from regressions of SCE survey expectations of wage growth on
survey expectations of unemployment growth, an indicator of whether the worker is a new hire, and the interaction between the two.
Actual wage growth is deflated using the Consumer Price Index (CPIAUCSL). Livingston, CFO, and SCE survey expectations of
nominal wage growth are deflated using median consensus forecasts of CPI inflation from the Livingston, SPF, and SCE surveys,
respectively. Subjective expectations of unemployment rates are from 1-year ahead consensus median forecasts from the SPF. The
sample period for Livingston is semi-annual spanning 1961S1 to 2022S2, CFO survey is quarterly spanning 2001Q4 to 2023Q4, SCE
is monthly spanning 2015M5 to 2022M12. Panel (a): Newey-West corrected t-statistics with lags 2 (semi-annual), 4 (quarterly), 12
(monthly) are reported in parentheses; Panel (b): Standard errors clustered by worker are reported in parentheses. ∗sig. at 10%.
∗∗sig. at 5%. ∗∗∗sig. at 1%.
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Cross-Sectional evidence To explore these patterns at the individual level, I use microdata from the SCE to estimate
subjective wage cyclicality separately for new hires and incumbents. The regression specification relaxes the rational
expectations assumption from Gertler et al. (2020) and includes an interaction between expected unemployment growth
and the probability of being a new hire:

Ft−1[∆ logwi,t] = β0 + β1Ft−1[∆ut] + Ft−1[I{Ni,t = 1}] · [β2 + β3Ft−1[∆ut]] + εi,t

where Ft−1[∆ logwi,t] represents the time t− 1 subjective expectation of wage growth for worker i at time t. Ft−1[∆ut] is
the survey expectation of aggregate unemployment growth. The indicator variable I{Ni,t = 1} equals one if the worker is
newly hired and zero otherwise. Its expectation Ft−1[I{Ni,t = 1}] is thus the subjective probability that the worker will be
newly hired next period. The interaction term Ft−1[I{Ni,t = 1}] ·Ft−1[∆ut] captures the differential sensitivity of expected
wage growth to unemployment changes for new hires relative to incumbents. The error term εi,t accounts for individual-
level deviations in expectations. The coefficient β1 captures the overall cyclicality of subjective wage expectations for
workers whose new-hire probability is zero (incumbents), reflecting how much workers expect wages to change in response
to shifts in aggregate unemployment. The coefficient β2 measures the baseline difference in expected wage growth between
new hires and existing workers when expected unemployment growth is zero. The interaction term β3 determines whether
new hires expect wages to be more sensitive to unemployment fluctuations than incumbents do.

The results in Table A.11 panel (b) column (1) show that, even after controlling for differences between job stayers
and new hires, subjective wage expectations are highly rigid and exhibit weak cyclicality. The coefficient β1 is negative but
small, confirming the aggregate result in panel (a) that workers that are not new hires expect only mild wage adjustments
in response to unemployment fluctuations. The estimate for β2 is positive, suggesting that, on average, new hires expect
higher wage growth than job stayers. The interaction term β3 is negative but small in magnitude, implying that new
hires do not expect substantially greater cyclicality in wages compared to incumbents. Column (2) extends column (1)
by including worker fixed effects to find similar results. These findings extend the results from aggregate regressions by
showing that subjective wage expectations are highly rigid even at the individual level, regardless of job transitions. Both
new hires and incumbents perceive only weak cyclical variation in wages.

Implications for macroeconomic models These findings could have important implications for macroeconomic
models of unemployment fluctuations. If firms do not expect wages to fall during downturns, then the subjective user
cost of labor remains high even as demand declines, suppressing job creation. This mechanism is consistent with models
that rely on wage rigidity to explain labor market volatility (Shimer, 2005; Hall, 2005; Christiano et al., 2016). These
results suggest that it could be reasonable for macroeconomists to introduce rigid wages under subjective expectations
to explain the volatility of business cycle fluctuations (e.g., Menzio (2023)). Moreover, the persistence of subjective
wage expectations may reflect underlying frictions in information processing. Survey data on wage expectations can help
distinguish between alternative theories of wage formation. Unlike rational models where the timing of wage payments
is irrelevant (Barro, 1977), models with sticky or inattentive expectations, such as those in Mankiw and Reis (2002) or
Coibion and Gorodnichenko (2015), can be better suited to capture the persistent behavior of expected wages. Finally,
the finding that subjective cost of labor is rigid suggests that volatile subjective cash flow expectations are unlikely to be
driven by fluctuations in the user cost of labor. Instead, firms may be overreacting to other components of profitability,
such as revenue expectations or perceived demand conditions, rather than expected changes in labor costs.

B Model Details

B.1 Representative Agent Model
In this section, I present a search and matching model based on Diamond (1982), Mortensen (1982), and Pissarides

(2009). The model introduces subjective beliefs that may depart from rational expectations, thereby capturing the impact
of belief distortions on labor market dynamics. See Petrosky-Nadeau et al. (2018) for a standard search and matching model
formulated under rational expectations. I begin with a representative firm setup to develop intuition for the aggregate
dynamics, then extend the model in Section B.2 to include firm heterogeneity to support the cross-sectional analysis.
Consider a discrete time economy populated by a representative household and a representative firm that uses labor as a
single input to production.

Representative Household The household has a continuum of mass 1 members who are either employed Lt or
unemployed Ut at any point in time. The population is normalized to 1, i.e., Lt + Ut = 1, meaning that Lt and Ut are
also the rates of employment and unemployment, respectively. The household’s consumption decision implies a stochastic
discount factor Mt+1. The household pools the income of all members before making its consumption decision. Assume
that the household has perfect consumption insurance and its members have access to complete contingent claims against
aggregate risk. Risk sharing implies each member consumes the same amount regardless of idiosyncratic shocks.
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Search and Matching At the start of period t, the employment stock Lt reflects the total number of workers carried
over from the previous period before any separations or new hires in period t. A fraction δt of these workers separate during
the period, so the number of continuing employees becomes (1− δt)Lt. The representative firm posts job vacancies Vt and
engages in search over the course of the period to attract unemployed workers Ut. Matches are formed at the end of period
t according to a matching function m(Ut, Vt), where qt ≡ m(Ut, Vt)/Vt is the vacancy filling rate, and ft ≡ m(Ut, Vt)/Ut

is the job finding rate. These new matches become part of the workforce starting in period t + 1, so employment evolves
according to the employment accumulation equation:

Lt+1 = (1− δt)Lt + qtVt (A.30)

The vacancy filling rate qt maps vacancy posting decisions made during period t into employment outcomes observed at
the beginning of period t + 1. The variance decomposition does not require us to fully specify the matching function m.
Posting a vacancy costs the firm κ > 0 per period, reflecting fixed hiring costs such as training and administrative setup.
Jobs are destroyed at a time-varying job separation rate δt. Unemployment Ut = 1− Lt evolves according to:

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (A.31)

where θt = Vt/Ut denotes labor market tightness, defined as the vacancy-to-unemployment ratio.

Representative Firm The firm has access to a production function F which uses labor Lt as an input to produce
output Yt = F (Lt). Dividends to the firm’s shareholders Et are defined as Et ≡ Πt − κVt, where Πt ≡ Yt −WtLt is the
total profit before vacancy posting costs κVt and Wt is the wage rate. As in Petrosky-Nadeau et al. (2018), I assume that
the representative household owns the equity of the firm, and that the firm pays out all of its earnings as dividends. I also
assume that firms have the same unconstrained access to financing as investors in the financial market. The firm posts the
optimal number of vacancies to maximize the cum-dividend market value of equity St:

St = max
{Vt+j ,Lt+j}∞j=0

Ft

[
∞∑
j=0

Mt,t+jEt+j

]
(A.32)

subject to the employment accumulation equation (A.30). The firm takes the wage rate Wt, household’s stochastic discount
factor Mt,t+j =

∏j
s=1 Mt+s, and vacancy filling rate qt as given. Ft[·] denotes expectations conditional on information

available at period t, computed based on the firm’s possibly distorted beliefs. These beliefs may depart from rational
expectations Et[·], with the nature and magnitude of the deviation disciplined using survey data.

Hiring Equation The firm’s optimal hiring decision equates the expected discounted value of hiring a marginal worker
with its marginal cost. Rewrite the firm’s problem in equation (A.32) from infinite-horizon to recursive form:

St = max
Vt,Lt+1

Πt − κVt + Ft [Mt+1St+1] (A.33)

s.t. Lt+1 = (1− δt)Lt + qtVt (A.34)

The first-order condition with respect to Vt is:

∂St

∂Vt
= −κ+ Ft

[
Mt+1

∂St+1

∂Lt+1

∂Lt+1

∂Vt

]
= 0 (A.35)

Substitute
∂Lt+1

∂Vt
= qt and

∂Lt+1

∂Lt
= (1− δt) from the employment accumulation equation (A.34), and rearrange (A.35) in

terms of the marginal cost of hiring κ/qt:

κ

qt
= Ft

[
Mt+1

∂St+1

∂Lt+1

]
(A.36)

Next, differentiate St with respect to Lt:

∂St

∂Lt
=

∂Πt

∂Lt
+ Ft

[
Mt+1

∂St+1

∂Lt+1

∂Lt+1

∂Lt

]
(A.37)

Substitute
∂Lt+1

∂Lt
= (1− δt) from the employment accumulation equation (A.34):

∂St

∂Lt
=

∂Πt

∂Lt
+ (1− δt)Ft

[
Mt+1

∂St+1

∂Lt+1

]
(A.38)
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Substitute equation (A.38) for period t+ 1 into equation (A.36):

κ

qt
= Ft

[
Mt+1

(
∂Πt+1

∂Lt+1
+ (1− δt+1)Ft+1

[
Mt+2

∂St+2

∂Lt+2

])]
(A.39)

Finally, substitute in (A.36) for period t+ 1 to arrive at the hiring equation:

κ

qt︸︷︷︸
Cost of hiring

= Ft

[
Mt+1

(
πt+1 + (1− δt+1)

κ

qt+1

)]
︸ ︷︷ ︸

Expected discounted value of hiring

(A.40)

where πt ≡ ∂Πt
∂Lt

is the profit flow from the marginal hired worker. The hiring equation relates the marginal cost of hiring
κ
qt

with the expected marginal value of hiring to the firm, which equals the future expected marginal benefits of hiring
discounted to present value with the stochastic discount factor Mt+1. The future marginal benefits of hiring include πt+1,
the future marginal product of labor net of the wage rate, plus the future marginal value of hiring, which equals the
future marginal cost of hiring κ

qt+1
net of separation (1− δt+1). During recessions, vacancy filling rates qt are high, which

makes the cost of hiring κ/qt low. The low cost of hiring must be rationalized by either low expected discounted profit
flows Ft[Mt+1πt+1] or low future value of hiring (1 − δt+1)

κ
qt+1

. The hiring equation is the labor market analogue of the

optimality condition for physical capital in the q theory of investment (Hayashi, 1982), where κ/qt is the upfront cost of
investment analogous to Tobin’s marginal q and δt+1 is the depreciation rate.

Constant Returns to Scale (CRS) Next, I derive the firm’s stock price implied by the optimal hiring decision.
Assume a constant returns to scale (CRS) production function so that marginal profits equal average profits:

πt+1Lt+1 =
∂Πt+1

∂Lt+1
Lt+1 = Πt+1 (A.41)

Multiply both sides of the hiring equation by the number of employees Lt+1:

κ

qt
Lt+1 = Ft

[
Mt+1

(
πt+1Lt+1 + (1− δt+1)

κ

qt+1
Lt+1

)]
(A.42)

Substitute in the employment accumulation equation (A.34) and rearrange terms:

κ

qt
Lt+1 = Ft

[
Mt+1

(
πt+1Lt+1 +

κ

qt+1
(Lt+2 − qt+1Vt+1)

)]
(A.43)

= Ft

[
Mt+1

(
πt+1Lt+1 − κVt+1 +

κ

qt+1
Lt+2

)]
(A.44)

Use the constant returns to scale assumption to simplify πt+1Lt+1 − κVt+1 = Πt+1 − κVt+1 = Et+1:

κ

qt
Lt+1 = Ft

[
Mt+1

(
Et+1 +

κ

qt+1
Lt+2

)]
(A.45)

Substitute the equation recursively:

κ

qt
Lt+1 = Ft

[
∞∑
j=1

Mt,t+jEt+j

]
+ lim

T→∞
Ft

[
Mt,t+T

κ

qt+T
Lt+T+1

]
(A.46)

The first term on the right-hand side is the firm’s stock price Pt ≡ St − Et, which is the firm’s ex-dividend equity value.
Take the second term to zero by applying a transversality condition to arrive at an equation that relates the total cost of
hiring with the firm’s stock price:

κ

qt
Lt+1 = Pt (A.47)

where employment Lt+1 is determined at the end of date t under the timing convention from equation (A.30). Take
logarithms of both sides of the firm’s stock price equation (A.47) and rearrange terms:

log κ− log qt = log
Pt

Lt+1
= log

Pt

Et
− log

Et

Lt+1
≡ pet − elt (A.48)

where I define pet ≡ log Pt
Et

and elt ≡ log Et
Lt+1

for notational convenience.
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Log-linear Approximation of Price-Earnings Ratio To express the price-earnings ratio pet in terms of forward-
looking variables, start by log-linearizing the price-dividend ratio pdt = log(Pt/Dt) around its long-term average pd
(Campbell and Shiller, 1988):

pdt = cpd +∆dt+1 − rt+1 + ρpdt+1 (A.49)

where cpd is a linearization constant, rt+1 ≡ log(
Pt+1+Dt+1

Pt
) is the log stock return (with dividends), and ρ ≡ exp(pd)/(1+

exp(pd)) = 0.98 is a persistence parameter that arises from the log linearization. Rewrite the equation in terms of log
price-earnings instead of log price-dividends by using the identity pet = pdt + det, where det log payout ratio:

pet = cpd +∆et+1 − rt+1 + ρpet+1 + (1− ρ)det+1 (A.50)

Since 1 − ρ ≈ 0 and the payout ratio det is bounded, (1 − ρ)det+1 can be approximated as a constant, i.e., cpe ≈
cpd + (1− ρ)det+1 (De La O et al., 2024):

pet ≈ cpe +∆et+1 − rt+1 + ρpet+1 (A.51)

Recursively substitute for the next h periods

pet =

h∑
j=1

ρj−1(cpe +∆et+j − rt+j) + ρhpet+h (A.52)

Decomposition of Vacancy Filling Rate Substitute the log-linearized price-earnings ratio in equation (A.52) into
the hiring equation in equation (A.48):

log qt = log κ− pet − elt = log κ−

[
h∑

j=1

ρj−1(cpe +∆et+j − rt+j) + ρhpet+h

]
− elt (A.53)

Rearrange and collect terms to obtain an ex-post decomposition of the vacancy filling rate:

log qt = cq +

h∑
j=1

ρj−1rt+j︸ ︷︷ ︸
rt,t+h

−

[
elt +

h∑
j=1

ρj−1∆et+j

]
︸ ︷︷ ︸

et,t+h

− ρhpet+h︸ ︷︷ ︸
pet,t+h

(A.54)

where cq ≡ log κ − cpe(1−ρh)

1−ρ
is a constant. The equation decomposes the vacancy filling rate into future discount rates

rt,t+h ≡
∑h

j=1 ρ
j−1rt+j , cash flows et,t+h ≡ elt +

∑h
j=1 ρ

j−1∆et+j , and price-earnings pet,t+h ≡ ρhpet+h. The cash
flow component consists of one period ahead log earnings-employment elt, which captures news about current cash flow
fluctuations, and j = 1, . . . , h period ahead log earnings growth ∆et+j , which captures news about future cash flows. The
earnings-employment ratio can be interpreted as a measure of the marginal product of labor under constant returns to
scale (David et al., 2022). pet,t+h is a terminal value that captures other long-term influences beyond h periods into the
future not already captured in discount rates and cash flows. Since equation (A.54) holds both ex-ante and ex-post, it can
be evaluated under either subjective or rational expectations. The subjective decomposition replaces ex-post realizations
of future outcomes with their subjective expectations:

log qt = cq +

h∑
j=1

ρj−1Ft[rt+j ]︸ ︷︷ ︸
Ft[rt,t+h]

−

[
elt +

h∑
j=1

ρj−1Ft[∆et+j ]

]
︸ ︷︷ ︸

Ft[et,t+h]

− ρhFt[pet+h]︸ ︷︷ ︸
Ft[pet,t+h]

(A.55)

Alternatively, the rational decomposition replaces ex-post realizations of future outcomes with their rational expectations:

log qt = cq +
h∑

j=1

ρj−1Et[rt+j ]︸ ︷︷ ︸
Et[rt,t+h]

−

[
elt +

h∑
j=1

ρj−1Et[∆et+j ]

]
︸ ︷︷ ︸

Et[et,t+h]

− ρhEt[pet+h]︸ ︷︷ ︸
Et[pet,t+h]

(A.56)

Comparing these decompositions can quantify how belief distortions affect the vacancy filling rate.
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Estimation The econometrician can estimate the variance decomposition using predictive regressions of each expected
outcome on the current vacancy filling rate. For the subjective decomposition, demean each variable in equation (A.55),
multiply both sides by the current log vacancy filling rate log qt, and take the sample average:

V ar [log qt] = Cov [Ft[rt,t+h], log qt]− Cov [Ft[et,t+h], log qt]− Cov [Ft[pet,t+h], log qt] (A.57)

where V ar[·] and Cov[·] are sample variances and covariances based on data observed over a historical sample. Finally,
divide both sides by V ar [log qt] to decompose its variance:

1 =
Cov [Ft[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Ft[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Ft[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(A.58)

The left-hand side represents the full variability in vacancy filling rates, hence is equal to one. Each term on the right reflects
the share explained by subjective expectations of discount rates, cash flows, or price-earnings ratios. Under stationarity,
the econometrician can estimate these shares using the OLS coefficients from regressing Ft[rt,t+h], Ft[et,t+h], and Ft[pet,t+h]
on the current log vacancy filling rate log qt, respectively. Finally, the decomposition under rational expectations can be
estimated similarly based on equation (A.56) by replacing the subjective expectation Ft[·] with its rational counterpart
Et[·]:

1 =
Cov [Et[rt,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Discount Rate News

− Cov [Et[et,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Cash Flow News

− Cov [Et[pet,t+h], log qt]

V ar [log qt]︸ ︷︷ ︸
Future Price-Earnings News

(A.59)

Under stationarity, the econometrician can estimate these shares using the OLS coefficients from regressing Et[rt,t+h],
Et[et,t+h], and Et[pet,t+h] on the current log vacancy filling rate log qt, respectively.

B.2 Details on Cross-Sectional Decomposition of Hiring Rate
The cross-sectional analysis employs a firm-level hiring framework that is the direct analogue of the aggregate repre-

sentative firm search model. Both approaches derive from the same fundamental principle: firms hire until the marginal
cost of hiring equals the marginal value of an additional worker. The key difference lies in the level of aggregation and the
specific frictions that generate hiring costs. In the aggregate search model, linear vacancy posting costs (κ per vacancy)
combined with constant returns to scale imply that marginal value equals average value, leading to the simplified hiring
condition κ

qt
= Pt

Lt+1
. For cross-sectional analysis, I retain firm-level heterogeneity and introduce convex adjustment costs

that generate dispersion in hiring rates while preserving the core economic mechanism linking firm valuations to hiring
decisions.

Consider firm i with production function:
Yi,t = Ai,tL

α
i,t (A.60)

where Ai,t represents productivity and Li,t is labor input. The firm’s earnings, net of hiring costs and wages, are:

Ei,t = Yi,t − ϕ

(
Hi,t

Li,t

)
Li,t −Wi,tLi,t (A.61)

where ϕ(·) captures convex adjustment costs for hiring at rate Hi,t/Li,t, and Wi,t is the equilibrium wage. The adjustment
cost function ϕ(·) represents the firm-level analogue of the aggregate matching friction. While the search model features
linear vacancy costs that aggregate to determine the market-wide vacancy filling rate, individual firms face convex costs
when rapidly adjusting their workforce due to capacity constraints in recruitment, training bottlenecks, and organizational
frictions. Firm value satisfies the Bellman equation:

V (Ai,t, Li,t) = max
Hi,t

{
Ei,t + Ft

[
Mt+1

Mt
V (Ai,t+1, Li,t+1)

]}
(A.62)

subject to the employment accumulation equation:

Li,t+1 = (1− δli,t)Li,t +Hi,t (A.63)

where Mt is the stochastic discount factor and δli,t is the job separation rate. The first-order condition with respect to
hiring equates marginal cost to marginal benefit:

ϕ′
(
Hi,t

Li,t

)
= Ft

[
Mt+1

Mt

∂V (Ai,t+1, Li,t+1)

∂Li,t+1

]
(A.64)
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Under constant returns to scale, the envelope theorem yields ∂V
∂L

= V
L
, allowing us to express the marginal value in terms

of observable quantities:

ϕ′
(
Hi,t

Li,t

)
= Ft

[
Mt+1

Mt

V (Ai,t+1, Li,t+1)

Li,t+1

]
=

Pi,t

Li,t+1
(A.65)

where Pi,t is the ex-dividend firm value (stock price). This hiring condition is the firm-level equivalent of the aggregate
search model’s condition κ

qt
= Pt

Lt+1
. Both express the fundamental insight that hiring depends on the ratio of firm value to

employment, but the cross-sectional version allows for firm-specific variation in both the adjustment cost parameters and

the value-to-employment ratios. Assuming quadratic adjustment costs ϕ
(

Hi,t

Li,t

)
= cl

2

(
Hi,t

Li,t

)2
, the marginal cost becomes

ϕ′
(

Hi,t

Li,t

)
= cl

Hi,t

Li,t
, yielding:

cl
Hi,t

Li,t
=

Pi,t

Li,t+1
(A.66)

Taking logs and decomposing the price-to-employment ratio:

ln(cl) + ln

(
Hi,t

Li,t

)
= ln

(
Pi,t

Ei,t

)
− ln

(
Ei,t+1

Ei,t

)
+ ln

(
Ei,t+1

Li,t+1

)
(A.67)

Using lowercase letters to denote log variables, this becomes:

ln(cl) + hli,t = pei,t −∆ei,t+1 + eli,t+1 (A.68)

Substituting the Campbell-Shiller decomposition of the log price-earnings ratio:

pei,t ≈ c+

h∑
j=1

ρj−1∆ei,t+j −
h∑

j=1

ρj−1ri,t+j + ρhpei,t+h (A.69)

Taking subjective expectations and cross-sectionally demeaning to eliminate common terms yields the final decomposition:

h̃li,t ≈ Ft[ẽli,t+1] +

h∑
j=2

ρj−1Ft[∆ẽi,t+j ]︸ ︷︷ ︸
Cash Flow

−
h∑

j=1

ρj−1Ft[r̃i,t+j ]︸ ︷︷ ︸
Discount Rate

+ρhFt[p̃ei,t+h]︸ ︷︷ ︸
Future Price-Earnings

(A.70)

where x̃i,t denotes the cross-sectionally demeaned variable. The variance decomposition follows directly from the hiring
rate decomposition:

1 ≈ Cov(Ft[ẽli,t,t+h], h̃li,t)

Var(h̃li,t)︸ ︷︷ ︸
CFh

+
Cov(−Ft[r̃i,t,t+h], h̃li,t)

Var(h̃li,t)︸ ︷︷ ︸
DRh

+
Cov(Ft[p̃ei,t,t+h], h̃li,t)

Var(h̃li,t)︸ ︷︷ ︸
PEh

(A.71)

where ẽli,t,t+h ≡ eli,t+1 +
∑h

j=2 ρ
j−1∆ẽi,t+j , r̃i,t,t+h ≡

∑h
j=1 ρ

j−1r̃i,t+j , and p̃ei,t,t+h ≡ ρhp̃ei,t+h. These covariance terms
are estimated as coefficients from univariate regressions with time fixed effects, allowing us to isolate the cross-sectional
variation attributable to each component while controlling for aggregate time-series effects.

The data uses Compustat annual employment data (Li,t, variable EMP) from 2000 to 2020. The firm-level hiring rate
is constructed from the employment accumulation equation:

Hi,t

Li,t
=

Li,t+1

Li,t
− (1− δli,t) (A.72)

where the job separation rate δli,t uses industry-level data from JOLTS to ensure consistency with aggregate labor market
flows. To smooth out negative earnings and reduce noise from individual firm-level factors, firms are aggregated into
10 value-weighted portfolios sorted by their idiosyncratic shock. For each portfolio, we measure both realized outcomes
and subjective expectations for earnings growth, returns, and price-earnings ratios, using the same data sources and
construction methods as the aggregate analysis.
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B.3 Decomposition of Unemployment Rates
The unemployment rate can be decomposed into components similar to the decomposition for vacancy filling rates

from equation (A.55). Log linearize the unemployment accumulation equation from equation (6):

Ut+1 = δt(1− Ut) + (1− qtθt)Ut (A.73)

Denote the steady state values without time subscripts: U , δ, q, and θ. Define log deviations from steady state as
x̂t = log(Xt) − log(X) for some variable X. Log-linearizing the accumulation equation around the steady state involves
taking a first-order Taylor approximation:

Ueût+1 ≈ δeδ̂t(1− Ueût) + (1− qθeq̂t+θ̂t)Ueût (A.74)

Use the approximation Xext ≈ X(1 + xt), expand, and simplify:

U(1 + ût+1) ≈ δ(1 + δ̂t)(1− U(1 + ût)) + (1− qθ(1 + q̂t + θ̂t))U(1 + ût) (A.75)

Use the steady state equation and collect terms with log deviations:

Uût+1 ≈ δ(1− U)δ̂t − δUût − qθUq̂t − qθUθ̂t + U(1− qθ)ût (A.76)

Divide both sides by U :

ût+1 ≈ δ(1− U)

U
δ̂t − δût − qθq̂t − qθθ̂t + (1− qθ)ût (A.77)

The steady state relationship δ(1− U) = qθU implies: δ(1−U)
U

= qθ. Substitute this back into our equation:

ût+1 ≈ −qθq̂t + (1− δ − qθ)ût − qθθ̂t + qθδ̂t (A.78)

Finally, substitute in equation (A.55), which is a decomposition of the vacancy filling rate q̂t into discount rate, cash flow,
and future price-earnings under subjective expectations:

ût+1 ≈ − qθ · Ft[r̂t,t+h]︸ ︷︷ ︸
Discount Rate

+ qθ · Ft[êt,t+h]︸ ︷︷ ︸
Cash Flow

+ qθ · Ft[p̂et,t+h]︸ ︷︷ ︸
Future Price-Earning

+ (1− δ − qθ) · ût − qθ · θ̂t + qθ · δ̂t︸ ︷︷ ︸
Lag Unemployment, Tightness, Separations

(A.79)

The equation holds both ex-ante and ex-post. Therefore, I compare results from evaluating the equation under subjective
Ft[·] or rational Et[·] expectations. The decomposition can be estimated using regressions of the log unemployment rate
on each of the components shown in the equation:

ut+1 = β0 + β1ut + β2 log θt + β3 log δt + β4Ft[rt,t+h] + β5Ft[et,t+h] + εt+1 (A.80)

where lowercase variables denote log deviations from steady state. I estimate the decomposition using multivariate OLS
regressions to jointly identify the relative contributions of each component to observed unemployment fluctuations. To
ensure stationarity and remove seasonal effects, I estimate the regression in log annual growth rates relative to the same
quarter of the previous year.

∆ut+1 = β1∆ut + β2∆log θt + β3∆log δt + β4∆Ft[rt,t+h] + β5∆Ft[et,t+h] + vt+1 (A.81)

The future price-earnings ratio term ∆Ft[pet,t+h] has been omitted in the multivariate regression because it is nearly
collinear with future discount rates ∆Ft[rt,t+h] and cash flows ∆Ft[et,t+h] through the Campbell and Shiller (1988) present
value identity in equation (16). Similarly, the equation can also be estimated under rational expectations by replacing Ft[·]
with its rational expectations counterpart Et[·] based on machine learning forecasts.

B.4 Model of Learning from Prices and Cash Flows
In this section, I introduce a model of hiring in which firms form subjective beliefs about cash flows and prices using

a constant-gain learning rule. The evolving expectations shape firms’ vacancy posting decisions and drive variation in
hiring and vacancy filling rates. The model embeds belief distortions in a search-and-matching framework and generates
decompositions that can match those estimated from the data in Sections 5 and 6.

46



Cash Flow Process Assume that the firm’s cash flow process consists of aggregate and idiosyncratic components.
Firm i’s earnings at time t are given by:

Ei,t = exp(ei,t) = Et · Ẽi,t (A.82)

where Et represents the aggregate component and Ẽi,t captures firm-specific variation. The log aggregate earnings follow
a random walk with drift:

∆et = log a+ log εt, log εt ∼ N (− s2

2
, s2) (A.83)

while the log idiosyncratic component evolves as:

∆ẽi,t = log ãi + log ε̃i,t, log ε̃i,t ∼ N (− s̃2i
2
, s̃2i ) (A.84)

For simplicity, I assume that the aggregate εt and idiosyncratic ε̃i,t are independently distributed, and that subjective
beliefs preserve this independence.

Full Information Rational Expectations Under full information rational expectations, agents know the true drift
and volatility parameters and form expectations using the true data generating process. Let gRE

i,t and mRE
i,t denote expected

earnings and price growth for firm i under rational beliefs, decomposed into aggregate (gRE
t , mRE

t ) and idiosyncratic (g̃RE
i,t ,

m̃RE
i,t ) components. Under rational expectations, all growth expectations equal the corresponding true drift parameters:

gRE
t = mRE

t = a and g̃RE
i,t = m̃RE

i,t = ãi. Assuming a risk-neutral discount factor β, this makes the price-earnings ratio
Pi,t/Ei,t = βgRE

i,t /(1− βmRE
i,t ) constant. By independence of shocks, firm-level expectations are:

gRE
i,t = gRE

t · g̃RE
i,t = a · ãi, (A.85)

mRE
i,t = mRE

t · m̃RE
i,t = a · ãi (A.86)

Subjective Expectations Under Constant-Gain Learning Suppose that agents do not observe the true drift
terms a and ãi in the cash flow process, and the firms do not know how their stock price Pi,t is determined. Instead, they
form beliefs and update these beliefs recursively as new information arrives. Firms form subjective expectations about the
aggregate and idiosyncratic components of both cash flow growth and stock price growth:

Ft[Et+1] = gtEt, Ft[Pt+1] = mtPt, (A.87)

Ft[Ẽi,t+1] = g̃i,tẼi,t, Ft[P̃i,t+1] = m̃i,tP̃i,t (A.88)

where gt, mt denote expectations about growth in the aggregate component and g̃i,t and m̃i,t denote expectations about
growth in the idiosyncratic component. Under the independence of aggregate and idiosyncratic shocks, beliefs about total
firm-level growth can be written as:

Ft[Ei,t+1] = gi,tEi,t = gtg̃i,t · EtẼi,t (A.89)

Ft[Pi,t+1] = mi,tPi,t = mtm̃i,t · PtP̃i,t (A.90)

where gi,t = gtg̃i,t and mi,t = mtm̃i,t. I assume that firms employ constant-gain learning to update their expectations
using the rule:

gt = gt−1 + ν

(
Et−1

Et−2
− gt−1

)
, mt = mt−1 + ν

(
Pt−1

Pt−2
−mt−1

)
(A.91)

for the aggregate components, and

g̃i,t = g̃i,t−1 + ν

(
Ẽi,t−1

Ẽi,t−2

− g̃i,t−1

)
, m̃i,t = m̃i,t−1 + ν

(
P̃i,t−1

P̃i,t−2

− m̃i,t−1

)
(A.92)

for the idiosyncratic components, where ν is the constant gain parameter that governs the speed of learning. Suppose the
initial beliefs are set equal to the growth rates under full information rational expectations:

g0 = m0 = a, g̃i,0 = m̃i,0 = ãi (A.93)
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Note that the current price and current cash flows do not enter the learning rule for gi,t and mi,t. The belief updates
incorporate information with a lag by using information only up to period t−1, which eliminates the simultaneity between
prices and price growth expectations. The lag in the updating equation can be motivated by an information structure in
which agents observe part of the lagged transitory shocks to stock price growth (Adam et al., 2016).

Under constant-gain learning, agents update their beliefs using a fixed gain, which causes past observations to receive
exponentially decreasing weights. As a result, memory fades over time and beliefs never fully converge to rational expecta-
tions, even in a stationary environment (Nagel and Xu, 2021). This learning scheme has the advantage of allowing beliefs to
remain responsive to structural changes in the data-generating process. Compared to ordinary least squares (OLS) learn-
ing, where the gain vanishes over time, constant-gain learning avoids the counterfactual implication of declining volatility
in predicted variables, and is often more realistic in environments with potential regime shifts.

Constant-gain learning can be micro-founded in two complementary ways. First, when agents are internally rational
but lack external knowledge of market dynamics, they optimally forecast next-period prices using past data (Adam et al.,
2016). Alternatively, when agents learn from recent experience, as older generations pass and newer ones rely more on
recent data, the aggregation of their belief updates approximates a constant-gain rule (Nagel and Xu, 2021).

For parsimony and interpretability, the updating rules use the same constant gain parameter ν across all components.
This reflects a shared rate at which firms update beliefs about different components of prices and cash flows. Existing
estimates of the constant gain parameter ν are deliberately small, meaning that learning is slow and allows subjective
beliefs to remain persistently distorted even after observing large forecast errors (Malmendier and Nagel, 2015; Adam
et al., 2016).1 This persistence plays an important role for generating the sustained belief distortions needed to explain
fluctuations in hiring and unemployment.

Subjective Firm Valuation To highlight how learning can improve the model’s performance, I consider the simplest
asset pricing model by assuming risk-neutral agents and time separable preferences (Adam et al., 2016). In this case, the
aggregate stock price under subjective beliefs satisfies:

Pt = βFt[Pt+1 + Et+1] = β(mtPt + gtEt) (A.94)

which implies Pt(1− βmt) = βgtEt and thus we have

Pt =
βgt

1− βmt
· Et (A.95)

The firm’s equilibrium stock price under subjective beliefs is:

Pi,t = βFt[Pi,t+1 + Ei,t+1] = β(mi,tPi,t + gi,tEi,t) (A.96)

which implies Pi,t(1− βmi,t) = βgi,tEi,t and thus we have

Pi,t =
βgi,t

1− βmi,t
· Ei,t (A.97)

where β is the time discount factor. The equation shows that the firm’s value rises with expected cash flow growth gi,t
and falls with expected price growth mi,t. The belief distortions captured in these expectation terms will affect the firm’s
hiring decisions through its valuation.

Projection Facility To prevent agents from having an infinite demand for stocks based on the valuations in (A.95)
and (A.97), I assume that the subjective beliefs about price growth are bounded such that

0 < mt < β−1, 0 < mi,t = mtm̃i,t < β−1 (A.98)

which rules out the case mi,t ≥ β−1 where the expected stock returns are greater than the inverse of the time discount
factor. To prevent perceived stock price growth from violating the bounds in (A.98), I apply a projection facility which

1The constant-gain learning specification for cash flow growth is supported by empirical evidence showing
that survey respondents update their long-run earnings expectations only gradually following short-term earnings
surprises (Nagel and Xu, 2021; De La O et al., 2024). The learning specification for stock price growth is motivated
by empirical evidence showing that the implied return expectation can reproduce the dynamics of various survey
based measures of subjective return expectations (Adam et al., 2016).
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makes a smooth modification to the belief-updating equation (Timmermann, 1993; Cogley and Sargent, 2005; Adam et
al., 2016). If the updated belief from (A.91) exceeds a constant mU ≤ β−1, then the update is ignored:

mt = mt−1 if mt−1 + ν

(
Pt−1

Pt−2
−mt−1

)
≥ mU . (A.99)

For the idiosyncratic component, the bound applies to the firm-level expectation mi,t = mtm̃i,t. Given beliefs about the
aggregate component mt, the projection rule therefore becomes:

m̃i,t = m̃i,t−1 if mt

[
m̃i,t−1 + ν

(
P̃i,t−1

P̃i,t−2

− m̃i,t−1

)]
≥ mU (A.100)

This procedure can be interpreted as an approximate Bayesian updating scheme where agents have a truncated prior that
assigns probability zero to mt ≥ mU and mi,t ≥ mU (Adam et al., 2016). It can be viewed as agents ignoring observations
that would lead to beliefs implying infinite demand for stocks, which would represent economically implausible behavior.

Applying the projection facility is equivalent to imposing that firm-level price-earnings ratios remain below an upper
bound UPE ≡ βa/(1 − βmU ). One interpretation is that, if the price-earnings ratio exceeds this upper bound, either
market participants begin to fear a sharp downturn or some regulatory authority intervenes to bring prices down. In the
simulations below, the results are not sensitive to the exact value of UPE provided it is sufficiently high, since the bounding
facility binds only rarely.

Hiring Condition I close the model by connecting asset valuations to firm hiring behavior. The connection to labor
markets operates through the hiring condition. Firms post vacancies until the marginal cost of hiring equals its marginal
value:

κ

qt︸︷︷︸
Cost of Hiring

=
Pi,t

Li,t+1︸ ︷︷ ︸
Value of Hiring

(A.101)

where κ is the cost per vacancy, qt is the vacancy filling rate, and Li,t+1 represents future employment. When firms are
overly pessimistic about their expected cash flows (low gi,t), this leads to lower firm value Pi,t, which reduces the value of
hiring and leads to fewer job postings. The resulting decrease in vacancy creation drives up unemployment and reduces
the vacancy filling rate qt.

Let eli,t ≡ ei,t − li,t+1 = logEi,t − logLi,t+1 denote log earnings per worker. Given values for κ, δ,B, η, Pi,t and initial
values for employment Li,0, one can construct the sequence of vacancies Vi,t, employment Li,t+1, labor market tightness
θt, vacancy filling rates qt, and unemployment rate Ut by solving for the firm valuation, optimal hiring, and employment
accumulation equations:

1. Initialize labor market tightness: θ
(0)
t = 1

2. At iteration s, construct vacancy filling rate under Cobb-Douglas matching in equation (4):

q
(s)
t = B(θ

(s)
t )−η (A.102)

3. Update each firm’s employment policy using the hiring equation (A.101):

L
(s)
i,t+1 =

Pi,tq
(s)
t

κ
(A.103)

where Pi,t is determined by the firm valuation equation (A.97) under the constant-gain learning rules in (A.91) and
(A.92).

4. Update each firm’s vacancy posting using the employment accumulation equation (5):

V
(s)
i,t =

1

q
(s)
t

(L
(s)
i,t+1 − (1− δ)Li,t) (A.104)

5. Aggregate firm-level variables over the set of firms I:

Pt =
∑
i∈I

Pi,t, V
(s)
t =

∑
i∈I

V
(s)
i,t , L

(s)
t+1 =

∑
i∈I

L
(s)
i,t+1, U

(s)
t = 1−

∑
i∈I

Li,t (A.105)

6. Update labor market tightness: θ
(s+1)
t =

V
(s)
t

U
(s)
t

. Check convergence: |θ(s+1)
t − θ

(s)
t | < ε for some small tolerance

ε > 0. If not, return to step 2 with the updated values.
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Long-Horizon Cash Flow Growth and Stock Returns In this learning environment, the realized j ≥ 1 period
ahead log cash flow growth ∆ei,t+j ≡ log(Ei,t+j/Ei,t+j−1) follows:

∆ei,t+j = log ai + log εi,t+j (A.106)

and stock returns ri,t+j ≡ log((Pi,t+j + Ei,t+j)/Pi,t+j−1) follow:

ri,t+j = log

(
Ei,t+j

Ei,t+j−1

Ei,t+j−1

Pi,t+j−1

(
Pi,t+j

Ei,t+j
+ 1

))
(A.107)

= ∆ei,t+j + log

(
1− βmi,t+j−1

βgi,t+j−1

)
+ log

(
1− βmi,t+j + βgi,t+j

1− βmi,t+j

)
(A.108)

where ai ≡ a · ãi and εi,t ≡ εt · ε̃i,t. The price-earnings ratios are based on the firm valuations implied by equation (A.97).
Subjective expectations of these variables reflect beliefs about future earnings and capital gains. In models with

constant-gain learning, beliefs evolve with fading memory, breaking the law of iterated expectations and making resale
and buy-and-hold valuation methods non-equivalent. The buy-and-hold approach evaluates long-run payoffs under today’s
beliefs, while the resale method prices assets through a sequence of one-period-ahead valuations, each using updated beliefs.
Following Nagel and Xu (2021), I adopt the resale valuation approach because it ensures time consistency under belief
updating and reflects the idea that assets are effectively resold across agents with evolving expectations. I assume that the
manager and the representative investor share the same beliefs and both apply the resale method, ensuring consistency
between decision-making and valuation.

Let xt and x̃i,t denote the aggregate and idiosyncratic level of a variable x ∈ {E,P} at time t, which are either
aggregate cash flows or prices. Define:

Rx
t ≡ xt

xt−1
, Zx

t ≡ (1− ν)Zx
t−1 + νRx

t−1 (A.109)

R̃x
i,t ≡

x̃i,t

x̃i,t−1
, Z̃x

i,t ≡ (1− ν)Z̃x
i,t−1 + νR̃x

i,t−1 (A.110)

That is, Zx
t , Z̃

x
i,t denotes the subjective expectation of the growth rate of variable x, formed using constant-gain learning

based on past realized growth Rx
t−1, R̃

x
i,t−1, respectively. It can be shown by induction that the j-step-ahead expectation

at time t is given by:

Ft[Z
x
t+j ] = ax

jZ
x
t + bxjR

x
t , (A.111)

Ft[Z̃
x
i,t+j ] = ax

j Z̃
x
i,t + bxj R̃

x
i,t, (A.112)

Ft[Z
x
i,t+j ] = Ft[Z

x
t+j ] · Ft[Z̃

x
i,t+j ] (A.113)

with recursively defined coefficients:

a0 = 1, b0 = 0, a1 = 1− ν, b1 = ν, (A.114)

aj = (1− ν)aj−1 + νaj−2, bj = (1− ν)bj−1 + νbj−2, j ≥ 2 (A.115)

Base case (j = 0). At time t, the value Zx
t is known:

Ft[Z
x
t ] = Zx

t = a0Z
x
t + b0R

x
t . (A.116)

Base case (j = 1). From the learning rule:

Zx
t+1 = (1− ν)Zx

t + νRx
t , (A.117)

Taking expectations at time t:

Ft[Z
x
t+1] = (1− ν)Zx

t + νRx
t = a1Z

x
t + b1R

x
t . (A.118)

Inductive step. Assume for j − 1 and j − 2 that:

Ft[Z
x
t+j−1] = aj−1Z

x
t + bj−1R

x
t , (A.119)

Ft[Z
x
t+j−2] = aj−2Z

x
t + bj−2R

x
t . (A.120)

50



Then, by the learning rule:

Zx
t+j = (1− ν)Zx

t+j−1 + νRx
t+j−1. (A.121)

Taking expectations at time t, note that Zx
t+j−2 is defined as the time-(t+ j − 2) forecast of Rx

t+j−1. Since the innovation
in Rx

t+j−1 realized at t+j−1 is mean-independent of information available at t, the time-t expectation of Rx
t+j−1 coincides

with the time-t expectation of Zx
t+j−2:

Ft[R
x
t+j−1] = Ft[Z

x
t+j−2] (A.122)

which implies:

Ft[Z
x
t+j ] = (1− ν)Ft[Z

x
t+j−1] + νFt[Z

x
t+j−2] (A.123)

= (1− ν)(aj−1Z
x
t + bj−1R

x
t ) + ν(aj−2Z

x
t + bj−2R

x
t ) (A.124)

= [(1− ν)aj−1 + νaj−2]Z
x
t + [(1− ν)bj−1 + νbj−2]R

x
t . (A.125)

Thus, the recursion holds for j, completing the induction. After making a first-order approximation Ft[log(X)] ≈
log(Ft[X]), subjective expectations of log cash flow growth can be written as:

Ft[∆et+j ] = Ft

[
log

(
Et+j

Et+j−1

)]
≈ log

(
Ft

[
Et+j

Et+j−1

])
= log (Ft [gt+j−1]) (A.126)

Ft[∆ei,t+j ] = Ft

[
log

(
Ei,t+j

Ei,t+j−1

)]
≈ log

(
Ft

[
Ei,t+j

Ei,t+j−1

])
= log (Ft [gi,t+j−1]) (A.127)

Similarly, subjective expectations of log stock returns can be written as:

Ft[rt+j ] = Ft

[
∆et+j + log

(
1− βmt+j−1

βgt+j−1

)
+ log

(
1− βmt+j + βgt+j

1− βmt+j

)]
≈ log (Ft[gt+j−1]) + log

(
1− βFt[mt+j−1]

βFt[gt+j−1]

)
+ log

(
1− βFt[mt+j ] + βFt[gt+j ]

1− βFt[mt+j ]

)
≈ (1− β) log (Ft[gt+j−1]) + log

(
1− βFt[mt+j−1]

1− βFt[mt+j ]

)
+ log (1− βFt[mt+j ] + βFt[gt+j ])

(A.128)

Ft[ri,t+j ] = Ft

[
∆ei,t+j + log

(
1− βmi,t+j−1

βgi,t+j−1

)
+ log

(
1− βmi,t+j + βgi,t+j

1− βmi,t+j

)]
≈ log (Ft[gi,t+j−1]) + log

(
1− βFt[mi,t+j−1]

βFt[gi,t+j−1]

)
+ log

(
1− βFt[mi,t+j ] + βFt[gi,t+j ]

1− βFt[mi,t+j ]

)
≈ (1− β) log (Ft[gi,t+j−1]) + log

(
1− βFt[mi,t+j−1]

1− βFt[mi,t+j ]

)
+ log (1− βFt[mi,t+j ] + βFt[gi,t+j ])

(A.129)

where Ft[gi,t+j ] and Ft[mi,t+j ] are determined by the recursion in equations (A.113) through (A.115). Under constant-
gain learning, realized stock returns ri,t+j and expected cash flow growth Ft[∆ei,t+j ] can fluctuate substantially due to
large and persistent distortions in subjective beliefs embedded in gi,t. In contrast, expected stock returns Ft[ri,t+j ] from
equation (A.129) can show only small fluctuations because its variation depends mainly on the gap between expected cash
flow growth and price growth gi,t − mi,t. Since β is a number close to one, the first term in equation (A.129) involving
1− β will be quantitatively small. Since the learning rate ν is small, the one-period belief revisions in Ft[mi,t+j ] will also
be quantitatively small in equation (A.129). Since both gi,t and mi,t terms adjust slowly and often move together, their
difference remains relatively stable. This generates the empirically observed pattern of high volatility in realized returns
but low volatility in expected returns, consistent with survey evidence on return expectations.

Model-Implied Decompositions I use data simulated from the learning model to decompose the vacancy filling
rate at the aggregate level and hiring rates at the firm level. The time-series decomposition of the aggregate vacancy filling
rate qt is given by:

log qt =

h∑
j=1

ρj−1Ft[rt+j ]︸ ︷︷ ︸
Discount Rate

−

[
elt +

h∑
j=1

ρj−1Ft[∆et+j ]

]
︸ ︷︷ ︸

Cash Flow

− ρhFt [pet+h]︸ ︷︷ ︸
Future Price-Earnings

(A.130)
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where xt =
∑

i∈I xi,t aggregates firm-level variable xi,t. To analyze differences across firms, I estimate a cross-sectional
decomposition of hiring rates using simulated firm-level data:

h̃li,t = −
h∑

j=1

ρj−1Ft[r̃i,t+j ]︸ ︷︷ ︸
Discount Rate

+

[
ẽli,t +

h∑
j=1

ρj−1Ft[∆ẽi,t+j ]

]
︸ ︷︷ ︸

Cash Flow

+ ρhFt

[
p̃ei,t+h

]
︸ ︷︷ ︸

Future Price-Earnings

(A.131)

where x̃i,t = xi,t − 1
I

∑
i xi,t denotes a cross-sectional deviation from the mean at time t.

Firms’ hiring decisions reflect their evolving beliefs about cash flow growth gi,t and stock price growth mi,t, which
are updated according to the constant-gain learning rules. The slow learning rate in the model can generate large and
persistent fluctuations in gi,t which drives fluctuations in expected cash flow growth Ft[∆ei,t+j ] and realized stock returns
ri,t+j . In contrast, the model can produce a low volatility in expected returns Ft[ri,t+j ] because their variation depends
only on the gap between cash flow growth and price growth gi,t − mi,t, which is relatively stable over time. Therefore
under subjective beliefs, the cash flow component in the decompositions will be highly volatile while the discount rate
component remains relatively muted. Consequently, subjective expectations will systematically over-weight the role of
cash flows relative to discount rates, generating the empirical pattern observed in the data. This contrasts sharply with
rational expectations where the cash flow component contributes zero to the variance because expected future cash flow
growth equals the constant drift term.

Simulation Details I simulate a panel of 300 firms over 500 periods, where the first 150 periods are discarded as a
burn-in to eliminate the influence of initial conditions. Under constant-gain learning, each firm updates its beliefs using
the updating rules in equations (A.91) and (A.92). All expectations, returns, and decompositions are computed at a
monthly frequency using the model equations derived above. At each horizon h, I compute the model-implied time-series
decomposition of the aggregate vacancy filling rate based on equation (A.130) and the cross-sectional decomposition of the
firm-level hiring rates (A.131). I then compare these model-implied decompositions to those estimated from the observed
data from Figures 4 and 6.

Model Estimation Table A.12 reports the parameters used in the quantitative model along with the empirical mo-
ments they are calibrated to or sourced from. The drift a and volatility s of aggregate cash flow growth is set to match the
long-run mean and standard deviation of aggregate U.S. dividend growth (Adam et al., 2016). The drift ã and volatility
s̃i of idiosyncratic earnings growth is set to match the long-run mean and standard deviation of dividend growth across
10 value-weighted idiosyncratic shock sorted portfolios, after cross-sectionally demeaning the variable. The time discount
rate ρ = exp(pe)/(1 + exp(pe)) is chosen to be consistent with a steady-state price-earnings ratio from the Campbell and
Shiller (1988) present value identity, where pe is the long-run average of the log price-earnings ratio over 1983–2023.

The speed at which agents discount past observations of realized cash flow growth depends on the constant gain
parameter ν in the learning rule. This parameter shapes the persistence and volatility of the price-earnings ratio and the
extent of return predictability. I take the value directly from survey-based estimates in Malmendier and Nagel (2015),
setting it to ν = 0.018 at the quarterly frequency. This implies that in forming expectations, agents assign a weight of
0.018 to the most recent growth surprise and 1− ν = 0.982 to their previous estimate, making the perceived growth rate
evolve slowly over time.

Labor market parameters are mainly adopted from Kehoe et al. (2023). Following Shimer (2005), I normalize the
value of labor market tightness θ to one in the deterministic steady state, which implies an efficiency of the matching
function B = 0.562 by noting from the matching function that q = Bθ−η. I set the elasticity of the matching function to
η = 0.5 following Ljungqvist and Sargent (2017). I use an annual job separation rate of δ = 0.286, which is the annualized
value of the Abowd-Zellner corrected estimate by Krusell et al. (2017) based on data from the Current Population Survey
(CPS). Following Elsby and Michaels (2013), per-worker vacancy posting cost 0.314 is targeted to match a per-worker
hiring cost κ/q equal to 14 percent of the quarterly worker compensation. In the context of the annual calibration of this
model, this implies a value approximately equal κ = 4 × 0.14 × q = 0.314, where 4 × 0.14 is the annualized percent of
worker compensation, while q = 0.562 is the long-run average of the vacancy filling rate in the historical sample from 1983
to 2023.

Model vs. Data: Variance Decompositions The model successfully replicates the empirical variance decompo-
sitions from the data. Figure A.21 shows that the model can reproduce the finding that subjective beliefs over-estimate
the role of expected cash flows and underestimate the role of discount rates in explaining labor market fluctuations.

Panel (a) presents the time-series decomposition of the vacancy filling rate, comparing contributions under subjective
and rational expectations. The model captures the empirical pattern where subjective expectations (dark bars) assign a
larger role to cash flows compared to rational expectations (light bars). The model-implied values (circles and triangles)
align closely with the empirical estimates, demonstrating the model’s ability to match the data.

Panel (b) shows the cross-sectional decomposition of hiring rates across firms. Again, the model captures the empirical
pattern that subjective beliefs over-estimate the contribution of earnings expectations and under-estimate the variation in
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Table A.12: Model Parameters

Parameter Value Moments

ν 0.006 Constant-gain learning rate (Malmendier and Nagel (2015))
a 1.009 Mean of U.S. aggregate earnings growth
s 0.025 S.D. of U.S. aggregate earnings growth
ãi 1.000 Mean of U.S. idiosyncratic earnings growth
s̃i 0.036 S.D. of U.S. idiosyncratic earnings growth
β 0.996 Time discount rate (Adam et al. (2016))
ρ 0.998 Average price-earnings ratio
B 0.562 Matching function efficiency (Kehoe et al. (2023))
η 0.500 Matching function elasticity (Kehoe et al. (2023))
δ 0.028 Separation rate (Kehoe et al. (2023))
κ 0.026 Per worker hiring cost (Elsby and Michaels (2013))

Notes: Table reports the parameter values used in the quantitative model along with the empirical moments they are calibrated to
or sourced from. The model is calibrated at a monthly frequency.

firm-level discount rates. This cross-sectional fit is particularly important as it shows that the model can explain not just
aggregate patterns but also the heterogeneity in hiring behavior across different firms.

Model vs. Data: Moments Table A.13 demonstrates that the constant-gain learning model successfully matches
both asset market and labor market moments. The table compares moments generated by the learning model against
those generated from a rational model under no learning, where all agents have full information rational expectations. To
generate simulations under the rational model, I employ the same sequence of shocks as in the baseline learning specification
but set the learning rate parameter to zero. This eliminates belief updating and, conditional on the true initial values,
reduces the model exactly to its rational expectations counterpart in equations (A.85) and (A.86).

Panel (a) reports time-series and cross-sectional moments for asset prices. The learning model broadly matches the
mean and volatility of price-earnings ratios, the persistence in valuations, and the volatility of returns and expected
returns. In contrast, the rational expectations model severely understates price-earnings volatility and generates virtually
no variation in expected returns, confirming that belief distortions are essential for matching observed financial market
behavior (Adam et al., 2016). For the cross-sectional moments, the learning model captures the dispersion in price-
earnings ratios, expected earnings growth, returns, and expected returns. These moments confirm that the firm-specific
beliefs g̃i,t and m̃i,t generate realistic heterogeneity in firm valuations and expectations. The rational expectations model,
by construction, produces minimal cross-sectional variation in expectations, highlighting how constant-gain learning creates
the belief heterogeneity observed in the data.

Panel (b) reports moments related to the labor market. The learning model broadly matches key labor market
statistics including the volatility and persistence of the vacancy filling rate qt and unemployment rate ut. The constant-
gain learning model only slightly undershoots the volatility of the unemployment rate, which is a substantial improvement
over the rational expectations model where unemployment volatility is typically an order of magnitude too small. The
learning model’s ability to match these moments demonstrates that the constant-gain learning mechanism provides a
coherent explanation for both asset market and labor market fluctuations.

Response to 1 Std. Dev. Shock to Cash Flow Growth Expectation To examine the dynamic implications
of the model and compare them with the data, I estimate a four-variable VAR where the observation vector includes
expected cash flow growth, expected returns, expected price-earnings, and the job-filling rate. The VAR is estimated using
both the actual survey data and the simulated series generated from the model. For identification, I apply a recursive
(Cholesky) scheme in which expected cash flow growth is ordered first, so that the estimated impulse responses trace out
the effect of a one standard deviation shock to cash flow growth expectations. This identification strategy allows me to
interpret the innovation to expected cash flows as an exogenous shift in beliefs about future earnings growth. Figure A.22
reports the resulting impulse response functions.

The impulse response functions in Figure A.22 reveal several notable patterns. Expectations of cash flow growth
jump immediately on impact and then gradually decay back toward zero. Subjective expected returns exhibit a positive,
hump-shaped response that peaks with a lag before fading out. The mechanism behind this pattern is straightforward:
a positive shock to expected cash flow growth raises expected stock returns and current stock prices. Because beliefs are
updated with a lag, higher stock prices increase expected price growth in the following period, which in turn drives stock
prices even higher. This feedback loop amplifies the initial shock for several periods, but each successive round of increases
diminishes as the memory of the initial shock fades. Eventually, realized price growth begins to fall short of the inflated
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Figure A.21: Model vs. Data: Variance Decompositions

(a) Time-Series Decomposition of the Vacancy Filling Rate

0.0
0.2
0.4
0.6
0.8
1.0

Sh
ar

e 
of

 Jo
b 

Fi
lli

ng
 R

at
e

1 2 3 4 5
Horizon (Years)

Discount Rates

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5
Horizon (Years)

Cash Flows

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5
Horizon (Years)

Future Price-Earnings

(b) Cross-Sectional Decomposition of the Hiring Rate
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Notes: Figure illustrates the discount rate, cash flow, and future price-earnings components of the time-series decomposition of
the aggregate vacancy filling rate (panel (a)) and cross-sectional decomposition of the hiring rate (panel (b)). Light bars show
contributions under rational expectations; dark bars show contributions under subjective expectations. The sample is quarterly from
2005Q1 to 2023Q4. Each bar shows Newey-West 95% confidence intervals with lags = 4. Circle and triangle dots show the values of
rational and subjective expectations implied by the model, respectively.

expectations, at which point the response of expected returns peaks and gradually declines. The subjective price-earnings
ratio rises initially before decaying back to zero. Finally, the job-filling rate falls immediately after the shock and then
slowly converges back to its baseline level.

Role of the Learning Rate ν The second figure examines the role of the constant-gain learning rate, ν, in shaping
the variance decomposition of the job-filling rate. Figure A.23 plots the share of job-filling rate variance explained by
subjective discount rates on the left and by subjective cash flow expectations on the right, evaluated at a five-year horizon
across a range of values for ν. For relatively small values of the learning rate, the decomposition is similar: discount-rate
and cash-flow components contribute in roughly stable proportions. However, as the learning rate increases, the results
diverge. A higher learning rate implies that agents place greater weight on recent observations, making expectations more
responsive to new information but shortening the memory of past data. As a result, subjective discount rates become more
volatile and their contribution to the variance of the job-filling rate rises. In contrast, subjective cash flow expectations
lose persistence when ν is high, reducing their explanatory power for fluctuations in the job-filling rate. This contrast
illustrates how fading memory can shift the relative importance of discount-rate and cash-flow channels in driving labor
market outcomes.

C Data Details

This section describes the time-series and cross-sectional data sources used in the estimation. I use quarterly data on the
variables represented in the decomposition from equations (A.55) and (A.56): employment Lt, unemployment Ut, vacancy
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Table A.13: Model vs. Data: Asset Market and Labor Market Moments

Moment Data Learning Model Rational Model

(a) Asset Market

Mean(pet) 2.98 2.53 3.15
SD(pet)× 100 47.4 31.2 0.0
AC(pet) 0.75 0.71 1.00
SD(rt)× 100 16.0 9.0 2.0
SD(Ft[rt+1])× 100 1.1 0.0 0.0
SD(Ft[∆et+1])× 100 26.8 13.1 0.0
SDi(pei,t)× 100 22.6 15.0 0.0
SDi(ri,t)× 100 5.7 4.7 2.4
SDi(Ft[ri,t+1])× 100 2.6 0.1 0.0
SDi(Ft[∆ei,t+1])× 100 14.0 11.7 0.0

(b) Labor Market

SD(ut)× 100 2.09 1.09 0.07
AC(ut) 0.91 0.83 0.98
SD(qt)× 100 8.71 5.85 0.21
AC(qt) 0.94 0.92 0.98
Corr(ut, qt) 0.82 0.87 1.00
SDi(hli,t)× 100 15.70 10.20 1.13

Notes: This table compares empirical moments with model-generated moments with and without constant-gain learning. SD(·)
denotes the time-series standard deviation of aggregate variables. SDi(·) denotes the cross-sectional standard deviation across firms
at each point in time, averaged over time. AC(·) denotes the first-order autocorrelation coefficient. Corr(·) denotes the correlation
between two time series. pet is the log price-earnings ratio, rt is the log stock return, ∆et is log earnings growth, qt is the job-filling
rate, ut is the unemployment rate, and hli,t is the firm-level hiring rate. Ft[·] denotes subjective expectations formed at time t.
Data column reports empirical moments estimated from historical data. Learning model reports moments from simulations of the
constant-gain learning model. Rational model reports moments from the rational expectations benchmark where agents have perfect
knowledge of the earnings process.

filling rates qt, stock returns rt,t+h, earnings growth ∆et,t+h, price-earnings ratio pet+h, and earnings-employment ratio
elt+h. For each dependent variable of the decomposition, I also construct their corresponding survey expectations Ft and
machine expectations Et.

C.1 Employment
For realized values of employment, I first construct an annual series for the aggregate number of employees (EMP) of

the S&P 500 constituents by using accounting information from the CRSP and Compustat Merged Annual Industrial Files.
The data spans 1970 to 2023 and was downloaded from WRDS on May 15, 2024. I aggregate the firm-level employment
data to construct a total employment series for the S&P 500. I interpolate this series to a monthly frequency by using
the fitted values from real-time regressions of log annual Compustat employment series on the log monthly BLS series
for total nonfarm payrolls (PAYEMS). The regressions are estimated over recursively expanding samples from an initial
monthly sample that begins on 1970:01 and ends on the month of the data release for each month’s total nonfarm payrolls.
To ensure that the fitted values do not use future information not available on each data release, I align each monthly
BLS nonfarm payroll release with the annual Compustat S&P 500 employment series from the previous calendar year. To
obtain a measure of employment Lt+1 at the beginning of period t + 1, I convert the monthly interpolated values to a
quarterly frequency by taking the value of the series as of the last month of each calendar quarter. This timing assumption
ensures that the measures are consistent with the timing conventions from Section B while still remaining known to firms
by the end of period t. Data on nonfarm payrolls was downloaded through FRED on May 15, 2024.

C.2 Vacancy Filling Rate
I construct a monthly series for the number of vacancies Vt following Barnichon (2010), by using JOLTS job openings

starting 2000:12 (JTS00000000JOL) and extending the series back in time using the help-wanted index before 2000:12.
The vacancies data has been downloaded from available on the author’s website on May 19, 2024. For realized values of
unemployment Ut, I use the BLS monthly series for the unemployment level (UNEMPLOY), downloaded through FRED
on May 15, 2024. Labor market tightness θt = Vt/Ut is the ratio between vacancies and unemployment. The job separation
rate δt uses the corresponding series from JOLTS.
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Figure A.22: Impulse responses to a one standard deviation innovation in expected cash flow growth. Blue solid
line: model-based IRFs from simulated series. Black dashed line: data-based IRFs. Shaded area: 90% bootstrap
confidence interval for the data VAR. Sample: 1984Q1-2023Q4.

I follow Shimer (2012) in constructing the job separation rate δt, job finding rate ft, and vacancy filling rate qt. Job
separation rate is the share of short-term unemployed out of total employment δt = Us

t /Lt, where Us
t is the BLS series for

the number of unemployed less than 5 weeks (UEMPLT5) that was downloaded through FRED on May 15, 2024. The job
finding rate is:

ft = 1− Ut − Us
t

Ut−1

The expression for the job finding rate follows from the unemployment accumulation equation:

Ut = (1− ft)Ut−1 + Us
t

which states that unemployment Ut consists of either the previously unemployed Ut−1 who did not find a job (1− ft), or
the short-term unemployed Us

t that lost a job during the current period. The vacancy filling rate is defined as the share
of filled vacancies ftVt out of unemployment Ut:

qt =
ft
θt

=
ftUt

Vt

I first construct the vacancy filling rate qt at the monthly frequency. To remove high-frequency fluctuations that likely
reflect measurement errors, I time-aggregate the monthly series to a quarterly frequency by taking a 3-month trailing
average that ends on the first month of each calendar quarter. This timing assumption ensures that the survey and
machine expectations in the variance decomposition do not use advance information about vacancy filling rates that were
not published at the time of each forecast. To ensure that all variables used in the variance decomposition are stationary,
I follow Shimer (2012) by detrending the quarterly vacancy filling rate qt using an HP filter with a smoothing parameter
of 105.

C.3 Wages
To assess the cyclicality of subjective wage expectations, I use publicly available survey and macroeconomic data to

construct measures of actual real wage growth, subjective wage expectations, and unemployment rate changes. The Liv-
ingston Survey (semi-annual, 1961S1-2022S2), the CFO Survey (quarterly, 2001Q4-2023Q4), and the Survey of Consumer
Expectations (SCE) (monthly, 2015M5-2022M12) provide the necessary data. I derive subjective wage growth expectations
from median consensus forecasts of nominal wage growth in these surveys. The Livingston Survey forecasts are deflated
using its own median CPI inflation forecast, while the CFO and SCE survey forecasts are deflated using CPI inflation
expectations from the Survey of Professional Forecasters (SPF).
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Figure A.23: Share of job-filling rate variance explained by discount-rate (left) and cash-flow (right) components
at the five-year horizon, as the constant-gain learning rate ν varies.

To account for the possibility that wages depend on the economic conditions at the start of the job, I use survey
expectations from the SCE to measure the user cost of labor UCW

t under subjective expectations. In the search and
matching model, the user cost of labor is the difference in the present value of wages between two firm-worker matches
that are formed in two consecutive periods. Existing work measures the user cost of labor under full information rational
expectations and finds that the user cost is more cyclical than the flow wage, suggesting that workers hired in recessions
earn lower wages not only when hired but also in subsequent periods (Kudlyak, 2014; Bils et al., 2023). The survey-based
measure in this paper relaxes the rational expectations assumption maintained in existing work. Consider the free-entry
condition in the search and matching model:

κ

qt
= Jt,t

where a firm must pay a per vacancy cost of κ and vacancies are filled with probability qt. Jt,τ is the value of a firm with
a worker at time τ such that the productive match started at time t:

Jt,τ ≡ zt − wt,t +

∞∑
τ=t+1

(β(1− δ))τ−tFt[zτ − wt,τ ]

where Ft[·] denotes subjective expectations based on survey data. β = 0.9569 is a discount factor and δ = 0.295 is the
probability that an employment relationship is terminated, both from Kudlyak (2014). Each period τ , a firm-worker match
produces a per period output of zτ and an employed worker received wage wt,τ where t is the period when the worker is
hired. wt,t is the new-hire wage. Note that the free entry condition is only required to hold for newly created matches for
τ = t. The expected difference between the firm’s value of a newly created match in time t and the discounted value of a
newly created match in period t+ 1 is

Jt,t − β(1− δ)Ft[Jt+1,t+1] = zt − wt,t +

∞∑
τ=t+1

(β(1− δ))τ−tFt[zτ − wt,τ ]

− β(1− δ)Ft

[
zt+1 − wt+1,t+1 +

∞∑
τ=t+2

(β(1− δ))τ−(t+1)Ft+1[zτ − wt+1,τ ]

]

Apply the Law of Iterated Expectations and collect terms

Jt,t − β(1− δ)Ft[Jt+1,t+1] = zt − wt,t −
∞∑

τ=t+1

(β(1− δ))τ−tFt[wt,τ − wt+1,τ ]

Substitute the free-entry condition to the left-hand side

κ

qt
− β(1− δ)Ft

[
κ

qt+1

]
︸ ︷︷ ︸

Non-wage component of user cost UCV
t

= zt︸︷︷︸
Benefit

−

[
wt,t +

∞∑
τ=t+1

(β(1− δ))τ−tFt[wt,τ − wt+1,τ ]

]
︸ ︷︷ ︸

Wage component of user cost UCW
t
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The equation shows that the firm faces two sources of costs from a match: wage payments to a worker UCW
t and vacancy

opening costs UCV
t . The firm creates jobs as long as the marginal benefit from adding a worker exceeds the user cost of

labor. Note that the wage component of the user cost of labor UCW
t , not the wage wt,t, is the allocative price of labor.

I use worker-level data from the Survey of Consumer Expectations (SCE) to construct the user cost of labor UCW
t

under the survey respondents’ subjective expectations. The SCE asks respondents about: the month and year on which
their current employment relationship started (i.e., t in wt,τ ); “annual earnings, before taxes and other deductions, on your
[current/main] job” (wt,τ ); short-term expectations on what their “annual earnings will be in 4 months” (Ft[wt,t+ 4

12
]) and

long-term expectations on “annual earnings to be at your current job in 10 years” (Ft[wt,t+10]). I obtain survey expectations
about medium-term earnings between 4 months to 10 years by linearly interpolating between the two horizons:

Ft[wt,t+h] =
10− h

10− 4
12

Ft[wt,t+ 4
12
] +

h− 4
12

10− 4
12

Ft[wt,t+10], h = 1, 2, . . . , 10

The user cost of labor formulation assumes infinitely lived firms and workers, while empirical data are inherently finite.
I truncate the horizon at 10 years given the availability of the survey data. Longer horizons reduce the weight of future
terms due to discounting and job separations. In addition, if unemployment follows a mean-reverting process, wages in
long-term employment relationships will eventually converge to the long-term mean, which after discounting would limit
the size of very long-term influences (Kudlyak, 2014).

I measure actual real wage growth using two BLS wage series. The Livingston Survey forecasts target annual
log real wage growth based on average weekly earnings of production and nonsupervisory employees in manufacturing
(CES3000000030). The CFO and SCE surveys target annual log real wage growth based on average hourly earnings of
private-sector employees (CEU0500000008). I deflate nominal wages using the Consumer Price Index (CPIAUCSL) to
adjust for purchasing power.

For unemployment rates used to assess the cyclicality of wages, I use both actual data and subjective forecasts.
Actual seasonally adjusted U.S. unemployment rate (UNRATE) comes from the BLS Current Population Survey (CPS).
Subjective unemployment expectations are derived from median consensus SPF forecasts of future unemployment rates.

C.4 Stock Returns

C.4.1 Realized Stock Returns

Stock market returns use monthly data on CRSP value-weighted returns including dividends (VWRETD) from the
Center for Research in Security Prices (CRSP). I compute annualized log stock returns by compounding the monthly
returns using rt+h ≡ 1

h

∑12h
j=1 log(1 + VWRETDt+j/12). The data was downloaded from WRDS on May 15, 2024. When

evaluating the MSE ratios of the machine relative to that of a benchmark survey, I compute machine forecasts for either
annual CRSP returns or S&P 500 price growth depending on which value most closely aligns with the concept that survey
respondents are asked to predict. To measure one-year stock market price growth, I use the one-year log cumulative growth
rate of the S&P 500 index, ∆pt+1 ≡ log (Pt+1/Pt). The monthly S&P index series spans the period 1957:03 to 2022:12
and was downloaded from WRDS on May 15, 2024 from the Annual Update data of the Index File on the S&P 500.

C.4.2 Survey Expectations of Stock Returns

CFO Survey I use survey forecasts of S&P 500 stock returns from the CFO survey to measure subjective return
expectations. The CFO survey is a quarterly survey that asks respondents about their expectations for the S&P 500 return
over the next 12 months and 10 years ahead, obtained from https://www.richmondfed.org/-/media/RichmondFedOrg/

research/national_economy/cfo_survey/current_historical_cfo_data.xlsx. I use the mean point forecast for the
value of the “most likely” future stock return in the estimation. More specifically, the survey asks the respondent “over
the next 12 months, I expect the average annual S&P 500 return will be: Most Likely: I expect the return to be: %”.
The survey question for stock return expectations 10 years ahead is “over the next 10 years, I expect the average annual
S&P 500 return will be: Most Likely: I expect the return to be: %”. The CFO survey panel includes firms that range
from small operations to Fortune 500 companies across all major industries. Respondents include chief financial officers,
owner-operators, vice presidents, and directors of finance, and others with financial decision-making roles. The CFO panel
has 1,600 members as of December 2022.

I take a stand on the information set of respondents when each forecast was made, and I assume that respondents
could have used all data released before they completed the survey. Because the CFO survey releases quarterly forecasts
at the end of each quarter, I conservatively set the response deadline for the machine forecast to be the first day of the
last month of each quarter (e.g., March 1st). The data spans the periods 2001Q4 to 2023Q4 and were downloaded on
March 20th, 2024. Mean point forecasts before 2020Q3 are available in column sp 1 exp of sheet through Q1 2020; mean
point forecasts from 2020Q3 and onwards are available in column sp 12moexp 2 of sheet CFO SP500. The forecast is not
available in 2019Q1, 2019Q4, 2020Q1, and 2020Q2. I impute the missing forecast for 2019Q1 by linearly interpolating
between the available forecasts from 2018Q4 and 2019Q2. I impute the missing forecasts for 2019Q4, 2020Q1, and 2020Q2
by interpolating with the nearest available forecast between 2019Q3 and 2020Q3. Following Nagel and Xu (2022), I assume
that the forecasted S&P 500 return includes dividends and capture expectations about annualized cumulative simple net
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returns compounded from time t to t+ h, i.e., Ft[Rt,t+h]. To obtain survey expectations of log returns Ft[log(1 + rt,t+h)]
from a survey expectation of net simple returns Ft[Rt,t+h], I use the approximation Ft[log(1+rt,t+h)] ≈ log(1+Ft[Rt,t+h]).

To obtain long-horizon survey expectations of annualized cumulative log S&P 500 returns over the next 1 < h < 10
years, I interpolate the forecasts across annualized 1 year and 10 year cumulative log return expectations:

Ft[rt,t+h] =
10− h

10− 1
Ft[rt,t+1] +

h− 1

10− 1
Ft[rt,t+10], h = 1, 2, . . . , 10

Finally, I use the difference between cumulative long-horizon log return expectations between adjacent years (i.e., Ft[rt,t+h−1]
and Ft[rt,t+h]) to obtain Ft[rt+h], the survey expectation of forward one-year log stock returns h years ahead:

Ft[rt+h] = h× Ft[rt,t+h]− (h− 1)× Ft[rt,t+h−1], h = 1, 2, . . . , 10

IBES and Value Line I proxy expected firm-level stock returns using price growth expectations following De La O
et al. (2024). Specifically, I construct expected price growth from IBES 12-month median price targets and Value Line 3–5
year median price targets, interpolating linearly for intermediate horizons.

To construct expected price growth, I combine short- and long-term price targets from two sources. For the short
horizon, I use the 12-month median price targets from the Institutional Brokers Estimate System (IBES) database. For
longer horizons, I use the median price targets from Value Line, which provide the expected stock price level approximately
3–5 years into the future for each firm. These targets reflect analysts’ consensus expectations for each firm’s stock price.
I interpret the Value Line price target as the expected price level five years ahead and interpolate linearly between the
IBES 12-month price target and the Value Line five-year price target to construct expected price growth for intermediate
horizons between one and five years. For each firm i, expected annualized price growth over horizon h is given by:

Ft[ri,t+h] ≈
1

h
log

(
Ft[Pi,t+h]

Pi,t

)
where Ft[Pi,t+h] is the forecasted price at horizon h, constructed through linear interpolation of IBES and Value Line
targets, and Pi,t is the observed stock price at time t. As shown in De La O et al. (2024), using price growth expectations
to approximate expected firm-level stock returns is reasonably accurate, as dividends represent a relatively small component
of total returns for most firms.

Gallup/UBS Survey The UBS/Gallup is a monthly survey of one-year-ahead stock market return expectations. I
use the mean point forecast in our estimation and compare these to machine forecasts of the annual CRSP return. Gallup
conducted 1,000 interviews of investors during the first two weeks of every month and results were reported on the last
Monday of the month. The first survey was conducted on 1998:05. Until 1992:02, the survey was conducted quarterly on
1998:05, 1998:09, and 1998:11. The data on 1998:06, 1998:07, 1998:08, 1998:10, 1998:12, 1999:01, and 2006:01 are missing
because the survey was not conducted on these months. I follow Adam et al. (2021) in starting the sample after 1999:02
due to missing values at the beginning of the sample.

For each month when the survey was conducted, respondents are asked about the return they expect on their own
portfolio. The survey question is “What overall rate of return do you expect to get on your portfolio in the next twelve
months?” Before 2003:05, respondents are also asked about the return they expect from an investment in the stock market
during the next 12 months. The survey question is “Thinking about the stock market more generally, what overall rate of
return do you think the stock market will provide investors during the coming twelve months?” For each month, I calculate
the average expectations of returns on their own portfolio and returns on the market index. When calculating the average,
survey respondents are weighted by the weight factor provided in the survey. I exclude extreme observations where a
respondent reported expected returns higher than 95% or lower than -95%.

In order to construct a consistent measure of stock market return expectations over the entire sample period, I
impute missing market return expectations using the fitted values from two regressions. First, I impute missing values
during 1999:02-2005:12 and 2006:02-2007:10 with the fitted value from regressing expected market returns on own portfolio
expectations contemporaneously, where the regression is estimated using the part of the sample where both are available.
Second, I impute the one missing observation in both market and own portfolio return expectations for 2006:01 with the
fitted value from regressing the market return expectations on the lagged own portfolio return expectations, where the
coefficients are estimated using part of the sample where both are available, and the fitted value combines the estimated
coefficients with lagged own portfolio expectations data from 2005:12. Following Nagel and Xu (2022), I assume that
the forecasted stock market return includes dividends and capture expectations about annual simple net stock returns
Ft[Rt+1]. To obtain survey expectations of annual log returns Ft[log(1 + rt+1)] from a survey expectation of annual net
simple returns Ft[Rt+1], I use the approximation Ft[log(1 + rt+1)] ≈ log(1 + Ft[Rt+1]). After applying all the procedures,
the Gallup market return expectations series spans the periods 1999:02 to 2007:10. The data were downloaded on August
1st, 2024 from Roper iPoll: http://ropercenter.cornell.edu/ubs-index-investor-optimism/.
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I take a stand on the information set of respondents when each forecast was made, and I assume that respondents
could have used all data released before they completed the survey. Since interviews are in the first two weeks of a month
(e.g., February), I conservatively set the response deadline for the machine forecast to be the first day of the survey month
(e.g., February 1st), implying that I allow the machine to use information only up through the end of the previous month
(e.g., through January 31st). This ensures that the machine only sees information that would have been available to all
UBS/Gallup respondents for that survey month (February). This approach is conservative in the sense that it handicaps
the machine, since all survey respondents who are being interviewed during the next month would have access to more
timely information than the machine. Since the survey asks about the “one-year-ahead” I interpret the question to be
asking about the forecast period spanning from the current survey month to the same month one year ahead.

Michigan Survey of Consumers (SOC) The SOC contains approximately 50 core questions, and a minimum of
500 interviews are conducted by telephone over the course of the entire month, each month. Table 20 of the SOC reports
the probability of an increase in stock market in next year. The survey question was “The next question is about investing
in the stock market. Please think about the type of mutual fund known as a diversified stock fund. This type of mutual fund
holds stock in many different companies engaged in a wide variety of business activities. Suppose that tomorrow someone
were to invest one thousand dollars in such a mutual fund. Please think about how much money this investment would be
worth one year from now. What do you think the percent chance that this one thousand dollar investment will increase in
value in the year ahead, so that it is worth more than one thousand dollars one year from now?” When using this survey
forecast to compare to machine forecasts, I impute a point forecast for stock market returns using the method described
in Section C.4.2 below. I compare the imputed point forecast to machine forecasts of CRSP returns.

For the SOC, interviews are conducted monthly typically over the course of an entire month. (In rare cases, interviews
may commence at the end of the previous month, as in February 2018 when interviews began on January 31st 2018.) I take
a stand on the information set of respondents when each forecast was made, and I assume that respondents could have used
all data released before they completed the survey. Since interviews are almost always conducted over the course of an entire
month (e.g., February), I conservatively set the response deadline for the machine forecast to be the first day of the survey
month (e.g., February 1st), implying that I allow the machine to use information only up through the end of the previous
month (e.g., through January 31st). This ensures that the machine only sees information that would have been available to
all respondents for that survey month (February). This approach is conservative in the sense that it handicaps the machine,
since all survey respondents who are being interviewed during the next month would have access to more timely information
than the machine. Since the survey asks about the “year ahead” I interpret the question to be asking about the forecast
period spanning the period running from the current survey month to the same month one year ahead. The data spans
2002:06 to 2023:12. The SOC responses were obtained from https://data.sca.isr.umich.edu/data-archive/mine.php

and downloaded on May 15, 2024.

Livingston Survey Stock Price Forecast I obtain the Livingston Survey S&P 500 index forecast (SPIF) from the
Federal Reserve Bank of Philadelphia, and use the mean values in our structural and forecasting models. I compare the
one-year growth in these forecasts to machine forecasts of S&P 500 price growth. Our sample spans 1947:06 to 2023:06.
The forecast series were downloaded on January 24, 2024.

The survey provides semi-annual forecasts on the level of the S&P 500 index. Participants are asked to provide
forecasts for the level of the S&P 500 index for the end of the current survey month, 6 months ahead, and 12 months
ahead. I use the mean of the respondents’ forecasts each period, where the sample is based on about 50 observations.
Most of the survey participants are professional forecasters with “formal and advanced training in economic theory and
forecasting and use econometric models to generate their forecasts.” Participants receive questionnaires for the survey in
May and November, after the Consumer Price Index (CPI) data release for the previous month. All forecasts are typically
submitted by the end of the respective month of May and November. The results of the survey are released near the
end of the following month, on June and December of each calendar year. The exact release dates are available on the
Philadelphia Fed website, at the header of each news release. I take a stand on the information set of the respondents when
each forecast was made by assuming that respondents could have used all data released before they completed the survey.
Since all forecasts are typically submitted by the end of May and November of each calendar year, I set the response
deadline for the machine forecast to be the first day of the last month of June and December, implying that I allow the
machine to use information only up through the end of the May and November.

I follow Nagel and Xu (2021) in constructing one-year stock price growth expectations from the level forecasts. Starting
from June 1992, I use the ratio between the 12-month level forecast (SPIF 12Mt) and 0-month level nowcasts (SPIF ZMt) of
the S&P 500 index. Before June 1992, the 0-month nowcast is not available. Therefore I use the annualized ratio between
the 12-month (spi12t) and 6-month (spi6t) level forecast of the S&P 500 index

F(Liv)
t

[
Pt+1

Pt

]
≈


F(Liv)
t [Pt+1]

F(Liv)
t [Pt]

= SPIF 12Mt
SPIF ZMt

if t ≥ 1992M6(
F(Liv)
t [Pt+1]

F(Liv)
t [Pt+6]

)2

=
(

spi12t
spi6t

)2
if t < 1992M6
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where Pt is the S&P 500 index and t indexes the survey’s response deadline. To obtain a survey expectation of the log
change in price growth I use the approximation Ft(∆pt+1) ≈ log(Ft[Pt+1])− log(Pt).

Conference Board (CB) Survey Respondents provide the categorical belief of whether they expect stock prices to
“increase,” “decrease,” or stay the “same” over the next year. Since the survey asks respondents about stock prices in the
“year ahead,” I interpret the question to be asking about the forecast period from the end of the current survey month to
the end of the same month one year ahead. When we use this qualitative survey forecast to compare to machine forecasts,
we impute a point forecast for stock market returns using the method described in Section C.4.2 below. I compare the
imputed point forecast to machine forecasts of CRSP returns.

The survey is conducted monthly and I use the survey responses over 1987:04 to 2022:08. The data was downloaded
on September 26, 2022. The survey uses an address-based mail sample design. Questionnaires are mailed to households
on or about the first of each month. Survey responses flow in throughout the collection period, with the sample close-
out for preliminary estimates occurring around the 18th of the month. Any responses received after then are used to
produce final estimates for the month, which are published with the following month’s data. Conversations with those
knowledgeable about the survey suggested that most panelists respond early. Any responses received after around the 20th
of the month–regardless of when they are filled out–are included in the final (but not preliminary) numbers.

I take a stand on the information set of the respondents when each forecast was made by assuming that respondents
could have used all data released before they completed the survey. Since questionnaires reach households on or about the
first of each month (e.g., February 1st) and most respondents respond early, I conservatively set the response deadline for
the machine forecast to be the first day of the survey month (e.g., February 1st), implying that I allow the machine to use
information only up through the end of the previous month (e.g., January 31st).

Converting Qualitative Forecasts to Point Forecasts (SOC and CB) I use the SOC probability to impute
a quantitative point forecast of stock returns using a linear regression of CFO point forecasts for returns onto the SOC
probablity of a price increase. The SOC asks respondents about the percent chance that an investment will “increase in
value in the year ahead.” I interpret this as asking about the ex dividend value, i.e., about price price growth. The CFO
survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1. The SOC survey is conducted monthly,
where survey months span 2002:06 to 2021:12. Since the CFO is a quarterly survey, the regression is estimated in real-time
over a quarterly overlapping sample. Since the CFO survey is conducted during the last month of the quarter while the
SOC is conducted monthly, I align the survey months between CFO and SOC by regressing the quarterly CFO survey
point forecast with the qualitative SOC survey response during the last month of the quarter.

Since the SOC survey question is interpreted as asking about S&P 500 price growth while the CFO survey question
asks about stock returns including dividends, I follow Nagel and Xu (2021) in subtracting the current dividend yield of
the CRSP value weighted index from the CFO variable before running the regression. After estimating the regression, I
then add back the dividend yield to the fitted value to obtain an imputed SOC point forecast of stock returns including
dividends. Specifically, at time t, I assume that the CFO forecast of stock returns, FCFO

t [rt,t+1], minus the current dividend
yield, Dt/Pt, is related to the contemporaneous SOC probability of an increase in the stock market next year, P SOC

t,t+1, by:

FCFO
t [rt,t+1]−Dt/Pt = β0 + β1P

SOC
t,t+1 + ϵt.

The final imputed SOC point forecast is constructed as FSOC
t [rt,t+1] = β̂0+β̂1P

SOC
t,t+1+Dt/Pt. I first estimate the coefficients

of the above regression over an initial overlapping sample of 2002Q2 to 2004Q4, where the quarterly observations from the
CFO survey is regressed on the SOC survey responses from the last month of each calendar quarter. Using the estimated
coefficients and the SOC probability from 2005:03 gives us the point forecast of the one-year stock return from 2005Q1 to
2006Q1. I then re-estimate this equation, recursively, adding one quarterly observation to the end of the sample at a time,
and storing the fitted values. This results in a time series of SOC point forecasts FSOC

t [rt,t+1] spanning 2005Q1 to 2021Q1.
The same procedure is done for the Conference Board Survey, except I replace P SOC

t,t+1 by PCB
t,t+1, a ratio of the proportion

of those who respond with “increase” to the sum of “decrease” and “same.” The CB survey asks respondents to provide
the categorical belief of whether they expect stock prices to “increase,” “decrease,” or stay the “same” over the next year.
I interpret this as asking about price price growth. Since the CB survey question is interpreted as asking about S&P 500
price growth while the CFO survey question asks about stock returns including dividends, I follow Nagel and Xu (2021)
in subtracting the current dividend yield of the CRSP value weighted index from the CFO variable before running the
regression. After estimating the regression, I then add back the dividend yield to the fitted value to obtain an imputed
CB point forecast of stock returns including dividends.

The CFO survey is conducted quarterly, where the survey quarters span 2001Q4 to 2021Q1. The CB survey is con-
ducted monthly, where survey months span 1987:04 to 2022:08. The regression is first estimated over an initial overlapping
sample of 2001Q4 to 2004Q4, where the quarterly observations from the CFO survey is regressed on the CB survey re-
sponses from the last month of each calendar quarter. Using the estimated coefficients and the CB survey response PCB

t,t+1

from 2005:03 gives us the point forecast of the stock return from 2005Q1 to 2006Q1. I then re-estimate this equation,
recursively, adding one observation to the end of the sample at a time, and storing the fitted values. This results in a time
series of CB point forecasts FCB

t [rt,t+1] over 2005Q1 to 2021Q1.
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Nagel and Xu Individual Investor Expectations Nagel and Xu (2021)’s individual investor expectations series
for returns covers 1972-1977 (Annual) and 1987Q2-2023Q4 (Quarterly) and combine data from the following surveys:

1. UBS/Gallup: 1998:06-2007:10; Survey captures respondents’ expected stock market returns, in percent, over a
1-year horizon.

2. Michigan Survey of Consumers (SOC): 2002:04-2023:12; Respondents provide the probability of a rise in the stock
market over a 1-year horizon.

3. Conference Board (CB): 1987:04-2022:08; Respondents provide the categorial opinion whether they expect stock
prices to rise, or stay about where they are, or decline over the next year.

4. Vanguard Research Initiative (VRI): 2014:08; Survey captures respondents’ expected stock market returns, in
percent, over a 1-year horizon.

5. Roper: 1974-1977, annual, observed June of each calendar year; Respondents provide the categorial opinion whether
they expect stock prices to rise, or stay about where they are, or decline over the next year.

6. Lease, Lewellen, and Schlarbaum (1974, 1977): 1972-1973, annual, observed July of each calendar year; Survey
captures respondents’ expected stock market returns, in percent, over a 1-year horizon.

Among these sources, UBS/Gallup and VRI provide direct, point forecasts of expected stock returns, while SOC, CB, and
Roper offer qualitative or probabilistic information that requires conversion to consistent return expectations. Nagel and
Xu (2021) construct their final series using the following procedure:

1. Start with UBS/Gallup for 1998:06-2007:10 and VRI for 2014:08 since they capture the respondents’ expected stock
returns relatively closely (other surveys only provide qualitative measures).

2. Regress SOC on UBS/Gallup and VRI using periods of overlapping coverage (2002:04-2007:10). Use the fitted
values from this regression to impute missing data for 2007:11-2023:12 (excluding 2014:08).

3. Regress CB on UBS/Gallup and VRI using periods of overlapping coverage (1998:06-2007:10). Use the fitted values
from this regression to impute missing data for 1987:04-1998:05 (using CB) and 1974-1977 (using Roper).

4. Use the coefficients from regressing CB on UBS/Gallup and VRI (from step 3) to compute fitted values that convert
the probabilistic forecast from Roper into point forecasts of stock returns.

5. Convert expected returns to expected excess returns by subtracting the average 1-year Treasury yield measured at
the beginning of the survey month.

6. Aggregate monthly series to a quarterly frequency by taking the average expectation within calendar quarters.

C.5 Risk-Free Rates
Realized Risk-Free Rates As a measure of realized risk-free rates rft , I obtain daily series for the annualized three-
month Treasury bill rate (DTB3), downloaded from FRED on May 15, 2024. To match the definition used as the target
variable in the Survey of Professional Forecasters (SPF), I time-aggregate the daily realized risk-free rate series to a
quarterly frequency by taking the quarterly average, as discussed below.

Survey Expectations of Risk-Free Rates I obtain subjective expectations about risk-free rates from median
forecasts for the annualized three-month Treasury bill rate from the Survey of Professional Forecasters (SPF). The SPF
provides forecasts at the one and ten year horizons. For one year ahead forecasts (TBILL), respondents are asked to provide
quarterly forecasts of the quarterly average three-month Treasury bill rate, in percentage points, where the forecasts are
for the quarterly average of the underlying daily levels. I interpret the survey to be asking about annual net simple rates
Ft[R

f
t,t+1], and approximate the expected log risk-free rate as Ft[r

f
t,t+1] ≈ log(1 + Ft[R

f
t,t+1]). For ten year ahead forecasts

(BILL10), respondents are asked to provide forecasts for the annual-average rate of return to three-month Treasury bills
over the next 10 years, in percentage points. The ten year ahead forecasts are available only for surveys conducted in
the first quarter of each calendar year. I interpret the survey to be asking about annualized cumulative net simple rates
compounded from the survey quarter to the same quarter that is ten years after the survey year Ft[R

f
t,t+10], and approximate

the expected log risk-free rate as Ft[r
f
t,t+10] ≈ log(1+Ft[R

f
t,t+10]). To obtain long-horizon survey expectations of annualized
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log three-month Treasury bill rates over the next 1 < h < 10 years, I interpolate the forecasts across annualized 1 year
and 10 year return expectations:

Ft[r
f
t,t+h] =

10− h

10− 1
Ft[r

f
t,t+1] +

h− 1

10− 1
Ft[r

f
t,t+10], h = 1, 2, . . . , 10

Finally, I use the difference between the cumulative annualized long-horizon log three-month Treasury bill rate expectations
between adjacent years (i.e., Ft[r

f
t,t+h−1] and Ft[r

f
t,t+h]) to obtain Ft[r

f
t+h], the time t survey expectation of annualized

forward log three-month Treasury bill rate h years ahead:

Ft[r
f
t+h] = h× Ft[r

f
t,t+h]− (h− 1)× Ft[r

f
t,t+h−1], h = 1, 2, . . . , 10

The surveys are sent out at the end of the first month of each quarter, and collected in the second or third week of the
middle month of each quarter. When constructing machine learning forecasts for the risk-free rate, I assume that forecasters
could have used all data released before the survey deadlines for the SPF, which are posted online at the Federal Reserve
Bank of Philadelphia website. Since surveys are typically sent out at the end of the first month of each quarter, I make
the conservative assumption that respondents only had data released by the first day of the second month of each quarter.

C.6 Earnings

C.6.1 Realized Earnings

I use IBES street earnings per share (EPS) data that start in 1983:Q4 as the forecast target for IBES analysts.
Following the recommendation of Hillenbrand and McCarthy (2024), I use Street earnings as the forecast target for IBES
analysts. Street earnings differ from GAAP earnings by excluding discontinued operations, extraordinary charges, and
other non-operating items. According to the IBES user guide, analysts submit forecasts after backing out these transitory
components, and IBES constructs the realized series to align with those forecasts. While analysts have some discretion
over which items to exclude, Hillenbrand and McCarthy (2024) demonstrate that the target of these forecasts corresponds
closely to earnings before special items in Compustat, suggesting that street earnings accurately reflect the measure analysts
are targeting. To convert EPS to total earnings, I multiply the resulting quarterly EPS series by the quarterly S&P 500
divisor, available at: https://ycharts.com/indicators/sp_500_divisor. The final quarterly total earnings series spans
the period 1983:Q4 to 2023:Q4. To extend the sample back to 1965Q1, I use quarterly Compustat data on earnings before
special items. As noted in Hillenbrand and McCarthy (2024), this measure closely tracks IBES street earnings, indicating
it accurately reflects analysts’ forecast targets. IBES street earnings data and Compustat data has been downloaded from
WRDS on July 19, 2025. The divisor data were downloaded on July 21, 2025.

C.6.2 Survey Expectations of Earnings

I obtain monthly survey data for the median analyst earnings per share forecast and actual earnings per share from the
Institutional Brokers Estimate System (IBES) via Wharton Research Data Services (WRDS). The data spans the period
1976:01 to 2023:12.

Short-Term Growth (STG) Expectations I build measures of aggregate S&P 500 earnings expectations growth
using the constituents of the S&P 500 at each point in time following De La O and Myers (2021). I first construct expected
earnings expectations for aggregate earnings h-months-ahead as:

Ft[Et+h] = Ωt

 ∑
i∈xt+h

Ft [EPSi,t+h]Si,t

 /Divisort,

where F is the median analyst survey forecast, E is aggregate S&P 500 earnings, EPSi is earning per share of firm i among
all S&P 500 firms xt+h for which I have forecasts in IBES for t + h, Si is shares outstanding of firm i, and Divisort is
calculated as the S&P 500 market capitalization divided by the S&P 500 index. I obtain the number of outstanding shares
for all companies in the S&P500 from Compustat. IBES estimates are available for most but not all S&P 500 companies.
Following De La O and Myers (2021), I multiply this aggregate by Ωt+h, a ratio of total S&P 500 market value to the
market value of the forecasted companies at t + h to account for the fact that IBES does not provide earnings forecasts
for all firms in the S&P 500 in every period.

IBES database contains earning forecasts up to five annual fiscal periods (FY1 to FY5) and as a result, I interpolate
across the different horizons to obtain the expectation over the next 12 months. This procedure has been used in the
literature, including De La O and Myers (2021). Specifically, if the fiscal year of firm XYZ ends nine months after the
survey date, I have a 9-month earning forecast Ft[Et+9] from FY1 and a 21-month forecast Ft[Et+21] from FY2. I then
obtain the 12-month ahead forecast by interpolating these two forecasts as follows,

Ft[Et+12] =
9

12
Ft[Et+9] +

3

12
Ft[Et+21].
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To convert the monthly forecast to quarterly frequency, I use the forecast made in the middle month of each quarter, and
construct one-year earnings expectations from 1976Q1 to 2023Q4 and the earning expectation growth is calculated as an
approximation following following De La O and Myers (2021):

Ft (∆et+12) ≈ ln (Ft[Et+12])− et

where et is log earnings for S&P 500 at time t calculated as et = log (EPSt ·Divisort), where EPSt is the earnings per
share for the S&P 500 obtained from Shiller’s data depository and S&P Global, as described above.

Long-Term Growth (LTG) Expectations I construct long term expected earnings growth (LTG) for the S&P
500 following Bordalo et al. (2019). Specifically, I obtain the median firm-level LTG forecast from IBES, and aggregate
the value-weighted firm-level forecasts,

LTGt =

S∑
i=1

LTGi,t
Pi,tQi,t∑S
i=1 Pi,tQi,t

where S is the number of firms in the S&P 500 index, and where Pi,t and Qi,t are the stock price and the number of shares
outstanding of firm i at time t, respectively. LTGi,t is the median forecast of firm i’s long term expected earnings growth.
The data spans the periods from 1981:12 to 2023:12. All data were downloaded in July 19, 2025.

Finally, I use the difference between survey expectations of log earnings between adjacent years (i.e., Ft[et+h−1] and
Ft[et+h]) to obtain Ft[∆et+h] = Ft[et+h]−Ft[et+h−1], the time t survey expectation of forward one-year log earnings growth
h = 1, 2, 3, 4 years ahead. For the h = 5 year horizon, I interpret the IBES’s Long-Term Growth (LTG) forecast as the
5-year forward annual log earnings growth from 4 to 5 years ahead:

Ft[∆et+h] =

{
Ft[et+h]− Ft[et+h−1] if h = 1, 2, 3, 4 years
LTGt if h = 5 years

To estimate any biases in IBES analyst forecasts, the dynamic machine algorithm takes as an input a likely date cor-
responding to information analysts could have known at the time of their forecast. IBES does not provide an explicit
deadline for their forecasts to be returned. Therefore I instead use the “statistical period” day (the day when the set of
summary statistics was calculated) as a proxy for the deadline. I set the machine deadline to be the day before this date.
The statistical period date is typically between day 14 and day 20 of a given month, implying that the machine deadline
varies from month to month. As the machine learning algorithm uses mixed-frequency techniques adapted to quarterly
sampling intervals, while the IBES forecasts are monthly, I compare machine and IBES analyst forecasts as of the middle
month of each quarter, considering 12-month ahead forecast from the beginning of the month following the survey month.

C.7 Price-Earnings Ratio
I construct a quarterly series for the price-earnings ratio PEt ≡ Pt/Et using the end-of-quarter S&P 500 stock price

index Pt and the S&P 500 quarterly total earnings Et. I infer subjective expectations of the log price-earnings ratio
Ft[pet+h] by combining the current log price-earnings ratio pet with h year ahead subjective expectations of annual log
stock returns Ft[rt+h] and annual log earnings growth Ft[∆et+h], following the approach used in De La O and Myers
(2021). Rearrange the Campbell and Shiller (1988) present value identity for the price-earnings ratio in equation (A.52)
to express the future log price-earnings ratio as a function of current log price-earnings, log earnings growth, and log stock
returns:

pet+h =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe +∆et+j − rt+j)

where the equation holds both ex-ante and ex-post. Apply subjective expectations Ft on both sides of the equation:

Ft[pet+h] =
1

ρh
pet −

1

ρh

h∑
j=1

ρj−1(cpe + Ft[∆et+j ]︸ ︷︷ ︸
Survey (IBES)

− Ft[rt+j ]︸ ︷︷ ︸
Survey (CFO)

) (A.132)

where subjective expectations about j years ahead forward annual log stock returns Ft[rt+j ] and forward annual log earnings
growth Ft[∆et+j ] use survey forecasts from the CFO survey and IBES, respectively. I construct firm-level price-earnings
expectations by applying the same log-linear approximation to firm-level expectations of stock returns (from IBES and
Value Line) and earnings growth (from IBES).

C.8 Earnings-Employment Ratio
The current earnings-employment ratio is defined as ELt ≡ Et/Lt+1, where Et denotes quarterly total earnings for

the S&P 500 and Lt+1 is the employment stock at the beginning of period t + 1. I measure Lt+1 using end-of-period
employment levels within each quarter. This timing assumption ensures that the measures are consistent with the timing
conventions from Section B while still remaining known to firms by the end of period t.
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C.9 Machine Learning Forecasts
For each survey forecast, I also construct their corresponding machine learning forecast by estimating a Long Short-

Term Memory (LSTM) neural network:

Et[yt+h] = G(Xt,βh,t)

where yt+h denotes the variable y to be predicted h years ahead of time t, and Xt is a large input dataset of right-hand-side
variables including the intercept. G(Xt,βh,t) denotes predicted values from a LSTM neural network that can be represented
by a (potentially) high-dimensional set of finite-valued parameters βh,t. The machine learning model is estimated using
an algorithm that takes into account the data-rich environment in which firms operate in (Bianchi et al., 2022 and Bianchi
et al., 2024). When constructing machine learning forecasts of each variable, I allow the machine to use only information
that would have been available to all survey respondents at the time of each forecast. See Section D for details about
the machine learning algorithm and predictor variables. Machine expectations about the price-earnings ratio Et[pet+h] is
constructed similarly to the survey counterpart, by replacing the survey forecasts of stock returns and earnings growth on
the right-hand side of equation (A.132) with the corresponding machine learning forecasts.

For the cross-sectional decomposition, I construct analogous machine learning forecasts of returns, earnings growth,
and price-earnings ratios at the portfolio level using the same LSTM framework, applied to portfolio-specific predictors and
outcomes. Firms are sorted into value-weighted portfolios sorted deciles of idiosyncratic shocks, with predictor variables
aggregated to the portfolio level using market cap weights. Idiosyncratic shocks are estimated as the residuals from a
firm-level autoregressive (AR(1)) model of earnings that includes both firm and time fixed effects. All firm-level variables
are aggregated to the portfolio level using market capitalization weights prior to estimation.

D Machine Learning

D.1 Machine Algorithm Details
The basic dynamic algorithm follows the six step approach of Bianchi et al. (2022) of 1. Sample partitioning, 2.

In-sample estimation, 3. Training and cross-validation, 4. Grid reoptimization, 5. Out-of-sample prediction, and 6. Roll
forward and repeat. We refer the interested reader to that paper for details and discuss details of the implementation
here only insofar as they differ. At time t, a prior sample of size Ṫ is partitioned into two subsample windows: a training
sample consisting of the first TE observations, and a hold-out validation sample of TV subsequent observations so that
Ṫ = TE + TV . The training sample is used to estimate the model subject to a specific set of tuning parameter values, and
the validation sample is used for tuning the hyperparameters. The model to be estimated over the training sample is

yt+h = Ge (Xt,βh,t

)
+ ϵt+h.

where yt+h is a time series indexed by j whose value in period h ≥ 1 the machine is asked to predict at time t, Xt is a large
input dataset of right-hand-side variables including the intercept, and Ge(·) is a machine learning estimator that can be
represented by a (potentially) high-dimensional set of finite-valued parameters βe

h,t. We consider two estimators for Ge(·):
Elastic Net GEN(Xt,β

EN
j,h ), and Long Short-Term Memory (LSTM) network GLSTM(Xt,β

LSTM
j,h ). The e ∈ {EN,LSTM}

superscripts on β indicate that the parameters depend on the estimator being used (See the next section for a description
of EN and LSTM). Xt always denotes the most recent data that would have been in real time prior to the date on which
the forecast was submitted. To ensure that the effect of each variable in the input vector is regularized fairly during the
estimation, we standardize the elements of Xt such that sample means are zero and sample standard deviations are unity.
It should be noted that the most recent observation on the left-hand-side is generally available in real time only with a
one-period lag, thus the forecasting estimations can only be run with data over a sample that stops one period later than
today in real time. The parameters βe

h,t are estimated by minimizing the mean-square loss function over the training
sample with L1 and L2 penalties

L(βe
h,t,XTE ,λe

t ) ≡
1

TE

TE∑
τ=1

(
yτ+h −Ge (Xτ ,β

e
h,t

))2
︸ ︷︷ ︸

Mean Square Error

+ λe
1,t

K∑
k=1

∣∣βe
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λe
2,t

K∑
k=1

(βe
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

where XTE = (yt−TE , . . . , yt,X ′
t−TE

, . . . ,X ′
t )

′ is the vector containing all observations in the training sample of size TE . The

estimated βe
h,t is a function of the data XTE and a non-negative regularization parameter vector λe

t =
(
λe
1,t, λ

e
2,t,λ

LSTM
0,t

)′
where λLSTM

0,t is a set of hyperparameters only relevant when using the LSTM estimator for Ge(·) (see below). For the
EN case there are only two hyperparameters, which determine the optimal shrinkage and sparsity of the time t machine
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specification. The regularization parameters λe
t are estimated by minimizing the mean-square loss over pseudo-out-of-

sample forecast errors generated from rolling regressions through the validation sample:

λ̂
e

t , T̂E , T̂V = argmin
λe
t ,TE ,TV

{
1

TV − h

TE+TV −h∑
τ=TE

(
yτ+h −Ge(Xτ , β̂

e

j,h,τ (XTE ,λe
t ))
)2

+ λe
1,t

K∑
k=1

∣∣βe
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λe
2,t

K∑
k=1

(βe
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

}

where β̂
e

j,h,τ (·) for e ∈ {EN,LSTM} is the time τ estimate of βe
j,h given λe

t and data through time τ in a training sample

of size TE . Denote the combined final estimator β̂
e

h,t(X T̂E
, λ̂

e

t ), where the regularization parameter λ̂
e

t is estimated using
cross-validation dynamically over time. Note that the algorithm also asks the machine to dynamically choose both the
optimal training window T̂E and the optimal validation window T̂V by minimizing the pseudo-out-of-sample MSE.

The estimation of β̂
e

h,t(X T̂E
, λ̂

e

t ) is repeated sequentially in rolling subsamples, with parameters estimated from

information known at time t. Note that the time t subscripts of β̂
e

h,t and λ̂
e

t denote one in a sequence of time-invariant
parameter estimates obtained from rolling subsamples, rather than estimates that vary over time within a sample. Likewise,
we denote the time t machine belief about yt+h as Ee

t [yt+h], defined by

Ee
t [yt+h] ≡ Ge

(
Xt, β̂

e

h,t(X T̂E
, λ̂

e

t )
)

Finally, the machine MSE is computed by averaging across the sequence of squared forecast errors in the true out-of-sample
forecasts for periods t = (Ṫ + h), . . . , T where T is the last period of our sample. The true out-of-sample forecasts used
for neither estimation nor tuning is the testing subsample used to evaluate the model’s predictive performance.

On rare occasions, one or more of the explanatory variables used in the machine forecast specification assumes a value
that is order of magnitudes different from its historical value. This is usually indicative of a measurement problem in the
raw data. We therefore program the machine to detect in real-time whether its forecast is an extreme outlier, and in that
case to discard the forecast replacing it with the historical mean. Specifically, at each t, the machine forecast Ee

t [yt+h] is
set to be the historical mean calculated up to time t whenever the former is five or more standard deviations above its
own rolling mean over the most recent 20 quarters.

We include the contemporaneous survey forecasts Ft [yt+h] for the median respondent only for inflation and GDP
forecasts, following Bianchi et al. (2022). This procedure allows the machine to capture intangible information due to
judgement or private signals. Specifically, for these forecasts of inflation and GDP growth, we consider the following
machine learning empirical specification for forecasting yt+h given information at time t, to be benchmarked against the
time t survey forecast of respondent-type X, where this type is the median here:

yt+h = Ge
jh (Zt) + γjhMFt [yt+h] + ϵt+h, h ≥ 1

where γjhM is a parameter to be estimated, and where GjhM (Zt) represents a ML estimator as function of big data. Note
that the intercept αjh from Bianchi et al. (2022) gets absorbed into the Ge

jh (Zt) in LSTM via the outermost bias term.

D.1.1 Elastic Net (EN)

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Selection Operator (LASSO)
and ridge type penalties. The model can be written as:

yt+h = X ′
tjβ

EN
j,h + ϵt+h

where Xt = (1,X1t,...,XKt)
′ include the independent variable observations (Ft [yt+h] ,Zj,t) into a vector with “1” and

βEN
j,h = (αj,h, βj,hF, vec (Bj,hZ))

′ ≡ (β0, β1, ...βK)′ collects all the coefficients.
It is customary to standardize the elements of Xt such that sample means are zero and sample standard deviations

are unity. The coefficient estimates are then put back in their original scale by multiplying the slope coefficients by their
respective standard deviations, and adding back the mean (scaled by slope coefficient over standard deviation.) The EN
estimator incorporates both an L1 and L2 penalty:

β̂
EN

j,h = argmin
β0,β1,...,βK

1

TE

TE∑
τ=1

(
yτ+h −X

′
τβj,h

)2
+ λ1

K∑
k=1

∣∣βj,h,k

∣∣
︸ ︷︷ ︸

LASSO

+ λ2

K∑
k=1

(βj,h,k)
2

︸ ︷︷ ︸
ridge

By minimizing the MSE over the training samples, we choose the optimal λ1 and λ2 values simultaneously.
In the implementation, the EN estimator is sometimes used as an input into the algorithm using the LSTM estimator.

Specifically, we ensure that the machine forecast can only differ from the relevant benchmark if it demonstrably improves
the pseudo out-of-sample prediction in the training samples prior to making a true out-of-sample forecast. Otherwise, the
machine is replaced by the benchmark calculated up to time t. In some cases the benchmark is a survey forecast, in others
it could be a historical mean value for the variable. However, for the implementation using LSTM, we also use the EN
forecast as a benchmark.
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D.1.2 Long Short-Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network (RNN), which are neural networks used to learn about
sequential data such as time series or natural language. In particular, LSTM networks can learn long-term dependencies
between across time periods by introducing hidden layers and memory cells to control the flow of information over longer
time periods. The general case of the LSTM network with up to N hidden layers is defined as

GLSTM(Xt,β
LSTM
j,h )︸ ︷︷ ︸

1×1

= W (yhN )︸ ︷︷ ︸
1×D

hN

hN
t︸︷︷︸

D
hN ×1

+ by︸︷︷︸
1×1

(Output layer)

hn
t︸︷︷︸

Dhn×1

= ont︸︷︷︸
Dhn×1

⊙ tanh( cnt︸︷︷︸
Dhn×1

) (Hidden layer)

cnt︸︷︷︸
Dhn×1

= fn
t︸︷︷︸

Dhn×1

⊙ cnt−1︸︷︷︸
Dhn×1

+ int︸︷︷︸
Dhn×1

⊙ c̃nt︸︷︷︸
Dhn×1

(Final memory)

c̃nt︸︷︷︸
Dhn×1

= tanh(W (cnhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (cnhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bcn︸︷︷︸
Dhn×1

) (New memory)

fn
t︸︷︷︸

Dhn×1

= σ(W (fnhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (fnhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bfn︸︷︷︸
Dhn×1

) (Forget gate)

int︸︷︷︸
Dhn×1

= σ(W (inhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (inhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bin︸︷︷︸
Dhn×1

) (Input gate)

ont︸︷︷︸
Dhn×1

= σ(W (onhn−1)︸ ︷︷ ︸
Dhn×D

hn−1

hn−1
t︸ ︷︷ ︸

D
hn−1×1

+ W (onhn)︸ ︷︷ ︸
Dhn×Dhn

hn
t−1︸︷︷︸

Dhn×1

+ bon︸︷︷︸
Dhn×1

) (Output gate)

where n = 1, . . . , N indexes each hidden layer. hn
t ∈ RDhn is the n-th hidden layer, where Dhn is the number of neurons

or nodes in the hidden layer. The 0-th layer is defined as the input data: h0
t ≡ Xt. The memory cell cnt allows the

LSTM network to retain information over longer time periods. The output gate ont controls the extent to which the
memory cell cnt maps to the hidden layer hn

t . The forget gate fn
t controls the flow of information carried over from the

final memory in the previous timestep cnt−1. The input gate int controls the flow of information from the new memory
cell c̃nt . The initial states for the hidden layers (hn

0 )
N
n=1 and memory cells (cn0 )

N
n=1 are set to zeros. σ(·) and tanh(·) are

activation functions that introduce non-linearities in the LSTM network, applied elementwise. σ : R → R is the sigmoid

function: σ(x) = (1 + e−x)−1. tanh : R → R is the hyperbolic tangent function: tanh(x) = e2x−1
e2x+1

. The ⊙ operator

refers to elementwise multiplication. βLSTM
j,h ≡ (((vec(W (gnhn−1))′, vec(W (gnhn))′, b′gn)g∈{c,f,i,o})

N
n=1, vec(W

(yhN ))′, by)
′

are parameters to be estimated. We will refer to parameters indexed with W as weights; parameters indexed with b are
biases. We estimate the parameters βLSTM

j,h for the LSTM network using Stochastic Gradient Decent (SGD), which is an
iterative algorithm for minimizing the loss function and proceeds as follows:

1. Initialization. Fix a random seed R and draw a starting value of the parameters β
(0)
j,h randomly, where the superscript

(0) in parentheses indexes the iteration for an estimate of βLSTM
j,h .

(a) Initialize input weights W (gnhn−1) ∈ RDhn×D
hn−1 for g ∈ {c, f, i, o} using the Glorot initializer. Draw from

a uniform distribution with zero mean and a variance that depends on the dimensions of the matrix:

W
(gnhn−1)
ij

iid∼ U

[
−
√

6

Dhn +Dhn−1

,

√
6

Dhn +Dhn−1

]
for each i = 1, . . . , Dhn and j = 1, . . . , Dhn−1 .

(b) Initialize the recurrent weights W (gnhn) ∈ RDhn×Dhn for g ∈ {c, f, i, o} using the Orthogonal initializer. Use
the orthogonal matrix obtained from the QR decomposition of a Dhn × Dhn matrix of random numbers
drawn from a standard normal distribution.

(c) Initialize biases (bgn)g∈{c,f,i,o}, hidden layers hn
0 , and memory cells cn0 with zeros.

2. Mini-batches. Prepare the input data by dividing the training sample into a collection of mini-batches.

(a) Suppose that we have a multi-variate time-series training sample with dimensions (TE ,K) whose time steps
t are indexed by t = 1, . . . , TE and K is the number of predictors. We transform this training sample into a
3-D tensor with dimensions (NS ,M,K) where
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� NS = Total number of sequences in training sample

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

This can be done by creating overlapping sequences from the time series:

� Sequence 1 contains time steps 1, . . . ,M

� Sequence 2 contains time steps 2, . . . ,M + 1

� Sequence 3 contains time steps 3, . . . ,M + 2

� . . .

� Sequence TE −M contains time steps TE −M, . . . , TE − 1

� Sequence NS = TE −M + 1 contains time steps TE −M + 1, . . . , TE

(b) Randomly shuffle the NS sequences by randomly sampling a permutation without replacement.

(c) Partition the NS shuffled sequences into ⌈NS/NB⌉ mini-batches. We partition the NS sequences in the
training sample ((NS ,M,K) tensor) into a list of ⌈NS/NB⌉ mini-batches. A mini-batch is a (NB ,M,K)-
dimensional tensor containing NB out of NS randomly shuffled sequences. When NS/NB is not a whole
number, ⌊NS/NB⌋ of the mini-batches will be 3-D tensors with dimensions (NB ,M,K). One batch will
contain leftover sequences and will have dimensions (NS%NB ,M,K) where % is the modulus operator. Let
B(1), . . . , B⌈NS/NB⌉ denote the list of mini-batches.

� NS = Total number of sequences in training sample

� NB = Mini-batch size, i.e., number of sequences in each partition.

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

3. Repeat until the stopping condition is satisfied (k = 1, 2, 3, . . . ):

(a) Dropout. Apply dropout to the mini-batch. To obtain the n-th hidden layer under dropout, multiply the
current value of the n−1-th hidden layer hn−1

t and the lagged value of the n-th hidden layer hn
t−1 with binary

masks r
(k)

t,hn−1
t

∈ RD
hn−1 and r

(k)
t,hn

t−1
∈ RDhn , respectively:

h
n−1
t︸ ︷︷ ︸

D
hn−1×1

= r
(k)

t,hn−1
t︸ ︷︷ ︸

D
hn−1×1

⊙ hn−1
t︸ ︷︷ ︸

D
hn−1×1

, r
(k)

t,hn−1
t ,i

iid∼ Bernoulli(p
hn−1
t

), i = 1, . . . , Dhn−1

h
n
t−1︸︷︷︸

Dhn×1

= r
(k)
t,hn

t−1︸ ︷︷ ︸
Dhn×1

⊙ hn
t−1︸︷︷︸

Dhn×1

, r
(k)
t,hn

t−1,i

iid∼ Bernoulli(phn
t−1

), i = 1, . . . , Dhn

where t ∈ B(k) and n = 1, . . . , N indexes the hidden layer and it is understood that the 0-th layer is the
input vector h0

t ≡ Xt. p
hn−1
t

, phn
t−1

∈ [0, 1] is the probability that time t nodes in the n − 1-th hidden layer

and time t− 1 nodes in the n-th hidden layer are retained, respectively.

(b) Stochastic Gradient. Average the gradient over observations in the mini-batch

∇L(β
(k−1)
j,h ,XB(k) ,λ

LSTM) =
1

M

∑
t∈B(k)

∇L(β
(k−1)
j,h ,Xt,λ

LSTM)

where ∇L(β
(k−1)
j,h ,Xt,λ

LSTM) is the gradient of the loss function with respect to the parameters β
(k−1)
j,h ,

evaluated at the time t observation Xt = (yt+h, X̂ ′
t )

′ after applying dropout.

(c) Learning rate shrinkage. Update the parameters to β
(k)
j,h using the Adaptive Moment Estimation (Adam)

algorithm. The method uses the first and second moments of the gradients to shrink the overall learning rate
to zero as the gradient approaches zero.

β
(k)
j,h = β

(k−1)
j,h − γ

m(k)

√
v(k) + ε

where m(k) and v(k) are weighted averages of first two moments of past gradients:

m(k) =
1

1− πk
1

(π1m
(k−1) + (1− π1)∇L(β

(k−1)
j,h ,XB(k) ,λ

LSTM))
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v(k) =
1

1− πk
2

(π2v
(k−1) + (1− π2)∇L(β

(k−1)
j,h ,XB(k) ,λ

LSTM)2)

πk denotes the k-the power of π ∈ (0, 1), and /,
√
·, and (·)2 are applied elementwise. The default values

of the hyperparameters are m(0) = v(0) = 0 (initial moment vectors), γ = 0.001 (initial learning rate),
(π1, π2) = (0.9, 0.999) (decay rates), and ε = 10−7 (prevent zero denominators).

(d) Stopping Criteria. Stop iterating and return β
(k)
j,h if one of the following holds:

� Early stopping. At each iteration, use the updated β
(k)
j,h to calculate the loss from the validation sample.

Stop when the validation loss has not improved for S steps, where S is a “patience” hyperparameter. By
updating the parameters for fewer iterations, early stopping shrinks the final parameters βj,h towards

the initial guess β
(0)
j,h, and at a lower computational cost than ℓ2 regularization.

� Maximum number of epochs. Stop if the number of iterations reaches the maximum number of epochs
E. An epoch happens when the full set of the training sample has been used to update the parameters.
If the training sample has TE observations and each mini-batch has M observations, then each epoch
would contain ⌈TE/M⌉ iterations (after rounding up as needed). So the maximum number of iterations
is bounded by E × ⌈TE/M⌉.

4. Ensemble forecasts. Repeat steps 1. and 2. over different random seeds R and save each of the estimated parameters

β̂
LSTM

j,h,TE
(XTE ,λLSTM, R). Then construct out-of-sample forecasts using the top 10 out of 20 starting values with

the best performance in the validation sample. Ensemble can be considered as a regularization method because it
aims to guard against overfitting by shrinking the forecasts toward the average across different random seeds. The
random seed affects the random draws of the parameter’s initial starting value β

(0)
j,h, the sequences selected in each

mini-batch B(k), and the dropout mask r
(k)
t .

Hyperparameters Let λLSTM ≡ [λ1, λ2, γ, π1, π2, p,N, (Dhn)Nn=1,M,E, S]′ collect all the hyper-parameters that con-
trol the LSTM network’s complexity and prevent the model from overfitting the data. The number of hidden layers N
and the number of neurons Dh1 , . . . , DhN in each hidden layer are hyper-parameters that characterize the network’s archi-
tecture. To choose the number of neurons in each layer, we apply a geometric pyramid rule where the dimension of each
additional hidden layer is half that of the previous hidden layer. We select the best LSTM architecture iteratively by min-
imizing the pseudo out-of-sample mean-squared error from rolling forecasts over the validation sample. Table A.14 reports
the hyper-parameters for the LSTM network and its estimation. Hyper-parameters reported as a range or a set of values
are cross-validated. The hyper-parameters are estimated by minimizing the mean-square loss over pseudo out-of-sample
forecast errors generated from rolling regressions through the validation sample. The pseudo out-of-sample forecasts are
ensemble averages implied by parameters based on different random seeds R.

Adaptive Architecture Selection We allow the LSTM architecture to evolve over time using a simple, adaptive
updating procedure. At each period in the testing sample, the machine selects the architecture (number of hidden layers
and neurons per layer) that minimized out-of-sample forecast errors in the preceding period. The candidate architectures
considered span various combinations of hidden layers and neurons per layer, as listed in Table A.14. The architecture is
updated quarterly by using the forecast performance from the most recent quarter. This approach allows the machine to
adjust its specification over time based on evolving patterns in the data, while avoiding look-ahead bias or overfitting to
future outcomes.

D.2 Data Inputs for Machine Learning Algorithm

D.2.1 Macro Data Surprises

These data are used as inputs into the machine learning forecasts. I obtain median forecasts for GDP growth
(Q/Q percentage change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change) from the Money Market Service Survey. The median market survey forecasts are compiled and
published by the Money Market Services (MMS) the Friday before each release. I apply the approach used in Bauer
and Swanson (2023) and define macroeconomic data surprise as the actual value of the data release minus the median
expectation from MMS on the Friday immediately prior to that data release. The GDP growth forecasts are available
quarterly from 1990Q1 to 2023Q4. The core CPI forecast is available monthly from July 1989 to December 2023. The
median forecasts for the unemployment rate and nonfarm payrolls are available monthly from January 1980 to December
2023, and January 1985 to December 2023, respectively. All survey forecasts were downloaded from Haver Analytics on
December 17, 2022 and the Bloomberg Terminal on July 15, 2025. To pin down the timing of when the news was actually
released I follow the published tables of releases from the Bureau of Labor Statistics (BLS), discussed below.

The macro news events are indexed by their date and time of the data release, while the machine learning algorithm
is adapted to quarterly sampling frequencies. When including the macro data surprises as additional predictors for the
machine forecast, I time-aggregate the macro data surprises to a quarterly frequency by taking the sum of the surprises
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Table A.14: Candidate hyper-parameters for the machine learning forecast

Variable Earnings Earnings Stock CPI
Growth Growth Returns Inflation

Horizon (Years) 1,2,3,4 4-5 LTG 1,2,3,4,5 1,2,3,4,5
(a) Elastic Net
L1 penalty λ1 [10−2, 101] [10−2, 101] [10−6, 10−2] [10−4, 101]
L2 penalty λ2 [10−2, 101] [10−2, 101] [10−6, 10−2] [10−4, 101]
Training window TE 4, 6, 8, 10 4, 6, 8, 10, 12 5, 7 3, 4, 5, 6, 7
Validation window TV 4, 6, 8, 10 4, 6, 8, 10, 12 5, 7, 20 6, 7, . . . , 14, 15
(b) Long Short-Term Memory Network
L1 penalty λ1 [10−6, 10−2] [10−5, 10−1] [10−6, 10−2] [10−6, 10−2]
L2 penalty λ2 [10−6, 10−2] [10−5, 10−1] [10−6, 10−2] [10−6, 10−2]
Learning rate γ 0.001 0.001 0.001 0.001
Gradient decay π1, π2 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Dropout input px 0.8 0.8 0.8 0.8
Dropout recurrent ph 0.8 0.8 0.5 0.5
Hidden layers N 1, 3, 5 1, 3, 5 1, 3, 5 1
Neurons per layer 16, 32, 64 16, 32, 64 4, 8, 16 4
Mini-batch size M 4 4 4 4
Max epochs E 10, 000 10, 000 10, 000 10, 000
Early stopping S 20 20 80 20
Random seeds R 1, . . . , 20 1, . . . , 20 1, . . . , 20 1, . . . , 20
Training window TE 4, 8, 12 3, 7, 12 5, 7 5, 7
Validation window TV 4, 8, 12 3, 7, 12, 20 5, 7, 20 6, 9, 12, 15

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each estimator.

across data releases that occurred before the response deadline set for the machine. For example, if the response deadline
is set to the first day of the middle month of each quarter (e.g., February 1st), I take the sum of the surprises from data
releases up to the day before the deadline, the last day of the first month of each quarter (e.g., January 31st).

D.2.2 FOMC Surprises

FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds futures
(FFF) contract rate and changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contract rate, from 10 minutes
before to 20 minutes after each U.S. Federal Reserve Federal Open Market Committee (FOMC) announcement. The data
on FFF and ED were downloaded on July 15, 2025. When benchmarking against a survey, I use the last FOMC meeting
before the survey deadline to compute surprises. For surveys that do not have a clear deadline, I compute surprises using
from the last FOMC in the first month of the quarter. When benchmarking against moving average, I use the last FOMC
meeting before the end of the first month in each quarter to compute surprises.

When including the FOMC surprises as additional predictors for the machine forecast, I time-aggregate the FOMC
surprises to a quarterly frequency by taking the sum of the surprises across FOMC announcements that occurred before
the response deadline set for the machine. For example, if the response deadline is set to the first day of the middle month
of each quarter (e.g., February 1st), I take the sum of the surprises from FOMC announcements up to the day before the
deadline, the last day of the first month of each quarter (e.g., January 31st).

D.2.3 S&P 500 Jumps

As a measure of the market’s reaction to news shocks, I use the jump in the S&P 500 pre- and post- a 30-minute
window around major news events. The events in our analysis include (i) 1,482 macroeconomic data releases for U.S.
GDP, Consumer Price Index (CPI), unemployment, and payroll data spanning 1980:01-2023:12, (ii) 16 corporate earnings
announcement days spanning 1999:03-2020:05, and (iii) 219 Federal Open Market Committee (FOMC) press releases from
the Fed spanning 1994:02-2023:12. The corporate earnings news events are from Baker et al. (2019) who conduct textual
analyses ofWall Street Journal articles to identify days in which there were large jumps in the aggregate stock market
that could be attributed to corporate earnings news with high confidence. The jump in the S&P 500 for a given event is
defined as jτ = pτ+δpost − pτ−δpre , where τ indexes the time of an event and pτ = log(Pτ ) is the log S&P 500 index. δpre
and δpost denote the pre and post event windows, which is 10 minutes before and 20 minutes after the event, respectively.
I obtain data on Pτ using tick-by-tick data on the S&P 500 index from tickdata.com. The series was purchased and
downloaded on July 15, 2025 from https://www.tickdata.com/. I create the minutely data using the close price within
each minute. I supplement the S&P 500 index using S&P500 E-mini futures for events that occur in off-market hours. I
use the current-quarter contract futures. I purchased the S&P 500 E-mini futures from CME group on July 15, 2025 at
https://datamine.cmegroup.com/. Our sample spans 1/2/1986 to 12/31/2023.

For each event, I separate out the events for which the S&P 500 increased over the window (j
(+)
τ ≥ 0) and those for

which the market decreased (j
(−)
τ ≤ 0). I aggregate the event-level jumps to monthly time series by summing over all
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the relevant events within the month, where the events are partitioned into two groups based on the sign of the jump:
J
(+)
t =

∑
τ∈x(t) j

(+)
τ , J

(−)
t =

∑
τ∈x(t) j

(−)
τ , where t indexes the month and x(t) is the set of all events that occurred within

month t. The procedure results in two monthly variables, J
(+)
t and J

(−)
t , which capture total market reaction to news

events in either direction during the quarter. The series spans the period 1994:02 to 2023:12. Separating out the events
based on the sign of the jump allows us to capture any differential effects on return predictability based on whether the
market perceived the news as good or bad. The partition also allows us to accurately capture the total extent of over-
or underreaction. Otherwise, mixing all the events would only capture the net effect of the jumps and bias the market
reaction towards zero.

When used as additional predictors in the for the machine forecast, the jumps need to be converted to quarterly
time series because the machine learning algorithm is adapted to a quarterly sampling frequency. The set of events in
x(t) is chosen so that the machine only sees the news events that would have been available to the real-time firm. When
combining the events within a quarter, I impose the response deadline used to produce the machine forecast. For example,
if the response deadline is set to the first day of the middle month of each quarter (e.g., February 1st), I use the jumps
from the events up to the day before the deadline, the last day of the first month of each quarter (e.g., January 31st).

D.2.4 Real-Time Macro Data

This section gives details on the real time macro data inputs used in the machine learning forecasts. A subset of these
series are used in the structural estimation. At each forecast date in the sample, I construct a dataset of macro variables
that could have been observed on or before the day of the survey deadline. I use the Philadelphia Fed’s Real-Time Data Set
to obtain vintages of macro variables. The real-time data sets are available at https://www.philadelphiafed.org/research-
and-data/real-time-center/real-time-data/data-files. These vintages capture changes to historical data due to periodic
revisions made by government statistical agencies. The vintages for a particular series can be available at the monthly
and/or quarterly frequencies, and the series have monthly and/or quarterly observations. In cases where a variable has both
frequencies available for its vintages and/or its observations, I choose one format of the variable. For instance, nominal
personal consumption expenditures on goods is quarterly data with both monthly and quarterly vintages available; in this
case, I use the version with monthly vintages.

Table A.15 gives the complete list of real-time macro variables. Included in the table is the first available vintages for
each variable that has multiple vintages. I do not include the last vintage because most variables have vintages through
the present. For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the last
available vintage is 2013Q2. Table A.15 also lists the transformation applied to each variable to make them stationary
before generating factors. Let Xi,t denote variable i at time t after the transformation, and let XA

i,t be the untransformed
series. Let ∆ = (1− L) with LXi,t = Xit−1. There are seven possible transformations with the following codes:

1 Code lv: Xi,t = XA
i,t

2 Code ∆lv: Xi,t = XA
i,t −XA

it−1

3 Code ∆2lv: Xi,t = ∆2XA
i,t

4 Code ln: Xi,t = ln(XA
i,t)

5 Code ∆ln: Xi,t = ln(XA
i,t)− ln(XA

it−1)

6 Code ∆2ln: Xi,t = ∆2ln(XA
i,t)

7 Code ∆lv/lv: Xi,t = (XA
i,t −XA

it−1)/X
A
it−1

Table A.15: List of Macro Dataset Variables

No. Short Name Source Tran Description First Vintage
Group 1: Output and Income

1 IPMMVMD Philly Fed ∆ln Ind. production index - Manufacturing 1962M11
2 IPTMVMD Philly Fed ∆ln Ind. production index - Total 1962M11
3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979M8
4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983M7
5 NCPROFATMVQD Philly Fed ∆ln Nom. corp. profits after tax without IVA/CCAdj 1965Q4
6 NCPROFATWMVQD Philly Fed ∆ln Nom. corp. profits after tax with IVA/CCAdj 1981Q1
7 OPHMVQD Philly Fed ∆ln Output per hour - Business sector 1998Q4
8 NDPIQVQD Philly Fed ∆ln Nom. disposable personal income 1965Q4
9 NOUTPUTQVQD Philly Fed ∆ln Nom. GNP/GDP 1965Q4
10 NPIQVQD Philly Fed ∆ln Nom. personal income 1965Q4
11 NPSAVQVQD Philly Fed ∆lv Nom. personal saving 1965Q4
12 OLIQVQD Philly Fed ∆ln Other labor income 1965Q4
13 PINTIQVQD Philly Fed ∆ln Personal interest income 1965Q4
14 PINTPAIDQVQD Philly Fed ∆ln Interest paid by consumers 1965Q4
15 PROPIQVQD Philly Fed ∆ln Proprietors’ income 1965Q4
16 PTAXQVQD Philly Fed ∆ln Personal tax and nontax payments 1965Q4
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No. Short Name Source Tran Description First Vintage
17 RATESAVQVQD Philly Fed ∆lv Personal saving rate 1965Q4
18 RENTIQVQD Philly Fed ∆lv Rental income of persons 1965Q4
19 ROUTPUTQVQD Philly Fed ∆ln Real GNP/GDP 1965Q4
20 SSCONTRIBQVQD Philly Fed ∆ln Personal contributions for social insurance 1965Q4
21 TRANPFQVQD Philly Fed ∆ln Personal transfer payments to foreigners 1965Q4
22 TRANRQVQD Philly Fed ∆ln Transfer payments 1965Q4
23 CUUR0000SA0E BLS ∆2ln Energy in U.S. city avg., all urban consumers, not

seasonally adj
Group 2: Employment

24 EMPLOYMVMD Philly Fed ∆ln Nonfarm payroll 1946M12
25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971M9
26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971M9
27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971M9
28 LFCMVMD Philly Fed ∆ln Civilian labor force 1998M11
29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998M11
30 POPMVMD Philly Fed ∆ln Civilian noninstitutional population 1998M11
31 ULCMVQD Philly Fed ∆ln Unit labor costs - Business sector 1998Q4
32 RUCQVMD Philly Fed ∆lv Unemployment rate 1965Q4
33 WSDQVQD Philly Fed ∆ln Wage and salary disbursements 1965Q4

Group 3: Orders, Investment, Housing
34 HSTARTSMVMD Philly Fed ∆ln Housing starts 1968M2
35 RINVBFMVQD Philly Fed ∆ln Real gross private domestic inv. - Nonresidential 1965Q4
36 RINVCHIMVQD Philly Fed ∆lv Real gross private domestic inv. - Change in pri-

vate inventories
1965Q4

37 RINVRESIDMVQD Philly Fed ∆ln Real gross private domestic inv. - Residential 1965Q4
38 CASESHILLER S&P ∆ln Case-Shiller US National Home Price index/CPI 1987M1

Group 4: Consumption
39 NCONGMMVMD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009M8
40 NCONHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. 2009M8
41 NCONSHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009M8
42 NCONSNPMMVMD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009M8
43 RCONDMMVMD Philly Fed ∆ln Real personal cons. exp. - Durables 1998M11
44 RCONGMMVMD Philly Fed ∆ln Real personal cons. exp. - Goods 2009M8
45 RCONHHMMVMD Philly Fed ∆ln Real hh. cons. exp. 2009M8
46 RCONMMVMD Philly Fed ∆ln Real personal cons. exp. - Total 1998M11
47 RCONNDMVMD Philly Fed ∆ln Real personal cons. exp. - Nondurables 1998M11
48 RCONSHHMMVMD Philly Fed ∆ln Real hh. cons. exp. - Services 2009M8
49 RCONSMMVMD Philly Fed ∆ln Real personal cons. exp. - Services 1998M11
50 RCONSNPMMVMD Philly Fed ∆ln Real final cons. exp. of NPISH 2009M8
51 NCONGMVQD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009Q3
52 NCONHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. 2009Q3
53 NCONSHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009Q3
54 NCONSNPMVQD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009Q3
55 RCONDMVQD Philly Fed ∆ln Real personal cons. exp. - Durable goods 1965Q4
56 RCONGMVQD Philly Fed ∆ln Real personal cons. exp. - Goods 2009Q3
57 RCONHHMVQD Philly Fed ∆ln Real hh. cons. exp. 2009Q3
58 RCONMVQD Philly Fed ∆ln Real personal cons. exp. - Total 1965Q4
59 RCONNDMVQD Philly Fed ∆ln Real personal cons. exp. - Nondurable goods 1965Q4
60 RCONSHHMVQD Philly Fed ∆ln Real hh. cons. exp. - Services 2009Q3
61 RCONSMVQD Philly Fed ∆ln Real personal cons. exp. - Services 1965Q4
62 RCONSNPMVQD Philly Fed ∆ln Real final cons. exp. of NPISH 2009Q3
63 NCONQVQD Philly Fed ∆ln Nom. personal cons. exp. 1965Q4

Group 5: Prices
64 PCONGMMVMD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009M8
65 PCONHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. 2009M8
66 PCONSHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009M8
67 PCONSNPMMVMD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009M8
68 PCPIMVMD Philly Fed ∆2ln Consumer price index 1998M11
69 PCPIXMVMD Philly Fed ∆2ln Core consumer price index 1998M11
70 PPPIMVMD Philly Fed ∆2ln Producer price index 1998M11
71 PPPIXMVMD Philly Fed ∆2ln Core producer price index 1998M11
72 PCONGMVQD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009Q3
73 PCONHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. 2009Q3
74 PCONSHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009Q3
75 PCONSNPMVQD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009Q3
76 PCONXMVQD Philly Fed ∆2ln Core price index for personal cons. exp. 1996Q1
77 CPIQVMD Philly Fed ∆2ln Consumer price index 1994Q3
78 PQVQD Philly Fed ∆2ln Price index for GNP/GDP 1965Q4
79 PCONQVQD Philly Fed ∆2ln Price index for personal cons. exp. 1965Q4
80 PIMPQVQD Philly Fed ∆2ln Price index for imports of goods and services 1965Q4
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No. Short Name Source Tran Description First Vintage
Group 6: Trade and Government

81 REXMVQD Philly Fed ∆ln Real exports of goods and services 1965Q4
82 RGMVQD Philly Fed ∆ln Real government cons. and gross inv. - Total 1965Q4
83 RGFMVQD Philly Fed ∆ln Real government cons. and gross inv. - Federal 1965Q4
84 RGSLMVQD Philly Fed ∆ln Real government cons. and gross. inv. - State and

local
1965Q4

85 RIMPMVQD Philly Fed ∆ln Real imports of goods and services 1965Q4
86 RNXMVQD Philly Fed ∆lv Real net exports of goods and services 1965Q4

Group 7: Money and Credit
87 BASEBASAQVMD Philly Fed ∆2ln Monetary base 1980Q2
88 M1QVMD Philly Fed ∆2ln M1 money stock 1965Q4
89 M2QVMD Philly Fed ∆2ln M2 money stock 1971Q2
90 NBRBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves 1967Q3
91 NBRECBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves plus extended credit 1984Q2
92 TRBASAQVMD Philly Fed ∆2ln Total reserves 1967Q3
93 DIVQVQD Philly Fed ∆ln Dividends 1965Q4

D.2.5 Monthly Financial Data

The 147 financial series in this data set are versions of the financial dataset used in Jurado et al. (2015) and Ludvigson
et al. (2021). It consists of a number of indicators measuring the behavior of a broad cross-section of asset returns, as well
as some aggregate financial indicators not included in the macro dataset. These data include valuation ratios such as the
dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and prices, default and term spreads,
yields on corporate bonds of different ratings grades, yields on Treasuries and yield spreads, and a broad cross-section of
industry equity returns. Following Fama and French (1992), returns on 100 portfolios of equities sorted into 10 size and 10
book-to-market categories. The dataset Xf also includes a group of variables we call “risk-factors,” since they have been
used in cross-sectional or time-series studies to uncover variation in the market risk-premium. These risk-factors include
the three Fama and French (1993) risk factors, namely the excess return on the market MKTt, the “small-minus-big”
(SMBt) and “high-minus-low” (HMLt) portfolio returns, the momentum factor UMDt, and the small stock value spread
R15−R11.

The raw data used to form factors are always transformed to achieve stationarity. In addition, when forming forecasting
factors from the large macro and financial datasets, the raw data (which are in different units) are standardized before
performing PCA. When forming common uncertainty from estimates of individual uncertainty, the raw data (which are in
this case in the same units) are demeaned, but we do not divide by the observation’s standard deviation before performing
PCA. Throughout, the factors are estimated by the method of static principal components (PCA). Specifically, the T × rF
matrix F̂t is

√
T times the rF eigenvectors corresponding to the rF largest eigenvalues of the T × T matrix xx′/(TN) in

decreasing order. In large samples (when
√
T/N → ∞), Bai and Ng (2006) show that the estimates F̂t can be treated as

though they were observed in the subsequent forecasting regression. All returns and spreads are expressed in logs (i.e., the
log of the gross return or spread), are displayed in percent (i.e., multiplied by 100), and are annualized by multiplying by
12. That is, if x is the original return or spread, we transform to 1200× log(1+x/100). Federal Reserve data are annualized
by default and are therefore not re-annualized. Note that this annualization implies that the annualized standard deviation
(volatility) is equal to the data standard deviation divided by

√
12. The data series used in this dataset are listed below

by data source. Additional details on data transformations are given below the table.
We convert monthly data to quarterly by using either the beginning-of-quarter or end-of-quarter values. The decision

to use beginning-of-quarter or end-of-quarter depends on the survey deadline of a particular forecast date. If the survey
deadline is known to be in the middle of the second month of quarter t, then it is conceivable that the forecasters would have
information about the first month of quarter t. Therefore, we use the first month of that quarter’s values. Alternatively, a
few anomalous observations have unknown survey deadlines (e.g., the SPF deadlines for 1990Q1). In such cases, we allow
only information up to quarter t − 1 to enter the model. Thus, we use the last month of the previous quarter’s values in
these cases. Let Xi,t denote variable i observed at time t after, e.g., logarithm and differencing transformation, and let
XA

i,t be the actual (untransformed) series. Let ∆ = (1 − L) with LXi,t = Xi,t−1. There are six possible transformations
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with the following codes:

1 Code lv : Xi,t = XA
i,t

2 Code ∆lv : Xi,t = XA
i,t −XA

i,t−1

3 Code ∆2lv : Xi,t = ∆2XA
i,t

4 Code ln : Xi,t = log(XA
i,t)

5 Code ∆ln : Xi,t = log(XA
i,t)− log(XA

i,t−1)

6 Code ∆2ln : Xi,t = ∆2 log(XA
i,t)

7 Code ∆lv/lv : Xi,t =
XA

i,t −XA
i,t−1

XA
i,t−1

Table A.16: List of Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Prices, Yields, Dividends

1 D log(DIV) CRSP ∆ln 1 log Dt, see additional details below
2 D log(P) CRSP ∆ln 1 log Pt, see additional details below
3 D DIVreinvest CRSP ∆ln 1 log Dre,∗

t , see additional details below
4 D Preinvest CRSP ∆ln 1 log P re,∗

t , see additional details below
5 d-p CRSP ln log Dt − Pt, see additional details below

Group 2: Equity Risk Factors
6 R15-R11 Kenneth French lv (Small, High) minus (Small, Low) sorted on (size, book-to-market)
7 Mkt-RF Kenneth French lv Market excess return
8 SMB Kenneth French lv Small Minus Big, sorted on size
9 HML Kenneth French lv High Minus Low, sorted on book-to-market
10 UMD Kenneth French lv Up Minus Down, sorted on momentum

Group 3: Industries
11 Agric Kenneth French lv Agric industry portfolio
12 Food Kenneth French lv Food industry portfolio
13 Beer Kenneth French lv Beer industry portfolio
14 Smoke Kenneth French lv Smoke industry portfolio
15 Toys Kenneth French lv Toys industry portfolio
16 Fun Kenneth French lv Fun industry portfolio
17 Books Kenneth French lv Books industry portfolio
18 Hshld Kenneth French lv Hshld industry portfolio
19 Clths Kenneth French lv Clths industry portfolio
20 MedEq Kenneth French lv MedEq industry portfolio
21 Drugs Kenneth French lv Drugs industry portfolio
22 Chems Kenneth French lv Chems industry portfolio
23 Rubbr Kenneth French lv Rubbr industry portfolio
24 Txtls Kenneth French lv Txtls industry portfolio
25 BldMt Kenneth French lv BldMt industry portfolio
26 Cnstr Kenneth French lv Cnstr industry portfolio
27 Steel Kenneth French lv Steel industry portfolio
28 Mach Kenneth French lv Mach industry portfolio
29 ElcEq Kenneth French lv ElcEq industry portfolio
30 Autos Kenneth French lv Autos industry portfolio
31 Aero Kenneth French lv Aero industry portfolio
32 Ships Kenneth French lv Ships industry portfolio
33 Mines Kenneth French lv Mines industry portfolio
34 Coal Kenneth French lv Coal industry portfolio
35 Oil Kenneth French lv Oil industry portfolio
36 Util Kenneth French lv Util industry portfolio
37 Telcm Kenneth French lv Telcm industry portfolio
38 PerSv Kenneth French lv PerSv industry portfolio
39 BusSv Kenneth French lv BusSv industry portfolio
40 Hardw Kenneth French lv Hardw industry portfolio
41 Chips Kenneth French lv Chips industry portfolio
42 LabEq Kenneth French lv LabEq industry portfolio
43 Paper Kenneth French lv Paper industry portfolio
44 Boxes Kenneth French lv Boxes industry portfolio
45 Trans Kenneth French lv Trans industry portfolio
46 Whlsl Kenneth French lv Whlsl industry portfolio
47 Rtail Kenneth French lv Rtail industry portfolio
48 Meals Kenneth French lv Meals industry portfolio
49 Banks Kenneth French lv Banks industry portfolio
50 Insur Kenneth French lv Insur industry portfolio
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No. Short Name Source Tran Description
51 RlEst Kenneth French lv RlEst industry portfolio
52 Fin Kenneth French lv Fin industry portfolio
53 Other Kenneth French lv Other industry portfolio

Group 4: Size/BM
54 1 2 Kenneth French lv (1, 2) portfolio sorted on (size, book-to-market)
55 1 4 Kenneth French lv (1, 4) portfolio sorted on (size, book-to-market)
56 1 5 Kenneth French lv (1, 5) portfolio sorted on (size, book-to-market)
57 1 6 Kenneth French lv (1, 6) portfolio sorted on (size, book-to-market)
58 1 7 Kenneth French lv (1, 7) portfolio sorted on (size, book-to-market)
59 1 8 Kenneth French lv (1, 8) portfolio sorted on (size, book-to-market)
60 1 9 Kenneth French lv (1, 9) portfolio sorted on (size, book-to-market)
61 1 high Kenneth French lv (1, high) portfolio sorted on (size, book-to-market)
62 2 low Kenneth French lv (2, low) portfolio sorted on (size, book-to-market)
63 2 2 Kenneth French lv (2, 2) portfolio sorted on (size, book-to-market)
64 2 3 Kenneth French lv (2, 3) portfolio sorted on (size, book-to-market)
65 2 4 Kenneth French lv (2, 4) portfolio sorted on (size, book-to-market)
66 2 5 Kenneth French lv (2, 5) portfolio sorted on (size, book-to-market)
67 2 6 Kenneth French lv (2, 6) portfolio sorted on (size, book-to-market)
68 2 7 Kenneth French lv (2, 7) portfolio sorted on (size, book-to-market)
69 2 8 Kenneth French lv (2, 8) portfolio sorted on (size, book-to-market)
70 2 9 Kenneth French lv (2, 9) portfolio sorted on (size, book-to-market)
71 2 high Kenneth French lv (2, high) portfolio sorted on (size, book-to-market)
72 3 low Kenneth French lv (3, low) portfolio sorted on (size, book-to-market)
73 3 2 Kenneth French lv (3, 2) portfolio sorted on (size, book-to-market)
74 3 3 Kenneth French lv (3, 3) portfolio sorted on (size, book-to-market)
75 3 4 Kenneth French lv (3, 4) portfolio sorted on (size, book-to-market)
76 3 5 Kenneth French lv (3, 5) portfolio sorted on (size, book-to-market)
77 3 6 Kenneth French lv (3, 6) portfolio sorted on (size, book-to-market)
78 3 7 Kenneth French lv (3, 7) portfolio sorted on (size, book-to-market)
79 3 8 Kenneth French lv (3, 8) portfolio sorted on (size, book-to-market)
80 3 9 Kenneth French lv (3, 9) portfolio sorted on (size, book-to-market)
81 3 high Kenneth French lv (3, high) portfolio sorted on (size, book-to-market)
82 4 low Kenneth French lv (4, low) portfolio sorted on (size, book-to-market)
83 4 2 Kenneth French lv (4, 2) portfolio sorted on (size, book-to-market)
84 4 3 Kenneth French lv (4, 3) portfolio sorted on (size, book-to-market)
85 4 4 Kenneth French lv (4, 4) portfolio sorted on (size, book-to-market)
86 4 5 Kenneth French lv (4, 5) portfolio sorted on (size, book-to-market)
87 4 6 Kenneth French lv (4, 6) portfolio sorted on (size, book-to-market)
88 4 7 Kenneth French lv (4, 7) portfolio sorted on (size, book-to-market)
89 4 8 Kenneth French lv (4, 8) portfolio sorted on (size, book-to-market)
90 4 9 Kenneth French lv (4, 9) portfolio sorted on (size, book-to-market)
91 4 high Kenneth French lv (4, high) portfolio sorted on (size, book-to-market)
92 5 low Kenneth French lv (5, low) portfolio sorted on (size, book-to-market)
93 5 2 Kenneth French lv (5, 2) portfolio sorted on (size, book-to-market)
94 5 3 Kenneth French lv (5, 3) portfolio sorted on (size, book-to-market)
95 5 4 Kenneth French lv (5, 4) portfolio sorted on (size, book-to-market)
96 5 5 Kenneth French lv (5, 5) portfolio sorted on (size, book-to-market)
97 5 6 Kenneth French lv (5, 6) portfolio sorted on (size, book-to-market)
98 5 7 Kenneth French lv (5, 7) portfolio sorted on (size, book-to-market)
99 5 8 Kenneth French lv (5, 8) portfolio sorted on (size, book-to-market)
100 5 9 Kenneth French lv (5, 9) portfolio sorted on (size, book-to-market)
101 5 high Kenneth French lv (5, high) portfolio sorted on (size, book-to-market)
102 6 low Kenneth French lv (6, low) portfolio sorted on (size, book-to-market)
103 6 2 Kenneth French lv (6, 2) portfolio sorted on (size, book-to-market)
104 6 3 Kenneth French lv (6, 3) portfolio sorted on (size, book-to-market)
105 6 4 Kenneth French lv (6, 4) portfolio sorted on (size, book-to-market)
106 6 5 Kenneth French lv (6, 5) portfolio sorted on (size, book-to-market)
107 6 6 Kenneth French lv (6, 6) portfolio sorted on (size, book-to-market)
108 6 7 Kenneth French lv (6, 7) portfolio sorted on (size, book-to-market)
109 6 8 Kenneth French lv (6, 8) portfolio sorted on (size, book-to-market)
110 6 9 Kenneth French lv (6, 9) portfolio sorted on (size, book-to-market)
111 6 high Kenneth French lv (6, high) portfolio sorted on (size, book-to-market)
112 7 low Kenneth French lv (7, low) portfolio sorted on (size, book-to-market)
113 7 2 Kenneth French lv (7, 2) portfolio sorted on (size, book-to-market)
114 7 3 Kenneth French lv (7, 3) portfolio sorted on (size, book-to-market)
115 7 4 Kenneth French lv (7, 4) portfolio sorted on (size, book-to-market)
116 7 5 Kenneth French lv (7, 5) portfolio sorted on (size, book-to-market)
117 7 6 Kenneth French lv (7, 6) portfolio sorted on (size, book-to-market)
118 7 7 Kenneth French lv (7, 7) portfolio sorted on (size, book-to-market)
119 7 8 Kenneth French lv (7, 8) portfolio sorted on (size, book-to-market)
120 7 9 Kenneth French lv (7, 9) portfolio sorted on (size, book-to-market)
121 8 low Kenneth French lv (8, low) portfolio sorted on (size, book-to-market)

75



No. Short Name Source Tran Description
122 8 2 Kenneth French lv (8, 2) portfolio sorted on (size, book-to-market)
123 8 3 Kenneth French lv (8, 3) portfolio sorted on (size, book-to-market)
124 8 4 Kenneth French lv (8, 4) portfolio sorted on (size, book-to-market)
125 8 5 Kenneth French lv (8, 5) portfolio sorted on (size, book-to-market)
126 8 6 Kenneth French lv (8, 6) portfolio sorted on (size, book-to-market)
127 8 7 Kenneth French lv (8, 7) portfolio sorted on (size, book-to-market)
128 8 8 Kenneth French lv (8, 8) portfolio sorted on (size, book-to-market)
129 8 9 Kenneth French lv (8, 9) portfolio sorted on (size, book-to-market)
130 8 high Kenneth French lv (8, high) portfolio sorted on (size, book-to-market)
131 9 low Kenneth French lv (9, low) portfolio sorted on (size, book-to-market)
132 9 2 Kenneth French lv (9, 2) portfolio sorted on (size, book-to-market)
133 9 3 Kenneth French lv (9, 3) portfolio sorted on (size, book-to-market)
134 9 4 Kenneth French lv (9, 4) portfolio sorted on (size, book-to-market)
135 9 5 Kenneth French lv (9, 5) portfolio sorted on (size, book-to-market)
136 9 6 Kenneth French lv (9, 6) portfolio sorted on (size, book-to-market)
137 9 7 Kenneth French lv (9, 7) portfolio sorted on (size, book-to-market)
138 9 8 Kenneth French lv (9, 8) portfolio sorted on (size, book-to-market)
139 9 high Kenneth French lv (9, high) portfolio sorted on (size, book-to-market)
140 10 low Kenneth French lv (10, low) portfolio sorted on (size, book-to-market)
141 10 2 Kenneth French lv (10, 2) portfolio sorted on (size, book-to-market)
142 10 3 Kenneth French lv (10, 3) portfolio sorted on (size, book-to-market)
143 10 4 Kenneth French lv (10, 4) portfolio sorted on (size, book-to-market)
144 10 5 Kenneth French lv (10, 5) portfolio sorted on (size, book-to-market)
145 10 6 Kenneth French lv (10, 6) portfolio sorted on (size, book-to-market)
146 10 7 Kenneth French lv (10, 7) portfolio sorted on (size, book-to-market)
147 VXO Fred MD lv VXOCLS

CRSP Data Details Value-weighted price and dividend data were obtained from the Center for Research in Se-
curity Prices (CRSP, Center for Research in Security Prices (1926–2022)). From the Annual Update data, we obtain
the monthly value-weighted return series vwretd (with dividends) and vwretx (excluding dividends). These series have

the interpretations: VWRETt =
Pt+1+Dt+1

Pt
, VWRETXt =

Pt+1

Pt
. From these series, a normalized price series Pt can

be constructed recursively as: P0 = 1, Pt = Pt−1 × VWRETXt−1. A dividend series can then be constructed using:
Dt = Pt−1 × (VWRETt−1 − VWRETXt−1). In order to remove seasonality of dividend payments from the data, instead
of Dt we use the series: D̄t = 1

12

∑11
j=0 Dt−j , i.e., the moving average over the entire year. For the price and dividend

series under “reinvestment,” we calculate the price under reinvestment, P re
t , as the normalized value of the market port-

folio under reinvestment of dividends, using the recursion: P re
0 = 1, P re

t = Pt−1 × VWRETt−1. Similarly, we can define
dividends under reinvestment, Dre

t , as the total dividend payments on this portfolio (the number of “shares” of which have
increased over time) using: Dre

t = P re
t−1 × (VWRETt−1 − VWRETXt−1). As before, we can remove seasonality by using:

D̄re
t = 1

12

∑11
j=0 D

re
t−j . Five data series are constructed from the CRSP data as follows: D log(DIV): ∆ log(D̄t); D log(P):

∆ log(Pt); D DIVreinvest: ∆ log(D̄re
t ); D Preinvest: ∆ log(P re

t ); d-p: log(D̄t)− log(Pt).

Kenneth French Data Details The following data are obtained from the data library of Kenneth French’s Dart-
mouth website (French (1926–2022)):

� Fama/French Factors: From this dataset we obtain the series RF, Mkt-RF, SMB, and HML.

� 25 Portfolios Formed on Size and Book-to-Market (5 x 5): From this dataset we obtain the series R15-R11, which
is the return spread between the (small, high book-to-market) and (small, low book-to-market) portfolios.

� Momentum Factor (Mom): From this dataset we obtain the series UMD, which is equal to the momentum factor.

� 49 Industry Portfolios: From this dataset we use all value-weighted series, excluding any series that have missing
observations from January 1960 onward. This yields the series Agric through Other. The omitted series are Soda,
Hlth, FabPr, Guns, Gold, and Softw.

� 100 Portfolios Formed on Size and Book-to-Market: From this dataset we use all value-weighted series, excluding
any series that have missing observations from January 1960 onward. This yields variables with names X Y, where
X denotes the size index (1, 2, . . . , 10) and Y denotes the book-to-market index (Low, 2, 3, . . . , 8, 9,High). The
omitted series are 1 low, 1 3, 7 high, 9 9, 10 8, 10 9, and 10 high.

VXO Data Details VXO data is obtained from the Monthly Database for Macroeconomic Research (FRED-MD,
McCracken (2015–2022)).
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D.2.6 Daily Financial Data

Daily Data and construction of daily factors These data are used in the machine learning forecasts. The daily
financial series in this data set are from the daily financial dataset used in Andreou et al. (2013). I create a smaller
daily database which is a subset of the large cross-section of 991 daily series in their dataset. Our dataset covers five
classes of financial assets: (i) the Commodities class; (ii) the Corporate Risk category; (iii) the Equities class; (iv) the
Foreign Exchange Rates class and (v) the Government Securities. The dataset includes up to 87 daily predictors in a
daily frequency from 23-Oct-1959 to 31-Dec-2023 from the above five categories of financial assets. I remove series with
fewer than ten years of data and time periods with no variables observed, which occurs for some series in the early part
of the sample. For those years, I have less than 87 series. There are 39 commodity variables which include commodity
indices, prices and futures, 16 corporate risk series, 9 equity series which include major US stock market indices and the
500 Implied Volatility, 16 government securities which include the federal funds rate, government treasury bills of securities
from three months to ten years, and 7 foreign exchange variables which include the individual foreign exchange rates of
major five US trading partners and two effective exchange rate. I choose these daily predictors because they are proposed
in the literature as good predictors of economic growth.

I construct daily financial factors in a quarterly frequency in two steps. First, I use these daily financial time series to
form factors at a daily frequency. The raw data used to form factors are always transformed to achieve stationarity and
standardized before performing factor estimation (see generic description below). I re-estimate factors at each date in the
sample recursively over time using the entire history of data available in real time prior to each out-of-sample forecast.
In the second step, I convert these daily financial indicators to quarterly weighted variables to form quarterly factors by
selecting an optimal weighting scheme according to the method described below (see the weighting scheme section). The
data series used in this dataset are listed below in Table A.17 by data source. The tables also list the transformation
applied to each variable to make them stationary before generating factors. The transformations used to stationarize a
time series are the same as those explained in the section “Monthly financial factor data”.

Table A.17: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Commodities

1 GSIZSPT Data Stream ∆ln S&P GSCI Zinc Spot - PRICE INDEX
2 GSSBSPT Data Stream ∆ln S&P GSCI Sugar Spot - PRICE INDEX
3 GSSOSPT Data Stream ∆ln S&P GSCI Soybeans Spot - PRICE INDEX
4 GSSISPT Data Stream ∆ln S&P GSCI Silver Spot - PRICE INDEX
5 GSIKSPT Data Stream ∆ln S&P GSCI Nickel Spot - PRICE INDEX
6 GSLCSPT Data Stream ∆ln S&P GSCI Live Cattle Spot - PRICE INDEX
7 GSLHSPT Data Stream ∆ln S&P GSCI Lean Hogs Index Spot - PRICE INDEX
8 GSILSPT Data Stream ∆ln S&P GSCI Lead Spot - PRICE INDEX
9 GSGCSPT Data Stream ∆ln S&P GSCI Gold Spot - PRICE INDEX
10 GSCTSPT Data Stream ∆ln S&P GSCI Cotton Spot - PRICE INDEX
11 GSKCSPT Data Stream ∆ln S&P GSCI Coffee Spot - PRICE INDEX
12 GSCCSPT Data Stream ∆ln S&P GSCI Cocoa Index Spot - PRICE INDEX
13 GSIASPT Data Stream ∆ln S&P GSCI Aluminum Spot - PRICE INDEX
14 SGWTSPT Data Stream ∆ln S&P GSCI All Wheat Spot - PRICE INDEX
15 EIAEBRT Data Stream ∆ln Europe Brent Spot FOB U$/BBL Daily
16 CRUDOIL Data Stream ∆ln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE
17 LTICASH Data Stream ∆ln LME-Tin 99.85% Cash U$/MT
18 CWFCS00 Data Stream ∆ln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT. PRICE
19 CCFCS00 Data Stream ∆ln CBT-CORN COMP. CONTINUOUS - SETT. PRICE
20 CSYCS00 Data Stream ∆ln CBT-SOYBEANS COMP. CONT. - SETT. PRICE
21 NCTCS20 Data Stream ∆ln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE
22 NSBCS00 Data Stream ∆ln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE
23 NKCCS00 Data Stream ∆ln CSCE-COFFEE C CONTINUOUS - SETT. PRICE
24 NCCCS00 Data Stream ∆ln CSCE-COCOA CONTINUOUS - SETT. PRICE
25 CZLCS00 Data Stream ∆ln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE
26 COFC01 Data Stream ∆ln CBT-OATS COMP. TRc1 - SETT. PRICE
27 CLDCS00 Data Stream ∆ln CME-LIVE CATTLE COMP. CONTINUOUS - SETT. PRICE
28 CLGC01 Data Stream ∆ln CME-LEAN HOGS COMP. TRc1 - SETT. PRICE
29 NGCCS00 Data Stream ∆ln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE
30 LAH3MTH Data Stream ∆ln LME-Aluminium 99.7% 3 Months U$/MT
31 LED3MTH Data Stream ∆ln LME-Lead 3 Months U$/MT
32 LNI3MTH Data Stream ∆ln LME-Nickel 3 Months U$/MT
33 LTI3MTH Data Stream ∆ln LME-Tin 99.85% 3 Months U$/MT
34 PLNYD www.macrotrends.net ∆ln Platinum Cash Price (U$ per troy ounce)
35 XPDD www.macrotrends.net ∆ln Palladium (U$ per troy ounce)
36 CUS2D www.macrotrends.net ∆ln Corn Spot Price (U$/Bushel)
37 SoybOil www.macrotrends.net ∆ln Soybean Oil Price (U$/Pound)
38 OATSD www.macrotrends.net ∆ln Oat Spot Price (US$/Bushel)
39 WTIOilFut US EIA ∆ln Light Sweet Crude Oil Futures Price: 1St Expiring Contract Set-

tlement ($/Bbl)

77



No. Short Name Source Tran Description
Group 2: Equities

40 S&PCOMP Data Stream ∆ln S&P 500 COMPOSITE - PRICE INDEX
41 ISPCS00 Data Stream ∆ln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE
42 SP5EIND Data Stream ∆ln S&P500 ES INDUSTRIALS - PRICE INDEX
43 DJINDUS Data Stream ∆ln DOW JONES INDUSTRIALS - PRICE INDEX
44 CYMCS00 Data Stream ∆ln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE
45 NASCOMP Data Stream ∆ln NASDAQ COMPOSITE - PRICE INDEX
46 NASA100 Data Stream ∆ln NASDAQ 100 - PRICE INDEX
47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX
48 S&P500toVIX Data Stream ∆ln S&P500/VIX

Group 3: Corporate Risk
49 LIBOR FRED ∆lv Overnight London Interbank Offered Rate (%)
50 1MLIBOR FRED ∆lv 1-Month London Interbank Offered Rate (%)
51 3MLIBOR FRED ∆lv 3-Month London Interbank Offered Rate (%)
52 6MLIBOR FRED ∆lv 6-Month London Interbank Offered Rate (%)
53 1YLIBOR FRED ∆lv One-Year London Interbank Offered Rate (%)
54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed

Funds
55 3MEuro-FF FRED lv 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed

Funds
56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus Fed

Funds
57 APFNF-

AANF
Data Stream lv 1-Month A2/P2/F2 Nonfinancial Commercial Paper (NCP) (% P.

A.) minus 1-Month Aa NCP (% P.A.)
58 APFNF-AAF Data Stream lv 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Financial

Commercial Paper (% P.A.)
59 TED Data Stream, FRED lv 3Month Tbill minus 3-Month London Interbank Offered Rate (%)
60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus Y10-

Tbond
61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus Y10-

Tbond
62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: Effective Yield (%)

minus Y10-Tbond
63 MLAA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aa Rated: Effective Yield (%)

minus Y10-Tbond
64 MLAAA-

10YTB
Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: Effective Yield (%)

minus Y10-Tbond
Group 4: Treasuries

65 FRFEDFD Data Stream ∆lv US FED FUNDS EFF RATE (D) - MIDDLE RATE
66 FRTBS3M Data Stream ∆lv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE
67 FRTBS6M Data Stream ∆lv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE
68 FRTCM1Y Data Stream ∆lv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE RATE
69 FRTCM10 Data Stream ∆lv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE RATE
70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity (%)

minus Fed Funds
71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus Fed

Funds
72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.) minus

Fed Funds
73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills
74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills
75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.) minus

3M-Tbills
76 BKEVEN05 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 5-year (%)
77 BKEVEN10 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 10-year (%)
78 BKEVEN1F4 FRB lv BKEVEN1F4
79 BKEVEN1F9 FRB lv BKEVEN1F9
80 BKEVEN5F5 FRB lv US Inflation compensation: coupon equivalent forward rate: 5-10

years (%)
Group 5: Foreign Exchange (FX)

81 US CWBN Data Stream ∆ln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-
DEX

82 US CWMN Data Stream ∆ln US NOMINAL DOLLAR MAJOR CURR INDEX - EXCHANGE
INDEX

83 US CSFR2 Data Stream ∆ln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE
84 EU USFR2 Data Stream ∆ln EURO TO US$ NOON NY - EXCHANGE RATE
85 US YFR2 Data Stream ∆ln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE
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No. Short Name Source Tran Description
86 US SFFR2 Data Stream ∆ln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE
87 US UKFR2 Data Stream ∆ln UK POUND TO US $ NOON NY - EXCHANGE RATE

From Daily to Quarterly Factors: Weighting Schemes After we obtain daily financial factors GD,t, we use
weighting schemes proposed in the literature on Mixed Data Sampling (MIDAS) regressions to form quarterly factors,
denoted GQ

D,t. Let GD
t denote a factor in daily frequency formed from the daily financial dataset, and let GQ

t denote a

quarterly aggregate of the corresponding daily factor time series. Let GD
ND−j,dt,t denote the value of a daily factor on the

j-th day counting backwards from the survey deadline dt in quarter t. Hence, the day dt of quarter t corresponds to j = 0,
so the daily factor on the survey deadline is GD

ND,dt,t. For simplicity, we suppress the subscript dt, writing GD
ND−j,t.

We compute the quarterly aggregate of a daily financial factor as a weighted average of observations over the ND
business days before the survey deadline. This means that the forecaster’s information set includes daily financial data up
to the previous ND business days before the survey deadline. The quarterly factor GQ

t is defined as:

GQ
t (w) =

ND∑
j=1

wj ×GD
ND−j,t

where wj is a weight. We consider the following three types of weighting schemes to convert daily factor observations to
quarterly aggregates. Each weighting scheme weights information by some function of the number of days prior to the
survey deadline.

1. wi = 1 for i = 1 and wi = 0 otherwise. This weighting scheme places all weight on the data from the last business
day before the survey deadline and zero weight on any data prior to that day.

2. wi = δi
/∑ND

j=1 δ
j , where we consider a range of δ values with δ ∈ {0.1, 0.2, 0.3, 0.7, 0.8, 0.9, 1.0}. The smaller the

δ, the more rapidly information prior to the survey deadline is down-weighted. This down-weighting is progressive
but not non-monotonic. The case δ = 1 corresponds to a simple average of observations across all days.

3. The third parameterization uses two parameters θ = (θ1, θ2)
′ and allows for non-monotonic weighting of past

information. The weights are defined as:

w(i; θ1, θ2) =
f
(

i
ND

; θ1, θ2
)∑ND

j=1 f
(

j
ND

; θ1, θ2
)

where f(x; a, b) = xa−1(1 − x)b−1 · Γ(a+b)
Γ(a)Γ(b)

, and Γ(a) is the gamma function Γ(a) =
∫∞
0

xa−1e−x dx. The weights

w(i; θ1, θ2) are the Beta polynomial MIDAS weights of Ghysels et al. (2007), based on the Beta function. This
weighting scheme is flexible enough to generate a wide range of possible shapes with only two parameters.

We consider these possible weighting schemes and choose the optimal weighting scheme w∗ from 24 candidate weighting
schemes for each daily financial factor GD

t by minimizing the sum of squared residuals in a regression of yj,t+h on GQ
t :

yj,t+h = α+ β ×GQ
t (w) + ut+h

This procedure is conducted in real time using recursive regressions. We re-estimate the weights at each date in the sample
recursively over time, using the entire history of data available in real time prior to each out-of-sample forecast. We assume
that ND = 14, which implies that forecasters use daily information from at most the past two weeks before the survey
deadline. This process is repeated for each daily financial factor in GD,t to form quarterly factors GQ

D,t.

D.2.7 LDA Data

The LDA data are used as inputs into the machine learning forecasts. The database for our Latent Dirichlet Allocation
(LDA) analysis contains around one million articles published in Wall Street Journal between January 1984 to Dec 2023.
The current vintage of the results reported here is based a randomly selected sub-sample of 200,000 articles over the same
period, one-fifth size of the entire database. The sample selection procedure follows Bybee et al. (2021). First, I remove all
articles prior to January 1984 and after June 2022 and exclude articles published in weekends. Second, I exclude articles
with subject tags associated with obviously non-economic content such as sports. Third, I exclude articles with the certain
headline patterns, such as those associated with data tables or those corresponding to regular sports, leisure, or books
columns. I filter the articles using the same list of exclusions provided by Bybee et al. (2021). Last, I exclude articles with
less than 100 words.

79



Processing of texts The processing of the texts can be summarized into five steps:

1. Tokenization: parse each article’s text into a white-space-separated word list retaining the article’s word ordering.

2. I drop all non-alphabetical characters and set the remaining characters to lower-case, remove words with less than 3
letters, and remove common stop words and URL-based terms. I use a standard list of stop words from the Python
library gensim.parsing.preprocessing.

3. Lemmatization and Stemming: lemmatization returns the original form of a word using external dictionary
Textblob.Word in Python and based on the context of the word. For instance, as a verb, “went” is converted
to“go”. Stemming usually refers to a heuristic process that removes the trailing letters at the end of the words,
such as from “assesses” to “assess’, and “really” to “real”. I use the Python library Textblob.Word to implement
the lemmatization and SnowballStemmer for the stemming. The results are not very sensitive to the particular
Python packages being used.

4. From the first three steps, I obtain a list of uni-grams which are a list of singular words. For example, “united” and
“states” are uni-grams from “united states”. From the list of uni-grams, I generate a set of bi-grams as all pairs of
(ordered) adjacent uni-grams. For example, “united states” together is one bi-gram. I then exclude uni-grams and
bi-grams appearing in less than 0.1% of articles.

5. Last, I convert an article’s word list into a vector of counts for each uni-gram and bi-gram. For example, the vector
of counts [5, 7, 2] corresponds to the number of times the words [”federal”, ”reserve”, ”bank”] appear in the article.

The LDA Model The LDA model Blei et al. (2003) essentially achieves substantial dimension reduction of the word
distribution of each article using the following assumptions. I assume a factor structure on the vectors of word counts.
Each factor is a topic and each article is a parametric distribution of topics, specified as follows,

V ×1︷︸︸︷
wi︸︷︷︸

word dist of article i

∼ Mult


V ×K︷︸︸︷
Φ′︸︷︷︸,

topic-word dist.

K×1︷︸︸︷
θi︸︷︷︸

topic dist.

, Ni︸︷︷︸
# of words


where Mult is the multinomial distribution. In the above equation, wi is a vector of word counts of each unique term
(uni-gram or bi-gram) in article i, whose size is equal to the number of unique terms V . K is the number of factors in
article i. In the estimation, I assume K = 180 following Bybee et al. (2021). Φ is a matrix sized K × V , whose kth row
and vth column is equal to the probability of the unique term v showing up in topic k. θi stores the weights of all k topics
contained in article i, which sum up to one. Dimension reduction is achieved as long as K << V (the number of topics are
significantly smaller than the number of unique terms). More specifically, it reduces the dimension from T × V to T ×K
(the size of θ) + K × V (the size of Φ).

Real-time news factors. I also generate real-time news factors for each month t starting from January 1991. In theory,
I could train the LDA model using each real-time monthly vintage but it is computationally challenging. Instead, I simplify
the procedure by training the LDA model using quarterly vintages t, t+ 3, t+ 6, etc, and use the LDA model parameters
estimated at t to filter news paper articles within the quarter and generate news factors for those months. More specifically,
given every article’s word distribution wi,t+s,for s = 0, 1, 2, and the estimated real-time topic-word distribution parameters
Φ̂t using articles till date t, one can obtain the filtered topic distribution of each article θ̂i,t+s, as follows,

V ×1︷ ︸︸ ︷
wi,t+s︸ ︷︷ ︸

word dist of article i at time t+s

∼ Mult


V ×K︷︸︸︷
Φ̂′︸︷︷︸,

topic-word dist.

K×1︷ ︸︸ ︷
θ̂i,t+s︸ ︷︷ ︸

topic dist.

, Ni,t+s︸ ︷︷ ︸
# of words

 .

LDA Estimation I use the built-in LDA model estimation toolbox in the Python library https://pypi.org/project/

gensim/Gensim to implement the model estimation. The model requires following initial inputs and parameters and it
is estimated using Bayesian methods. In theory, maximum-likelihood estimation is possible but it is computationally
challenging.

1. I create a document-term matrix W as a collection of wi for all articles i in the sample. The number of rows in
W is equal to the number of articles in our sample and the number of columns in W is equal to the number of
unique uni-gram and bi-grams (after being filtered) across all articles. The matrix W is used as an input for the
LDA model estimation. I then follow Bybee et al. (2021) and set the number of topics K to be 180. The authors
used Bayesian criteria to find 180 to be an optimal number of topics.
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2. In the Python library Gensim, the key parameters of the LDA estimation are α and β. With a higher value of α,
the documents are composed of more topics. With a higher value of β, each topic contains more terms (uni- or
bi-grams). In the implementations, I do not impose any explicit restrictions on initial values of those parameters
and set them to be “auto”. These two parameters, alongside Φ′ and {θi}i, are estimated by the toolbox from
Python library https://pypi.org/project/gensim/Gensim.

Real-time LDA Factors With the estimated topic weights θi,t of each article i from the LDA model, I further
construct time series of the overall news attention to each topic, or a news factor. The value of the topic k at time t is the
average weights of topic k of all articles published at t, specified as follows,

Fk,t =

∑
i θ̂i,k,t

# of articles at t

for all topics k. We construct daily LDA factors by aggregating all articles published on each calendar day. The value of
topic k at day t is the average weights of topic k across all articles published that day.

D.2.8 Machine Variables to Be forecast

Returns and price growth When evaluating the MSE ratio of the machine relative to that of a benchmark survey,
we use the machine forecast for the return or price growth measure that most closely corresponds to the concept that
survey respondents are asked to predict:

1. CFO survey asks respondents about their expectations for the S&P 500 return over the next 12 months. Following
Nagel and Xu (2021), we interpret the survey to be asking about rdt,t+12, the one-year CRSP value-weighted return
(including dividends) from the current survey month to the same month one year ahead.

2. Gallup/UBS survey respondents report the return (including dividends) they expect on their own portfolio one
year ahead. We interpret the survey to be asking about rdt,t+12, the one-year CRSP value-weighted return(including
dividends) from the current survey month to the same month one year ahead.

3. Livingston survey respondents provide 12-month ahead forecasts of the S&P 500 index. We convert the level
forecast to price growth forecast by taking the log difference between the 12-month ahead level forecast and the
nowcast of the S&P 500 index for the current survey month. Therefore, we interpret the survey to be asking about
the one-year price growth in the S&P 500 index.

4. Bloomberg Consensus Forecasts asks survey respondents about the end-of-year closing value of the S&P 500 index.
We interpret the survey to be asking about the h-month price growth in the S&P 500 index. The horizon of the
forecast changes depending on when in the year the panelists are answering the survey.

5. Michigan Survey of Consumers (SOC) asks respondents about their perceived probability that an investment in a
diversified stock fund would increase in value in the year ahead. We interpret the question to be asking about the
one-year price growth in the S&P 500 index.

6. Conference Board (CB) survey asks respondents about their categorical belief on whether they expect stock prices
to increase, decrease, or stay the same over the next year. We interpret the question to be asking about the one-year
price growth in the S&P 500 index.

Earnings growth (IBES “Street” Earnings) For earnings growth forecasts, we use a quarterly S&P 500 total
earnings series based on IBES street earnings per share (EPS), as described above. Street earnings exclude discontinued
operations, extraordinary charges, and other non-operating items, making them better aligned with the earnings measure
targeted by survey respondents. We convert EPS to total earnings using the S&P 500 index divisor and use the resulting
quarterly series directly, prior to any monthly interpolation, since the machine learning algorithm operates at a quarterly
frequency. The IBES street earnings series spans 1983Q4 to 2021Q4.

For Long-Term Growth (LTG) forecasts, IBES defines LTG as the “expected annual increase in operating earnings
over the company’s next full business cycle. These forecasts refer to a period of between three to five years.” We compare
survey responses of LTG against machine forecasts under alternative interpretations of LTG. First, we consider machine
forecasts of annual five-year forward growth, i.e., annual earnings growth from four to five years ahead (Bianchi et al.
(2024)). Second, we consider machine forecasts of annualized 5-year growth, i.e., annual earnings growth from current
quarter to five years ahead, following the interpretation in Bordalo et al. (2019). Third, we consider machine forecasts of
annualized earnings growth from one to 10 years ahead, following the interpretation in Nagel and Xu (2021)
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Inflation We construct forecasts of annual inflation defined as πt+4,t = log
(

PGDPt+4

PGDPt

)
, where PGDPt is the quarterly

level of the chain-weighted GDP price index. Following Coibion and Gorodnichenko (2015), we use the vintage of inflation
data that is available four quarters after the period being forecast.

D.2.9 Machine Input Data: Predictor Variables

The vector Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
is an r = 1 + rG + rW vector which collects the data at time t with

Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG ,W′

jt, ...,W
′
jt−pW

)′
a vector of contemporaneous and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ

′
t, W

′
jt,

respectively. The predictors below are listed as elements of yj,t, Ĝ
′
jt, or W

′
jt for variables.

Stock return and price growth predictor variables and specifications For yj equal to CRSP value-weighted
returns or S&P 500 price index growth, we first predict the one-year log stock return or price growth that is expected to
occur h quarters into the future from time t+h−4 to t+h, i.e., Et[rt+h−4,t+h]. For horizons longer than one year, since the
h-quarter long horizon return is the sum of one-year returns between time t to t+h, we first forecast the forward one-year
returns separately and then add the components together to get machine forecasts of h-quarter long horizon returns. The
forecasting model considers the following variables. Lags of the dependent variable:

1. yt−1, yt−2 one and two quarter lagged stock returns or price growth.

The factors in Ĝ′
jt are formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily financial indicators.

The raw daily series are first converted to daily factors GD,t (w) and the daily factors are aggregated up to
quarterly observations GQ

D,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The variables in W′
jt include:

1. LDA topics Fk,t−j , for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at time t is the average weights of
topic k of all articles published at t.

2. Macro data surprises from the money market survey. The macro news include, GDP growth (Q/Q percent-
age change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change). We include first release, second release, and final release for GDP growth. This con-
stitutes six macro data surprises per quarter.

3. FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds
futures (FFF) contract rate and the changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contracts,
from 10 minutes before to 20 minutes after each FOMC announcement. When benchmarking against a survey, we
use the last FOMC meeting before the survey deadline to compute surprises. For surveys that do not have a clear
deadline, we compute surprises using from the last FOMC in the first month of the quarter. When benchmarking
against moving average, we use the last FOMC meeting before the end of the first month in each quarter to compute
surprises. This leaves 10 FOMC surprise variables per quarter.

4. Stock market jumps are accumulated 30-minute window negative and positive jumps in the S&P 500 around news
events over the previous quarter.

5. Long-term growth of earnings: 5-year growth of the SP500 earnings per share.

6. Short rates. When forecasting returns or price growth, the machine controls for the current nominal short rate,
log(1 + 3MTBt/100), imposing a unit coefficient. This is equivalent to forecasting the future return minus the
current short rate.
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The 92 macro series in DM are selected to represent broad categories of macroeconomic time series. The majority of these
are real activity measures: real output and income, employment and hours, consumer spending, housing starts, orders and
unfilled orders, compensation and labor costs, and capacity utilization measures. The dataset also includes commodity
and price indexes and a handful of bond and stock market indexes, and foreign exchange measures. The financial dataset
Df is an updated monthly version of the of 147 variables comprised solely of financial market time series used in Ludvigson
and Ng (2007). These data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth
rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds of different ratings grades,
yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and momentum portfolio
equity returns. A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc data appendix.pdf. The 87 daily financial indicators in DD include daily time series on
commodities spot prices and futures prices, aggregate stock market indexes, volatility indexes, credit spreads and yield
spreads, and exchange rates.

Earning growth predictor variables and specifications For yt equal to S&P 500 log earning growth, we
construct a forecasted value for yt, denoted ŷt|t−h, based on information known up to time t using the following variables.
Lags of the dependent variable:

1. yt−1, yt−2 one and two quarter lagged earnings growth.

The factors in Ĝ′
jt are formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily financial indicators.

The raw daily series are first converted to daily factors GD,t (w) and the daily factors are aggregated up to
quarterly observations GQ

D,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of yj,t on GD,t (w).

The variables in W′
jt include:

1. LDA factors Fk,t−j , for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at time t is the average weights
of topic k of all articles published at t.

2. Macro data surprises from the money market survey. The macro news include, GDP growth (Q/Q percent-
age change), core CPI (Month/Month change), unemployment rate (percentage point), and nonfarm payroll
(month/month change). We include first release, second release, and final release for GDP growth. This con-
stitutes six macro data surprises per quarter.

3. FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-ahead federal funds
futures (FFF) contract rate and the changes in the 1, 2, 4, and 8 quarter-ahead Eurodollar (ED) futures contracts,
from 10 minutes before to 20 minutes after each FOMC announcement. When benchmarking against a survey, we
use the last FOMC meeting before the survey deadline to compute surprises. For surveys that do not have a clear
deadline, we compute surprises using from the last FOMC in the first month of the quarter. When benchmarking
against moving average, we use the last FOMC meeting before the end of the first month in each quarter to compute
surprises. This leaves 10 FOMC surprise variables per quarter.

4. Stock market jumps are accumulated 30-minute window negative and positive jumps in the S&P 500 around news
events over the previous quarter.

Inflation predictor variables For yj equal to inflation, the forecasting model considers the following variables. Lags
of the dependent variable:

1. yt−1,t−h−1 one quarter lagged inflation.

The factors in Ĝ′
jt are formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92 real-time macro series; includes
both monthly and quarterly series, with monthly series converted to quarterly according to the method described
in the data appendix.
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2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly financial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily financial dataset DD of 87 daily financial indicators.

The raw daily series are first converted to daily factors GD,t (w) and the daily factors are aggregated up to
quarterly observations GQ

D,t (w) using a weighted average of daily factors, with the weights w dependent on two
free parameters that are chosen to minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The variables in W′
jt include:

1. F(i)
jt−k[yjt+h−k], lagged values of the ith type’s forecast, where k = 1, 2

2. F(s ̸=i)
jt−1 [yjt+h−1], lagged values of other type’s forecasts, s ̸= i

3. varN
(
F(·)
t−1[yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of lagged survey forecasts

4. skewN

(
F(·)
t−1[yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of lagged survey forecasts

5. Trend inflation measured as πt−1 =

{
ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t < 1991Q4
CPI10t−1 if t ≥ 1991Q4

, where CPI10 is the median

SPF forecast of annualized average inflation over the current and next nine years. Trend inflation is intended to
capture long-run trends. When long-run forecasts of inflation are not available, as is the case pre-1991Q4, we us a
moving average of past inflation.

6. ˙GDP t−1 = detrended gross domestic product, defined as the residual from a regression of GDPt−1 on a constant
and the four most recent values of GDP as of date t− 8. See Hamilton (2018).

7. ˙EMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1 on a constant and the
four most recent values of EMP as of date t− 8. See Hamilton (2018).

8. N(i)
t [πt,t−h] = Nowcast as of time t of the ith percentile of inflation over the period t− h to t.

D.3 Cross-Sectional Forecasts
I construct machine learning forecasts of stock returns for 10 value-weighted portfolios sorted by each firm’s id-

iosyncratic shock. For each portfolio, I re-estimate the time-series Long Short-Term Memory (LSTM) model separately,
applying the dynamic machine learning procedure described in Section D. The stock universe consists of all firms listed on
the NYSE, AMEX, and NASDAQ with available IBES analyst coverage for one- and two-year ahead earnings expectations
and long-term growth forecasts. Monthly total returns for these firms are obtained from CRSP. The sample spans March
1965 to December 2024.

To construct predictors, I follow the cross-sectional asset pricing literature and compile a broad set of stock-level
characteristics. Specifically, I include 94 firm characteristics, of which 61 are updated annually, 13 quarterly, and 20
monthly. These characteristics span valuation ratios, profitability, investment, size, momentum, volatility, and other firm-
level attributes, based on the definitions in Green et al. (2013). Book equity and operating profitability follow Fama
and French (2015). I rank-transform each characteristic cross-sectionally within each month to the [−1, 1] interval, as in
Gu et al. (2020). I also include 74 industry dummies based on two-digit Standard Industrial Classification (SIC) codes.
Table A.18 provides further details on these predictors. To avoid forward-looking bias, I apply realistic reporting lags:
monthly characteristics are assumed available with a one-month delay, quarterly characteristics with at least a four-month
delay, and annual characteristics with at least a six-month delay. Missing values are replaced with the cross-sectional
median at each period.

Following Gu et al. (2020), I construct an expanded set of predictors that interact portfolio-level characteristics with
aggregate macroeconomic state variables. Let Ci,t denote the vector of value-weighted portfolio characteristics for portfolio
i, and let Xt denote the vector of aggregate predictors, which includes a constant and the same macroeconomic variables
used to forecast aggregate returns, price growth, and earnings growth, respectively. The final predictor set for portfolio i
at time t is given by Xi,t = Xt ⊗ Ci,t, where ⊗ denotes the Kronecker product. This structure generates interaction terms
that capture how aggregate economic conditions influence the effect of portfolio-level characteristics on expected returns.

Table A.18: Details of Firm Characteristics

No. Acronym Characteristic Authors Source Frq.
1 absacc Absolute accruals Bandyopadhyay, Huang, Wirjanto 2010 Compustat Y
2 acc Working capital accruals Sloan 1996 Compustat Y
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No. Acronym Firm Characteristic Authors Source Freq.

3 aeavol Abnormal earnings ann volume Lerman, Livnat, Mendenhall 2007 Compustat/CRSP Q
4 age Years since first coverage Jiang, Lee, Zhang 2005 Compustat Y
5 agr Asset growth Cooper, Gulen, Schill 2008 Compustat Y
6 baspread Bid-ask spread Amihud, Mendelson 1989 CRSP M
7 beta Beta Fama, MacBeth 1973 CRSP M
8 betasq Beta squared Fama, MacBeth 1973 CRSP M
9 bm Book-to-market Rosenberg, Reid, Lanstein 1985 Compustat/CRSP Y
10 bm ia Industry-adj book-to-market Asness, Porter, Stevens 2000 Compustat/CRSP Y
11 cash Cash holdings Palazzo 2012 Compustat Q
12 cashdebt Cash flow to debt Ou, Penman 1989 Compustat Y
13 cashpr Cash productivity Chandrashekar, Rao 2009 Compustat Y
14 cfp Cash flow to price ratio Desai, Rajgopal, Venkatachalam 2004 Compustat Y
15 cfp ia Industry-adj cash flow to price ratio Asness, Porter, Stevens 2000 Compustat Y
16 chatoia Industry-adj chg asset turnover Soliman 2008 Compustat Y
17 chcsho Chg shares outstanding Pontiff, Woodgate 2008 Compustat Y
18 chempia Industry-adj chg employees Asness, Porter, Stevens 1994 Compustat Y
19 chinv Chg inventory Thomas, Zhang 2002 Compustat Y
20 chmom Chg 6-month momentum Gettleman, Marks 2006 CRSP M
21 chpmia Industry-adj chg profit margin Soliman 2008 Compustat Y
22 chtx Chg tax expense Thomas, Zhang 2011 Compustat Q
23 cinvest Corporate investment Titman, Wei, Xie 2004 Compustat Q
24 convind Convertible debt indicator Valta 2016 Compustat Y
25 currat Current ratio Ou, Penman 1989 Compustat Y
26 depr Depreciation over PP&E Holthausen, Larcker 1992 Compustat Y
27 divi Dividend initiation Michaely, Thaler, Womack 1995 Compustat Y
28 divo Dividend omission Michaely, Thaler, Womack 1995 Compustat Y
29 dolvol Dollar trading volume Chordia, Subrahmanyam, Anshuman 2001 CRSP M
30 dy Dividend-to-price ratio Litzenberger, Ramaswamy 1982 Compustat Y
31 ear Earnings announcement return Kishore, Brandt, Santa-Clara, Venkat-

achalam 2008
Compustat/CRSP Q

32 egr Gr common shareholder equity Richardson, Sloan, Soliman, Tuna 2005 Compustat Y
33 ep Earnings-to-price ratio Basu 1977 Compustat Y
34 gma Gross profitability Novy-Marx 2013 Compustat Y
35 grCAPX Gr capex Anderson, Garcia-Feijoo 2006 Compustat Y
36 grltnoa Gr long-term net operating assets Fairfield, Whisenant, Yohn 2003 Compustat Y
37 herf Industry sales concentration Hou, Robinson 2006 Compustat Y
38 hire Employee gr rate Bazdresch, Belo, Lin 2014 Compustat Y
39 idiovol Idiosyncratic return volatility Ali, Hwang, Trombley 2003 CRSP M
40 ill Illiquidity Amihud 2002 CRSP M
41 indmom Industry momentum Moskowitz, Grinblatt 1999 CRSP M
42 invest Capital expenditures and inventory Chen, Zhang 2010 Compustat Y
43 lev Leverage Bhandari 1988 Compustat Y
44 lgr Gr long-term debt Richardson, Sloan, Soliman, Tuna 2005 Compustat Y
45 maxret Maximum daily return Bali, Cakici, Whitelaw 2011 CRSP M
46 mom12m 12-month momentum Jegadeesh 1990 CRSP M
47 mom1m 1-month momentum Jegadeesh, Titman 1993 CRSP M
48 mom36m 36-month momentum Jegadeesh, Titman 1993 CRSP M
49 mom6m 6-month momentum Jegadeesh, Titman 1993 CRSP M
50 ms Financial statement score Mohanram 2005 Compustat Q
51 mvel1 Size Banz 1981 CRSP M
52 mve ia Industry-adj size Asness, Porter, Stevens 2000 Compustat Y
53 nincr Number of earnings increases Barth, Elliott, Finn 1999 Compustat Q
54 operprof Operating profitability Fama, French 2015 Compustat Y
55 orgcap Organizational capital Eisfeldt, Papanikolaou 2013 Compustat Y
56 pchcapx ia Industry-adj % chg capex Abarbanell, Bushee 1998 Compustat Y
57 pchcurrat % chg current ratio Ou, Penman 1989 Compustat Y
58 pchdepr % chg depreciation Holthausen, Larcker 1992 Compustat Y
59 pchgm

pchsale
% chg gross margin - % chg sales Abarbanell, Bushee 1998 Compustat Y

60 pchquick % chg quick ratio Ou, Penman 1989 Compustat Y
61 pchsale

pchinvt
% chg sales - % chg inventory Abarbanell, Bushee 1998 Compustat Y

62 pchsale
pchrect

% chg sales - % chg receivables Abarbanell, Bushee 1998 Compustat Y

63 pchsale
pchxsga

% chg sales - % chg SG&A Abarbanell, Bushee 1998 Compustat Y

64 pchsaleinv % chg sales-to-inventory Ou, Penman 1989 Compustat Y
65 pctacc Percent accruals Hafzalla, Lundholm, Van Winkle 2011 Compustat Y
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No. Acronym Firm Characteristic Authors Source Freq.

66 pricedelay Price delay Hou, Moskowitz 2005 CRSP M
67 ps Financial statement score Piotroski 2000 Compustat Y
68 quick Quick ratio Ou, Penman 1989 Compustat Y
69 rd R&D increase Eberhart, Maxwell, Siddique 2004 Compustat Y
70 rd mve R&D to market capitalization Guo, Lev, Shi 2006 Compustat Y
71 rd sale R&D to sales Guo, Lev, Shi 2006 Compustat Y
72 realestate Real estate holdings Tuzel 2010 Compustat Y
73 retvol Return volatility Ang, Hodrick, Xing, Zhang 2006 CRSP M
74 roaq Return on assets Balakrishnan, Bartov, Faurel 2010 Compustat Q
75 roavol Earnings volatility Francis, LaFond, Olsson, Schipper 2004 Compustat Q
76 roeq Return on equity Hou, Xue, Zhang 2015 Compustat Q
77 roic Return on invested capital Brown, Rowe 2007 Compustat Y
78 rsup Revenue surprise Kama 2009 Compustat Q
79 salecash Sales to cash Ou, Penman 1989 Compustat Y
80 saleinv Sales to inventory Ou, Penman 1989 Compustat Y
81 salerec Sales to receivables Ou, Penman 1989 Compustat Y
82 secured Secured debt Valta 2016 Compustat Y
83 securedind Secured debt indicator Valta 2016 Compustat Y
84 sgr Sales gr Lakonishok, Shleifer, Vishny 1994 Compustat Y
85 sin Sin stocks Hong, Kacperczyk 2009 Compustat Y
86 sp Sales to price Barbee, Mukherji, Raines 1996 Compustat Y
87 std dolvol Volatility liquidity dollar volume Chordia, Subrahmanyam, Anshuman 2001 CRSP M
88 std turn Volatility liquidity share turnover Chordia, Subrahmanyam, Anshuman 2001 CRSP M
89 stdacc Accrual volatility Bandyopadhyay, Huang, Wirjanto 2010 Compustat Q
90 stdcf Cash flow volatility Huang 2009 Compustat Q
91 tang Debt capacity / firm tangibility Almeida, Campello 2007 Compustat Y
92 tb Tax income to book income Lev, Nissim 2004 Compustat Y
93 turn Share turnover Datar, Naik, Radcliffe 1998 CRSP M
94 zerotrade Zero trading days Liu 2006 CRSP M
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