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Abstract

We investigate how demand conditions affect employers’ provision of safety - something about which

theory is ambivalent. Positive demand shocks relax financial constraints that limit safety invest-

ment, but simultaneously raise the opportunity cost of increasing safety rather than production.

We study the U.S. metals mining sector, leveraging exogenous demand shocks from short-term

variation in global commodity prices. We find that positive price shocks substantially increase

workplace injury rates and safety regulation non-compliance. While these results indicate the gen-

eral dominance of the opportunity cost effect, shocks that only increase mines’ cash-flow lower

injury rates, illustrating that financial constraints also affect safety.
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1 Introduction

Workplace injuries and illnesses impose a substantial economic burden on society. These adverse

events are both pervasive and extremely costly. In 2015 over 50 percent of workers reported being

exposed to hazardous working conditions (Maestas et al., 2017), and 3 out of every 100 full-time

workers experienced an occupational injury or illness1; moreover, workers injured on the job face

a subsequent earnings penalty of 8% on average, and 30% for permanent disability (Dworsky et

al., 2018). Workplace injuries generate other direct costs like medical care, as well as indirect costs

like lost productivity. Leigh (2011) estimates the total social cost of U.S. workplace injuries and

illnesses in 2010 was $250 billion. Given these costs, understanding the role of the various factors

that determine safety and health is a matter of profound policy importance.

A key driver of the rates of workplace injuries and illnesses is the degree to which firms un-

dertake investments and other actions involving worker safety. Firms can lower injuries through

spending on such things as upgrading worn-out capital equipment, training workers to avoid risks,

or routinely monitoring production equipment.2 A firm’s ability to undertake these, and similar,

costly investments clearly depends on its financial position. In particular, firms are likely to be

more liquidity constrained in periods of low profitability. Consistent with this view, results from

a growing literature, based primarily on analysis of firm-level outcomes, suggest that firms have

worse safety outcomes when their credit constraints are high (Cohn and Wardlaw, 2016) and their

profitability is low (Rose, 1990a; Asfaw et al., 2013). Yet, a separate literature, using aggregate

macro-level data, finds that workplace injuries rates tend to be elevated in economic booms - pre-

cisely when any given firm’s profitability is likely to be high (Ruhm, 2000; Asfaw et al., 2011). These

seemingly contradictory pieces of evidence suggest that our understanding of a key determinant of

firms’ safety investments - and thus, by extension, of why workers experience workplace injuries -

remains contested and incomplete.

Using a novel micro-level panel dataset, this paper assesses how exogenous shocks to firms’

demand conditions affect various dimensions of workers’ safety. Our analysis provides new evidence

1Bureau of Labor Statistics, “Employer-Related Workplace Injuries and Illnesses in 2015,” October 27, 2016.
Available at https://www.bls.gov/news.release/archives/osh_10272016.pdf.

2The return on such safety investments is potentially large. For example, numerous industry publications
cite the positive return on investment in safety, e.g National Safety Council (2013). See also Kyle M. Morri-
son, May 21 2014, “The ROI of Safety,”Safety and Health, https://www.safetyandhealthmagazine.com/articles/
10414-the-roi-of-safety
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about the effect of a firm’s financial circumstances on accidents and injuries among its workers. In

addition, the paper’s various findings allow us to substantially reconcile the apparent contradiction

of the results from previous studies.

Understanding the role of variation in product demand on safety is important for several reasons.

First, demand is of fundamental importance to all firms and thus paramount to every aspect of firms’

decision-making. Second, as the theoretical model we present below illustrates, demand conditions

have an ambiguous effect on safety decisions. Higher demand, and associated increase in price

and profit, can ease a firm’s financial constraints, enabling it to make valuable safety investments

like replacing worn-out equipment. But favorable demand conditions also raise the opportunity

cost of safety investments—such as worker training or regulating the speed of production—that

may come at the expense of current output (Gowrisankaran et al., 2015). Whether demand shocks

improve or impair safety is thus an empirical question. A central challenge to studying this question

empirically, however, is that individual firms’ demand is typically endogenous to firm attributes

and/or market forces. We overcome this challenge by leveraging a setting with demand shocks

exogenous to firm behavior, enabling us to analyze how demand shocks affect safety investments

as well as other firm decisions.

After formalizing the intuition above that a demand shock has offsetting effects on firms’ safety,

we investigate this relationship empirically in the U.S. metals mining sector. The mining sector may

be the ideal setting to study this relationship. First, mining has historically been, and continues to

be, one of the most dangerous industries for workers. In 2016, 3.6 out of 100,000 full-time workers

across all private industries experienced a fatality. By contrast, in mining the comparable fatality

rate was nearly three times higher, at 10 deaths per 100,000 workers.3 Second, fluctuations in global

commodity prices yield exogenous shocks to mines’ demand that vary across commodities and over

time. Third, each mine in the U.S. is required to report its injuries, illnesses, employment, and other

related measures for each quarter that it is in operation. We construct a database of quarterly global

prices spanning three decades for 16 metal commodities, the most comprehensive such database

of which we are aware, and combine this information with mine-level data on employment, safety

outcomes, and assessments from routine government safety inspections.

3Bureau of Labor Statistics, Census of Fatal Occupational Injuries, 2016, available at
https://www.bls.gov/iif/oshcfoi1.htm#rates, accessed June 2019.
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Using our dataset, we first analyze the impact of demand shocks—measured by quarterly

changes in the price of the commodity a mine produces—on mines’ production decisions. These

shocks have a small effect on production at the extensive margin as measured by the number of

actively producing mines. However, we find that these shocks have a large effect on the inten-

sive margin: following a one percent increase in its commodity price, a mine increases its total

employment by 0.23 percent, and its total working hours by 0.33 percent, the following quarter.

We next examine the relationship between demand shocks and worker safety. We find that

mines experience substantially higher injury and illness rates following positive demand shocks. A

one-percent exogenous increase in output price leads to 0.15 percent more injuries and illnesses per

full-time worker. This result suggests that increases in output prices raise the opportunity cost of

worker safety, and that this effect dominates any easement of financial constraints that hinder safety

investments; it also serves as a micro-level, well-identified complement to the macro-level finding by

Ruhm (2000) and subsequent papers that injuries increase during economic booms. This estimate

is highly robust to several specifications and functional forms. The effect of price shocks on injuries

is not purely driven by changes in the average job tenure of mines’ work force, the number of hours

that workers work, or by affecting workers’ willingness to report injuries.

Using data from routine government safety inspections, we also find that mines’ exhibit worse

compliance with safety and health regulations following a positive price shock, implying that firms

reallocate effort away from safety and to production. A one-percent commodity price increase leads

to .13 percent more violations of safety and health regulations, and 0.05 percent more violations

which the inspector assessed to result from a negligent or willful act by the employer. This latter

result bolsters the idea that demand shocks affect firm owners’ inputs into safety investments, as

opposed solely to affecting worker behavior.

Overall, our results imply that positive demand shocks impair workplace safety. This finding

might appear to be at odds with an existing literature which finds that higher profitability and

positive cash flow shocks improve workplace safety. To reconcile these seemingly contradictory

results, we isolate one way that price shocks affect mines’ cash flow without affecting their oppor-

tunity cost of safety: mining companies’ internal corporate networks. Many mines in our sample

are owned by a corporate parent that also owns mines that produce other commodities. Prior work

has highlighted how firms distribute cash flow generated by one of its establishments to other estab-
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lishments in its corporate internal network (Williamson, 1975; Giroud and Mueller, 2017). Given

this organizational feature of firms, changes in the price of a commodity produced by a mine’s

corporate sibling (that is, another mine owned by the same corporate parent) may affect the first

mine’s cash flow, through redistribution by the corporate parent, but leave its opportunity cost of

safety unaffected. Consistent with this, we find that an increase in the price of commodities pro-

duced by a mine’s corporate sibling has a negative effect on its injury rate, in contrast to a change

in its own price which has a positive effect. These results suggest that both opportunity costs and

financial constraints have meaningful impacts on the safety and health of a firm’s workers.

Our study contributes to multiple literatures. Along with reconciling papers described above

on effects of financial constraints and economic conditions on workplace safety, we extend a wide

literature examining the economic determinants of workplace injuries and illnesses (e.g., surveyed in

Ruser et al. (2010)). Prior work has examined the effects of workers’ compensation (e.g., surveyed in

Kniesner and Leeth (2014)), including insurance premiums (Moore and Viscusi, 1989), experience

rating (Ruser, 1991; Thomason and Pozzebon, 2002) and benefit levels (Fishback, 1987; Krueger,

1990) on safety as well as government safety and health regulations and inspections (Levine et

al., 2012; Li and Singleton, 2019). Economists have long understood job safety as an equilibrium

outcome of firm and worker decisions traded off against wages (Rosen, 1986); such studies typically

consider firms’ costs of reducing injuries as time-invariant, whereas our paper highlights how the

(opportunity) cost of firm safety investigates is sensitive to its demand conditions.

Three recent papers are especially similar in spirit to ours. Gowrisankaran et al. (2015) estimate

the tradeoff between productivity and safety in the context of U.S. coal mining, and Caskey and

Ozel (2017) find that pressure to meet earnings expectations leads to higher injury rates. Hummels

et al. (2016) find that positive export-driven demand shocks lead to higher rates of worker injuries

and sickness. Our results complement this latter paper. While their focus is on how demand

shocks affect worker effort, and in turn their health outcomes, we in contrast focus on the effect

on employers’ incentives regarding safety. We also consider effects of more short-term, transitory

shocks to profitability, whereas their paper considers the effect of a one-time, permanent shock.

Finally, our results contribute to prior studies that have investigated how firms respond to

demand shocks. Prior work has investigated how demand shocks affect firms’ growth (Ferraz et

al., 2015) and wages (Abowd and Lemieux, 1993; Garin and Silverio, 2017; Atkin et al., 2017). We
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complement and extend this literature by investigating how demand shocks affect a critical aspect

of firms’ organizational performance and non-wage job attribute, workplace safety.

2 Theoretical Framework

In this section, we provide a simple model to formalize the intuition of how the demand for a

firm’s product affects its workers’ safety and health. Our model clarifies two contrasting effects.

A positive shock to demand—manifested in a positive shock to the price of the firm’s output—

increases the financial resources at the firm’s disposal to make valuable safety investments, which

prior literature has illustrated is an economically meaningful relationship. On the other hand, a

positive demand shock increases the opportunity cost of safety inputs that come at the expense of

production. Which of these effects dominates will depend on firms’ production processes.

We consider a setting in which firms each produce output q for sale on a competitive global

market at a price of $p per unit. An unfortunate by-product of the prevailing technology is that

workers at a firm i experience a total amount of accidents, A(i) over a given amount of time spent

in production activity. Our analysis focuses mainly on understanding changes in this accident flow

at a firm.

Accident Technology

Three factors determine a firm’s accident flow. One of these is the intensity of production; accidents

rise as firm increases output per unit of time. As resources are used more intensively to increase

output, there is a mechanical increase in the likelihood of slippage, error, exhaustion, inattention

- any number of things that make accidents more probable. We make the intuitively-appealing

assumption that work becomes increasingly more dangerous as the intensity of production rises.

As production expands, the firm must move into ever-more inherently unsafe settings or practices.

In the case of mining, for example, which is the industry we study empirically below, producing ever

more output requires that the firm move ever deeper underground. More generally, an increasing

marginal riskiness of production could also reflect diminishing marginal product of labor.

Accidents are also affected by how much safety-enhancing training, T , a firm provides its work-

ers. This training requires some of a worker’s time and may also use other productive resources.

As a result, safety training comes at the expense of some lost output, so T = T (q) with T ′ < 0 and
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T ′′ ≤ 0. The third determinant of the firm’s accident flow is the firm’s investment in safety-related

equipment, E, such as resources spent replacing worn-out machine parts or spending on new tech-

nology for stable ground control. We assume that the effectiveness of an additional unit of training

declines the larger the amount of such training already done. We make the same assumption of

diminishing returns about the benefits of additional investments in safety equipment.

Accidents can, therefore, be thought of as being “produced” according to the functionA (q, T (q), E),

with

Aq =
∂A

∂q
> 0; AT =

∂A

∂T
< 0; AE =

∂A

∂E
< 0;

Aqq =
∂2A

∂q∂q
> 0; ATT =

∂2A

∂T∂T
> 0; AEE =

∂2A

∂E∂E
> 0.

For the sake of exposition, we make the strong, but plausible, assumption that the inputs into

the firm’s “accident production function” are separable. That is, for example, the degree to which

increasing production elevates accident risk is invariant to the level of safety equipment or training.

Boosting production may increase accidents due to higher worker fatigue, and the marginal effect of

fatigue may be independent of equipment and training. Additionally, training and equipment could

have independent effects on the likelihood of accidents.4 Importantly, this assumption is not critical

to our model’s predictions; we derive the model’s comparative statics relaxing this assumption in

Appendix A, where we show that each of the predictions that follow remain largely unchanged.

Firm’s Problem

Safety equipment, E, is expensive. To capture the idea that some firms may face liquidity

constraints that limit their ability to undertake these capital investments we assume that each firm

i can rent equipment at a per unit price of price of R(i), which varies across firms. The rental

price that a particular firm pays is determined by overall credit-worthiness and overall financial

position (i.e. the strength of its balance sheet). A key driver of a firm’s balance sheet and thus of its

financial position is the market demand for its output, as reflected in the market price, p, at which

the firm can sell the product. In addition to output demand, other (mostly unobserved) factors

such as debt or management structure, likely affect a firm’s financial standing and, by extension,

4This assumption could be violated if, for example, the amount by which increased production raises accidents is
smaller the higher the level of training and the higher the level of safety equipment.
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the extent to which it might be liquidity constrained in the purchase of capital equipment. Call

these other drivers of credit-worthiness x(i). Thus, the rental price a firm pays is R(i) = R(p;x(i)).

We assume that R′ = ∂R(p;x(i))/∂p < 0.

Accidents are costly to a firm. In particular, for a given flow of accidents, the firm incurs some

cost κ, which represents the combined effect of compensating wage differentials it must pay workers;

higher workers’ compensation premiums; higher contributions to the disability system; or even the

negative effect upon sales that adverse publicity from accidents to the firms’ workers brings.

A profit-maximizing firm chooses a level of output q and buys (or finances) safety equipment

E to maximize5

p× q − κ×A(q, T (q), E)−Ri(p, x)× E. (1)

Note that, because training T is a function of q, by choosing a level of q the firm simultaneously

chooses how much training T it provides. The optimal levels of output and safety equipment that

solve this problem, q∗ and E∗, are given by the first order conditions

p− κ
[
Aq(q

∗, T ∗, E∗) +AT (q∗, T ∗, E∗)T ′
]

= 0 (2)

−κ AE(q∗, T ∗, E∗)−Ri = 0.

The optimizing firm produces output up to the point where its gain from the last unit it makes

(the price p for which that unit can be sold) equals its increase in cost. This increased cost is

the market price paid for marginally higher accident flow times the increase in the accidents from

higher output on the one hand and reduced time and effort on safety training on the other. With

respect to safety equipment, the firm will spend on safety equipment until the reduction in accident

costs from more equipment equals its rental price for these items.

Comparative Statics of an Exogenous Output Price Increase

We are interested in how a shock to the market demand for its output, as reflected in a change

5A more realistic model might have the firm choosing its labor input, with production being a function of labor
and with the wage either as a parameter or an outcome determined in equilibrium, etc. We instead present a stylized
model that seeks to formalize the intuition that distinguishes our focus on the effect of demand shocks on safety from
prior work on how firms’ financial condition, broadly defined, affects safety, Though we abstract away from important
elements that affect firms’ decisions regarding safety, we believe that such extensions would not appreciably change
the insights that our model yields.
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in the output price p, affects the accidents a firm’s workers experience, i.e. dA
dp . This comparative

static depends on ∂q
∂p and ∂E

∂p , the signs of which we determine by applying Cramer’s Rule to

Equation (2), and using second-order optimization conditions.

From this analysis, we have that

∂q

∂p
= −

κ
(
−AEE

)
det(H)

(3)

where det(H) is the determinant of the Hessian matrix of second derivatives. Given our assumptions

about the partial derivatives above, the numerator is negative, and the denominator must be

positive by the second order conditions, making the entire term positive. Thus, ∂q∂p > 0. This result

makes immediate intuitive sense: a profit-maximizing firm increases production when a positive

demand shock (as reflected in the rise in price), makes its output more valuable.

Employing similar reasoning, we have that

∂E

∂p
= −

κ×
(
Rp ×

(
Aqq +ATT

′′ +ATTT
′ × T ′

))
det(H)

(4)

The numerator is < 0 given the assumptions on the partial derivatives, making the entire term

positive. Thus, ∂E
∂p > 0. This result also makes intuitive sense. An increase in the firm’s output

price lowers its cost of obtaining equipment, which leads the firm to purchase more of it.

From these results it follows that, a change in output price, deriving from an exogenous shock

to demand, has an effect on accidents given by

dA(q∗, T (q)∗, E∗)

dp
= Aq

dq∗

dp︸ ︷︷ ︸
>0

+AT
dT

dq

dq∗

dp︸ ︷︷ ︸
>0

+AE
dE∗

dp︸ ︷︷ ︸
<0

. (5)

Expression (5) shows that an increase in output price affects accidents via three channels. Two of

these effects would, by themselves, lead to a higher accident flow when demand conditions are good.

Higher prices induce the firm to increase output to take advantage of the higher revenue possibilities.

This increase in output shifts resources away from safety training and towards production. Both

these actions tend to increase accidents. On the other hand, a firm facing higher demand for its

output will be a good financial position and thus able to borrow or finance directly the purchase
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of safety equipment, which would tend to reduce accidents. This liquidity-easing consequence of

a higher output price acts in the opposite direction of higher accidents associated with increased

output, making the overall effect of an exogenous demand shock on accidents ambiguous.

Comparative Statics of Other Changes in Firm’s Financial Position

It is useful to examine the effect of other shocks that, like changing product demand, alter the firm’s

financial position. Prior literature has studied how factors that make a firm’s financial situation

better, such as lower financing constraints, affect accidents. How is this kind of change captured

in our framework, and how does its predicted effects on accidents differ from what we show above

for exogenous price changes?

Consider a shock that only affects a firm’s financial constraints, but has no effect on the price

of the firm’s output. In our framework, this kind of shock is represented by a change in one of the

factors x(i) that, along with output price, p, determine how much the firm pays to rent capital

equipment, R(i).

The effect of this shock on accidents is thus dA
dx . How x affects the firm’s choice of q and E is

given by:

∂q

∂x
= 0 (6)

∂E

∂x
=−

Rx(i)× κ
(
Aqq +ATTT

′ × T ′ +ATT
′′
)

det(H)
> 0 (7)

where, as before, det(H) is the determinant of the Hessian matrix, H, that is the matrix of second

derivatives with respect to q and E.

Going in reverse order, Equation (7) reveals that, predictably, a positive liquidity shock leads

the firm to increase its investment in E by the same intuition as an increase in its output price.

On the other hand, a change to liquidity has no effect on firms’ output. This is because, unlike

a change in the firm’s output price, a change in its liquidity position leaves its value of production

(and opportunity cost of training) unchanged.6

Thus, a pure improvement to a firm’s financial position leads to unambiguously fewer accidents,

an implication that is consistent with prior studies finding that improvements in firms’ financial

6As shown in Appendix A, a liquidity change might affect output if accident inputs are non-separable.
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constraints reduce injuries (e.g. Cohn and Wardlaw (2016) and Rose (1990b))

While our model emphasizes one channel through which liquidity shocks affect worker safety–by

affecting firms’ literal costs of making safety investments–other channels are possible. For example,

for firms that rely on external finance, an influx of cash flow could ease the pressures that such firms

face to meet the regular demands of creditors. Related to this idea, Caskey and Ozel (2017) find

that publicly-traded firms that just barely meet earnings expectations have higher injury rates than

firms that either miss or comfortably beat forecasts, presumably through ramping up production

(and thus sacrificing safety) to meet shareholder expectations. By similar logic, a cash flow influx

could reduce the need for a firm to recklessly speed up production to make its payments to regular

creditors. We believe this channel is plausible and is easily accommodated for our model. For

example, while our formulation specifies that a positive price shock reduces firms’ rental price (i.e.

out of pocket cost) of safety equipment, a positive price shock could similarly reduce the opportunity

cost of making equipment purchases with money that would otherwise go to paying creditors.

Empirical Predictions

This framework guides our empirical analysis the following way. First, we seek to examine the effects

of price shocks on firms’ accidents, which our framework shows to have a theoretically ambiguous

direction. Second, we aim to compare the effects of price shocks on accidents to the effects of pure

changes to firms’ financial position. Our analysis above implies that a positive shock to financial

constraints unambiguously leads to fewer accidents. We next turn to our setting where we examine

these relationships empirically.

3 Metal Mines in the U.S.

3.1 Worker Safety and Health in Metal Mines

We focus on mining in the U.S. of globally-traded metals. Our analysis therefore excludes mining

in coal, construction sand and gravel. Mines are typically either surface or underground, with the

distinction stemming from the mine’s geological constraints. Surface mining involves the removal

of the soil and rock overlaying the desired mineral to reach buried deposits. Underground mining,

on the other hand, leaves the overlaying earth in place and consists of digging tunnels or shafts
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into the earth to reach buried deposits.

Mining remains a dangerous industry for workers. This is chiefly because of risks inherent in

the production process, such as explosions, flooding, cave-ins, and other accidents resulting from

unstable ground conditions. In 2016, 3.6 out of 100,000 full-time workers across all private industries

experienced a fatality. By contrast, in mining the comparable fatality rate was nearly three times

higher, at 10 deaths per 100,000 workers.7 Non-fatal injury rates, on the other hand, actually tend

to be lower in mining than the private sector as a whole.8

Mines can undertake many actions and investments that enhance safety.9 Some actions require

significant financial investment, including purchasing and upgrading equipment like belt lines, stor-

age facilities for explosives, etc. Other safety inputs may require not just financial investment,

but also substantial time to implement. A clear example of a time-intensive input is providing

safety training to ensure that workers are informed of the hazards associated with specific jobs

and instructed on precautionary measures such as proper use of personal protective equipment.

Another time-intensive input, so far as it disrupts production, is maintenance, housekeeping and

cleanliness. The International Labor Organization, for example, suggests that mines routinely have

personnel inspect the personal protective equipment to monitor whether they are in good condition

or in need of repair. Since one of the leading causes of accidents in this sector is unstable ground

conditions, it is crucial for miners to ensure that hazardous ground conditions be supported before

any work. Another time-intensive input is arranging working hours to ensure that workers have

adequate time for rest. Given that long work hours can lead to fatigue and make workers more

injury-prone (Dembe et al., 2005), limiting workers’ shifts can reduce injuries.

Every mine in the US is under the jurisdiction of the Mine Safety and Health Administration

(MSHA), the regulatory body charged with setting and enforcing standards to promote safety and

healthy workplaces for all miners. Since the 1980s, each mine has been required each quarter

to report to MSHA statistics related to its operations and safety and health performance: such

as whether it was in operation, its number of workers and total hours worked in different roles,

the number of various types of injuries and illnesses it experienced, etc. Mines must also report

7Bureau of Labor Statistics, Census of Fatal Occupational Injuries, 2016, available at
https://www.bls.gov/iif/oshcfoi1.htm#rates, accessed June 2019.

8BLS Workplace Injury, Illness and Fatality Statistics, available at https://www.osha.gov/oshstats/work.html,
acesssed December 2018.

9This section draws heavily from Organization (2006) and Walle et al. (2001).
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on their corporate stricture, in particular their ultimate corporate owner (called a “controller” in

the industry). Furthermore, MSHA inspects mines on a regular basis to check whether a mine

is complying with its standards. If the inspector discovers that a mine is violating any MSHA

standards, she issues a citation for each violation, and MSHA eventually requires the mine to pay

financial penalties for each citation.

3.2 Determinants of Commodity Prices

While many commodities mined in the U.S. are traded on local or regional markets, a subset of

metals are traded on global markets. Global commodity prices can be driven by an array of market

forces outside the control of individual mines. For example, the price of gold—which is primarily a

monetary asset—is a function of interest rates, currency values, and the stock market, all of which

affect the perceived value of holding assets like gold. The price of other precious metals like silver

and platinum can also be subject to idiosyncratic speculation in financial markets. Furthermore,

because these metals are primarily used for industrial purposes, they face additional price shocks

driven by variation in industrial activity (Popescu, 2014). The price of uranium, which is a key

input into nuclear power, can be affected by worldwide demand for nuclear power.

Metals also differ with respect to factors that dictate their supply. Metals vary in the geographic

distribution of deposits around the world, with many concentrated in countries characterized by

unstable institutions. Therefore, geopolitical issues that affect mine production in Kazakhstan, a

large producer of uranium, will affect uranium prices very differently than gold prices. As a concrete

example, the dissolution of the Soviet Union in 1989 directly affected the price of aluminum: in

need of hard currency following dissolution, Russia – a large suppler of aluminum – put large

quantities of aluminum on the world market. This sudden increase in aluminum supply, not met

with a corresponding change to demand, depressed world aluminum prices yet had little if any

effect on other commodity prices (Plunkert and Jones, 1999). In sum, metals each face their own

idiosyncratic set of factors affecting both their demand and supply, and hence their price.

Not only do globally traded precious metals face idiosyncratic price shocks, but individual mines

are price takers and unable to single-handedly affect price. For gold, for example, it is estimated

that mine production contributes a mere 1.64% to the total annual gold supply (Popescu, 2014),

meaning that aggregate production – let alone an individual mine’s production – is inconsequential
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to price movements. Table 3 illustrates further how U.S. mines that produce globally-traded metals

are price takers. For each of the 16 commodities in our eventual sample (described below), the

table provides various metrics of market concentration. The first two columns provide the U.S.

rank in terms of 2014 production and the country that accounts for the largest share of production.

The columns that follow provide total U.S. and global production, as well as the U.S. share of

global production. These columns make clear that U.S. production as a whole – and obviously,

that of an individual mine – account for, at most, a tiny share of overall production of each of these

commodities, and thus is unlikely to be a key determinant to global prices. The U.S. is not the

highest-ranking producer of any commodity, and for the majority it ranks fifth or lower. Moreover,

the U.S. accounts for less than 10 percent of production in all commodities except molybdenum,

for which the U.S. makes up 22 percent of production.

Even though the U.S. does not make up a substantial share of production, one might worry

that these markets are not characterized by significant competition. To address this concern, the

table also presents calculations of the Herfindahl-Hirschman Index (HHI), both for the U.S. and

for the world. The HHI, calculated as the sum of the squares of market shares of each producer,

is a measure of market concentration. The index ranges from 0, indicating perfect competition, to

10,000, indicating a sole monopoly. For each commodity the HHI for U.S. producers is tiny, with

all except molybdenum below 100.

Finally, mines that produce globally traded commodities are not only price-takers, but they

also are typically unaffected by changes in the local market in which they operate. For example,

gold or silver produced by one mine can be shipped across the world; for precious metals like

these, the cost of transport is so low relative to the value of the commodity that shipping costs are

inconsequential (Butterman and Amey, 2002). Even for non-precious metals, such as Antimony,

much of the Antimony mined in the U.S. is shipped internationally to industrializing countries

where demand for Antimony is concentrated (Butterman and Carlin, 2004). Metals like Copper

and Iron that are mined in the U.S. are typically sold domestically, but the prices for both are

determined on the global market and all mines are price-takers (Goonan, 2016; Fenton, 2005).
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3.3 Effects of Prices on Production Decisions of Mines

While individual mines’ production does not affect prices, global prices almost certainly influence

individual mines’ production decisions by affecting the value of production. Prior work has illus-

trated that fluctuations in price caused by swings in demand lead to movement along the supply

curve for gold (Rockoff, 1984), as well as production decisions of individual coal mines (Ellerman

et al., 2001).

The cost structures of mining makes clear why variation in prices has a strong effect on mines’

production and investment decisions.10 Because metal mines can have steep variable costs of

production, the price level can dictate the level of production that is economically viable. Within

a given mine, there may be sections that are only cost-effective to mine if the price is high enough.

Figure B.1 illustrates the relationship between prices and annual U.S. production for the com-

modities Silver and Gold. The figure plots the year-over-year log change in total U.S. production

against the lagged year-over-year change in price for the period 1984-2005. Both series come from

the U.S. Geological Survey. For both metals, changes in prices appear to predict changes in pro-

duction.

Prices affect production decision not only in existing mines, but also investment decisions in

new mines. Figure B.2 shows the strong correlation between mining companies’ budgets for ex-

ploration and current commodity prices. This relationship is consistent with recent models of how

prices affect drilling decisions in the oil industry (Anderson et al., 2018). At the same time, there

can often be a long lag between the initial exploration of a new mine and the start of produc-

tion activity. Given this lag between price signals and realized production from new investment,

production and investment responses by mining companies can, in theory, amplify boom and bust

cycles in commodity prices. Such actions can potentially be driven by forecasting errors, in which

firms have two kinds of biased expectations: failing to accurately forecast demand shocks as being

more persistent than they actually are, and failing to anticipate the endogenous response of other

suppliers of their competitors (Greenwood and Hanson, 2014).

The responsiveness of production to prices may also differ across types of mines. In particular,

underground mines may be more likely than surface mines to respond to changes in prices for two

10This section draws on a phone call with George Luxbacher at the Center for Disease Control, who provided
helpful background on how prices affect production decisions in mines.
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reasons. First, surface mines face constraints in their ability to expand production that underground

mines do not. Surface mining is generally conducted in an open pit, and the boundaries of these

pits, or “pit limits,” are pre-determined before the mining operation even begins (Newman et al.,

2010). Thus, while operators of surface mines can expand or contract variable inputs of production

(e.g. workers, shovels), they face strict limits in their ability to expand output. Underground mines

face no equivalent to pre-determined pit limits. Underground mines have more abilities to expand

or contract, for example by digging new tunnels into areas that may only be economically feasible

if the price of the metal is high enough.

Second, the fixed and variable costs of underground mining are higher than for surface mining,

meaning that prices may be much more likely to dictate production decisions in underground mines.

In terms of fixed costs, underground mining requires considerable capital requirements, such as

proper ventilation systems to supply necessary oxygen to miners working underground, and to

carry away the hazardous components of mine air, which can include potentially explosive methane

gases (Harvey, 2015). Ground control conditions are also typically much riskier in underground than

surface mines, requiring extra costs to manage them (Beauchamp, 1998). In terms of variable costs,

underground methods require more operating costs (e.g. more electricity to cool deep underground

shafts), and labor costs are also more expensive in underground mining due to higher health care

and benefits liabilities, and greater need for skilled labor (Chen, 2014).

Economic theory tells us that the marginal unit of production following price changes will be

more costly than the mine’s average cost of current production; it is also likely (as we presume in our

theoretical model) that this marginal unit is also more dangerous. In the case of mining, “ground

control conditions,” or the stability of the excavation process, are a leading cause of accidents in

the mining sector and are also very expensive to manage, requiring specialized support systems,

technical care regarding the speed and sequence of extraction, and mechanized monitoring systems.

Areas with unstable ground control conditions may only become viable to enter when the price is

high enough. This increasing marginal danger of production likely generalizes to many sectors

beyond mining: for example, firms may strive to meet short-term demand shocks by utilizing

previously mothballed, less-safe equipment (Ruser, 1995). This increasing marginal injury risk of

production is consistent with the model presented in Section 2 and will augment any effect of price

shocks on managers’ perceived opportunity costs of safety.
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In theory, output prices changes could affect not just mine owners’ incentives to prioritize

safety, but also the incentives of workers. If, for example, piece rates comprised a large portion

of worker compensation, and mining firms tied piece rates to output prices, higher prices could

induce workers to take less care for safety. However, we found no evidence that such performance

incentives are prevalent. Industry wage surveys from the Bureau of Labor Statistics found that

time rates made up the vast majority of pay for workers in Iron Ore, Copper, and Lead mining;

in terms of incentive pay, piece rates were rare, but performance bonuses (group and individual)

were common (BLS, 1979). We found no evidence that the terms of such performance bonuses

varied according to metal prices (Mundell and Schatzel, 1990). A more recent survey of labor

compensation in mining corroborated this pattern (Mining Cost Service, 2013), finding that wages

tended to be stable over time within mines, piece rates were rare, and production bonuses (when

present) were fixed.

4 Data and Measures

4.1 Price Data

To measure the output price that a mine faces at a given time, we created a unique panel dataset of

quarterly prices for commodities mined in the U.S. that are traded on world markets. We exclude

commodities traded on local markets, such as Clay, Construction Sand and Gravel, Limestone, etc.

Markets for such commodities are typically characterized by individual buyer-seller relationships,

and as such there is no single “market price” for such commodities. Furthermore, individual mines

for such commodities traded locally may be able to influence price by varying supply. By focusing

on commodities traded on global markets, we ensure individual mines are price takers and that

movements in a commodity’s global price equally affects all mines producing that commodity.

We assembled our dataset from four sources. Our main source is the London Metal Exchange

(LME), the world’s largest market for financial contracts on metals. For commodities not covered in

the LME database, we use prices from the International Monetary Fund (IMF) Primary Commodity

Prices database. To further expand our set of commodities, we use Datastream to access the

quarterly cash price 1983-2015 for metals in the MSHA database. The prices from Datastream are

derived from a number of sources including Standard & Poors and Thompson Reuters. Finally, for
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commodities not included in any of the databases above, we obtain additional data from Bloomberg.

In all, we collected data for 16 commodities. We standardized series from different sources by

converting output prices to nominal U.S. dollars per metric ton of the underlying commodity. Table

1 lists the commodities included in our dataset, the years for which we have price data for each

commodity, and the number of observations and unique mines for each commodity in our mine-level

dataset.11

Figure 1 shows the time series of our 16 standardized prices from 1983 to 2015. To facilitate

comparability across commodities, in this graph we standardize each price series by subtracting

the commodity-specific mean and dividing by the commodity-specific standard deviation. While

movements in prices are correlated, there is also much idiosyncratic variation. Starting in the

late 2000s, many commodities exhibited a dramatic increase in price due to an overall commodity

boom during this period, but the changes were much more pronounced for some commodities than

others. Throughout the period, several commodities feature short-term idiosyncratic movements.

For example, the graph illustrates the upswing in Aluminum prices around 1986 resulting from a

surge in global demand, followed by a plunge in prices in 1990 due to the supply influx coinciding

with the dissolution of the Soviet Union (Plunkert and Jones, 1999).

4.2 MSHA Mining Data

We assembled a panel dataset containing quarterly employment, injuries, MSHA inspections, vio-

lations of MSHA regulations, corporate ownership, and other mine attributes from the Mine Safety

and Health Administration’s (MSHA’s) open government data sets.12 The MSHA data cover each

mine in the U.S. that contains statistical records related to mine health and safety standards. Be-

ginning in 1983, each mine’s operator is required by Title 30 Code of Federal Regulations Part 50

to report employment, accident, injury, illness, data to MSHA each quarter, if they occur (MSHA,

2016).

To prepare our data for estimation we merge five separate data sets provided by MSHA’s

11Two of our commodities—Uranium Ore and Uranium-Vanadium Ore— have the same price series. Vanadium is
produced as a byproduct of Uranium, and the main motivation for mining Uranium-Vanadium is the Uranium: thus,
it is the price of Uranium that is the appropriate measure of demand for Uranium-Vanadium. However, we keep
Uranium and Uranium-Vanadium as separate commodities given that they have different production processes.

12The datasets were downloaded from the MSHA website on September 2015, and can be accessed at the following
link: https://enforcedata.dol.gov/views/data summary.php
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open government data sets covering accidents, injuries, inspections, violations, production, and

employment, resulting in a master panel dataset at the mine-quarter level spanning the period

1983-2015. Each data file has been treated as follows:

Mine Attributes: The Mine dataset lists all mines under MSHA’s jurisdiction since 1970, in-

cluding metals, non-metals, and other types of commodities. It includes such information as the

current status of each mine (Active, Abandoned, NonProducing, etc.), the primary commodity that

is mined, as well as a number of physical attributes of the mine, including mine type (Underground,

Surface, Facility), longitude, latitude, and county. Also included is the mine’s controller, or its ul-

timate corporate parent, as well as its operator, typically a subsidiary of the controller. We drop

all mines that were abandoned prior to 1983, when the employment and accident data were first

collected. We use a mine’s primary commodity to merge in quarterly commodity price data for the

16 commodity series we assembled. Each mine has a unique Mine ID, which is used to link in our

other datasets.

Quarterly Operator Employment. This dataset contains total employment and hours reported

by mine operators in a given mine for each quarter in a calendar year, by subunit. The subunit code

distinguishes between location and type of work being performed, including: (01) Underground;

(02) Surface at underground; (03) Strip, quarry, open pit; (04) Auger; (05) Culm bank/refuse pile;

(06) Dredge; (12) Other mining; (17) Independent shops or yards; (30) Mill operation/preparation

plant; (99) Office workers at mine site. We collapse the subunits to create a measure of total

employment and hours for each mine-quarter, as well as total employment excluding office workers,

as office workers are the least likely to be at risk for workplace injuries.13

Injuries and Illnesses This dataset contains information on all accidents, injuries and illnesses

reported by mine operators beginning with 1983, at the quarterly level. These data are obtained

from the Mine Accident, Injury and Illness Report form (MSHA Form 7000-1) which operators are

required by law to maintain. For each accident/injury/illness that is reported, the dataset includes

information such as the subunit where the incident took place, the degree of the injury (e.g. a minor

accident with no injury, resulted in restricted activity, days away from work, permanent disability,

13Roughly 10 percent of observations in our sample had zero overall employment in a quarter. These appear to
either be instances in which a mine either temporarily halted operation and resumed at a later date, or instances in
which a mine was about to shut down permanently but temporarily continued to report data to MSHA. We include
these observations in our analysis, but all of our results are robust to dropping them.
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fatality), the source of the incident (e.g. due to handling of materials, a slip or fall, inhalation of

dust, etc), and the date the incident was reported. The dataset includes other variables reported

with varying frequency, such as the experience, tenure and occupation of the injured worker.

We collapse the dataset to get the total number, and various categories, of accidents and injuries

by mine-quarter. These categories include injuries of varying severity, injuries to workers of different

levels of tenure with the mine, and others that we primarily use in robustness checks. We then

merge this dataset into the main analysis dataset, assigning zero to values that did not merge since

it means that the mine did not have any accidents in that quarter.

Inspections The Mine Inspections dataset includes details about every mine inspection MSHA

has conducted since 1983. The data include MSHA’s internal inspection number (event number),

the start and end dates of the inspection, and the reason the inspection was initiated. The types of

inspections we focus on in our analysis are “regular” inspections: according to the Mine Safety and

Health Act, underground and surface mines are required to receive four and two regular inspections

per year, respectively. We focus on these inspections because they occur at regular intervals and

for reasons unrelated to events at the mine. Other types of inspections, such as spot inspections or

technical inspections, can be initiated due to accidents or other events at the mine, and thus the

occurrence of such inspections can itself be an endogenous outcome.

Violations This dataset contains information on each citation (if any) issued as a result of

MSHA inspections, such as the date the violation was issued, and the specific MSHA standard that

was violated, identified by the part and section number from Title 30 Code of Federal Regulations

(CFR). Along with the standard that was violated, the dataset includes a measure of the inspector’s

assessment of the operator’s negligence associated with the violation (categorized as reckless, high

negligence, low negligence, moderate negligence, no negligence). A high degree of negligence is

assigned when the operator was in a position to be aware of the condition that contributed to a

dangerous situation and there were no mitigating circumstances, or if there are unique aggravating

circumstances associated with the violation, such as repeated past violations of the same standard

at the mine. We create a dummy equal to one for “High Negligence” violations to capture those

for which fault most clearly lies (at least partially) with the operator, as opposed to the worker.14

14We would in principle add “reckless” violations to high-negligence violations to capture those for which the
employer is unambiguously at fault. However, reckless violations are exceedingly rare (making up 0.1 percent of all
violations), so for clarity we omit this category from our analysis.
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We collapse the Violations data down to the inspection level to create the number of total and

various categories of violations cited in an inspection, which we merge into the Inspection dataset

via the event number. We keep only Regular inspections; the reason we do so is that we seek to

have a measure of mines’ compliance with safety regulations that is independent of their safety

and health performance. Restricting to Regular Inspections only, we then collapse the data to the

mine-quarter level, resulting in measures of the number of Regular inspections, and the number of

various categories of violations cited at regular inspections, for each mine-quarter, which we merge

into our master dataset by Mine ID/quarter.

Table 2 presents summary statistics on variables representing our primary outcome variables

among the mines for which we have price data.15 Figure 2 illustrates where the mines in our

sample are located: each U.S. county is assigned a color corresponding to the number of mines in

our sample located in that county.

5 Empirical Results

5.1 Effects of Price Shocks on the Extensive and Intensive Margin of Production

We first test the effects of price shocks on the extensive margin of production. To do so, we model

the number of mines that are in operation (Active) that mine commodity j in quarter t the following

way:

log(Active)jt = β1 ∗ log(price)jt−1 + γj + θy(t) + λq(t) + εjt, (8)

where the log of the number of active mines is a function of the log of the global price of commodity

j, lagged one quarter (log(price)jt−1), reflecting the mine’s marginal value of production.16 γj

captures any time-invariant features specific to mines in a particular commodity (e.g. the number

of deposits of gold in the U.S. differs from the number of deposits of nickel) that could affect Y , and

θ and λ capture any year- or quarter-specific common shocks that affect all commodities equally.

ε is an i.i.d. error term.

15We provide summary statistics for additional variables, discussed later in the text, in Table B.1.
16We include price lagged one quarter, rather than contemporaneous price, for the following reason: for most price

series in our data, the price in quarter t reflects the price at the end of the quarter, whereas our dependent variables
(employment, injuries, etc) each reflect activity over the entire quarter, thus Yt measures outcomes that potentially
took place before Pricet is realized.
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We estimate Equation 8 with a difference estimator to remove the unobserved commodity fixed

effect γ:17

∆log(Active)jt = β1 ∗∆log(price)jt−1 + ∆θy(t) + ∆λq(t) + ∆εjt, (9)

where ∆Yjt = Yjt − Yjt−τ . In many instances, τ = 1, so that ∆ indicates a one-quarter difference.

However, we instead use τ = 4, so that ∆ indicates a four-quarter difference. We do this primarily

to remove seasonality effects. More mines may be active in the summer months than the fall

or spring months due to temperature and other factors; using a 4-quarter difference holds such

seasonality effects constant. We weight observations by the number of mines actively producing

commodity j four quarters prior (in t− 4).

Because our key explanatory variable, Price, varies at the commodity level, it is appropriate

to cluster our standard errors to allow for arbitrary correlation within commodities. As detailed

in Abadie et al. (2017), clustering is appropriate when assignment to “treatment” is correlated

within clusters. Here our “treatment” is a mine’s quarterly commodity price. In a given quarter,

all mines producing the same commodity have the same treatment, highlighting the need to cluster

standard errors by commodity-quarter. Clustering more conservatively by commodity would be

appropriate if “treatment” is correlated within commodities over time. If our treatment were at

the level of commodity price, this would indeed be the case: the price of gold in spring 2005 is

correlated with the price of gold in fall 2008. However, our specification is in first differences; the

appropriate question is then whether the change in gold price spring 2004-spring 2005 is correlated

with the change in gold pries fall 2007-fall 2008. If prices are a random walk, then this correlation

will be zero. Indeed, in our 1983-2016 sample period, essentially none of the overall variance in

∆log(price)jt−1 is driven by within-commodity variance. Given this lack of correlation in price

changes within commodities over time, we conclude that commodity-quarter is the appropriate

level at which to cluster our standard errors.18

Our estimates of the effects of price changes on mine entry and exit are shown in Columns 1

and 2 of Table 4. Column 1 reveals that a one-quarter lagged 1% increase in price leads to a 0.09%

increase in the number of mines actively producing (p < .01). Column 2 includes one-, two-, three-,

17Another approach to estimate Equation 8 would be with a fixed effects estimator. Our point estimates are very
similar under either specification as shown below among our robustness results in Table 7.

18In robustness checks that we report below, we show that instead clustering by commodity yields very similar
standard errors.
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and four-quarter lags. The sum of these lags, representing the total effect of recent price changes

on the number of active mines, is 0.17 (p < .01). Positive price shocks, in other words, lead mines

to increase production at the extensive margin.

To investigate the effects of price shocks on the intensive margin of production, we estimate a

similar regression to Equation 8 but at the mine level, rather than the commodity level:

log(Y )ijt = β1 ∗ log(price)jt−1 + γi + θy(t) + λq(t) + εijt. (10)

The variable Y reflects inputs into production, which we operationalize as total number of workers

or total hours worked.19 Here, γi captures any time-invariant features specific to a particular mine

(geology, capital configurations, management culture, etc) that could affect Y . As above, θ and λ

capture any year- or quarter-specific common shocks that affect all mines. ε is an i.i.d. error term.

As above, we estimate Equation 10 with a difference estimator:

∆log(Y )ijt = β1 ∗∆log(price)jt−1 + ∆θy(t) + ∆λq(t) + ∆εijt. (11)

By the same argument as above, we adjust standard errors to account for identical “treatment”

within commodity-quarters. Since we also now include multiple observations for a given mine, we

use two-way clustering by mine and commodity-quarter in all regressions at the mine-level and for

which its own price is the key explanatory variable.

Columns 3-6 of Table 4 provides the results. A one-quarter lagged 1% price increase leads to a

0.23% increase in employment (p < .01), implying that the price elasticity of employment for the

typical mine is 0.23. The point estimate in Column 4 implies a price elasticity of total hours worked

of 0.33, suggesting that mines respond to price changes both by adjusting the number of workers,

as well as the hours per worker. Including the four most recent lags (Columns 5-6) reveals an

overall effect of recent price changes (given by the sum of the four lags) that for both employment

and hours is roughly 50% larger in magnitude than the 1-quarter lagged price change alone. To

ease exposition, the remainder of our results include only the log price change in the most recent

19To accommodate zeroes, we add the first percentile (> 0) before taking logs. Our results are insensitive to
dropping observations with zero employment, as well as using the Inverse Hyperbolic Sine transformation instead of
logs.
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quarter.

While not the primary motivation of our paper, we note that our results on the price elasticity

of employment provide a novel contribution to the extensive literature on labor demand. While

classical labor demand theory highlights how labor demand is “derived demand” based on firms’

product demand, we are unaware of any prior estimates of firms’ output price elasticity of employ-

ment. This finding is related to other studies investigating how variation in rents from production

affects labor demand (Kline et al., 2018), as well as changes in firms’ product demand affects hiring

(Garin and Silverio, 2017).

5.2 Effects of Price Shocks on Workplace Safety

Before estimating the causal effect of demand shocks on mines’ rate of workplace injuries and

illnesses, we first turn to the data to assess this relationship visually. Figure 3 plots the time series

relationship between the quarterly price of various commodities in our sample and the mean number

of injuries experienced among mines that produce them. To remove underlying time trends or

shocks common to all commodities, we de-trend each variable by plotting the residual from separate

regressions of a) quarterly commodity price, b) the number of accidents a mine experienced in a

quarter, on year and quarter fixed effects. We also omit the years 2006-2015 since the boom and

bust in commodity prices during these years skews the figures.

Figure 3 shows the four most common commodities in our sample: Copper, Silver, Gold, and

Uranium. Two takeaways emerge from these figures. First, each of the four commodities exhibits

different patterns in price series over time, highlighting the identifying variation in our data. Second,

for each of the commodities there appears to be a positive relationship between changes in price

and changes in the number of accidents experienced in its mines.

To statistically investigate the effects of price shocks on workplace safety and health outcomes,

we estimate the regression corresponding to Equation 11 with dependent variables related to in-

juries. Results are shown in Table 5. In Column 1, the dependent variable is the log of the number

of injuries and illnesses a mine experienced in a quarter.20 A one-quarter lagged 1% increase in

price leads a mine to experience 0.14% more injuries and illnesses (p < .01), implying that the price

20To accommodate zeroes, we add the first percentile (> 0) of each variable prior to logging it. We obtain essentially
identical results if we instead use a Poisson specification or the inverse hyperbolic sine transformation to accommodate
zeroes (reported in robustness checks below).
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elasticity of injuries is 0.14.21

Of course, an increase in the number of injuries may reflect an increase in the risk that a given

worker is injured at any given time, but it could also just reflect the increase in the number of

hours worked (because an additional hour worked increases the chance an injury will occur). To

isolate the former, Column 2 considers the effect of a price shock on the log number of injuries per

100 full time workers.22 A one-quarter lagged 1% price increase leads to a 0.15% increase in the

log injury rate(p < .01), revealing that the increase in the number of injuries is not purely driven

by the increase in hours.

These results imply that increases in output prices lead to a substantial increase in workers’ risk

of injury. However, another possibility is that price changes may affect workers’ incentive to report

injuries (Boone et al., 2011), rather than the actual occurrence of injuries. If workers perceive they

are more likely to be fired after reporting an injury, they may be less willing to report an injury

when the firm’s output price is low (when the chance of being fired is higher), and more willing to

report an injury when price is high. Thus, variation in reported injuries could reflect variation in

reporting behavior, rather than the occurrence of true injuries.

To investigate whether the increase in injuries we observe in Columns 1 and 2 is driven by

changes in reporting behavior, Columns 3 and 4 display results for types of injuries that are least

likely to be subject to mis-reporting (Table B.1 provides descriptive statistics for these outcomes).

In Column 3, the dependent variable is the number of traumatic injuries, which prior research has

determined to typically be accurately reported (Morantz, 2013).23 The outcome in Column 4 is the

number of injuries that are “severe” (where we define a “severe” injury as one that is fatal, results in

a permanent disability, or results in days away from work), which constitute 38% of overall injuries

in our sample. Prior research has shown that less-serious injuries are most prone to reporting bias

(Biddle and Roberts, 2003; Boden et al., 2010), whereas the most serious injuries (such as death

or permanent disability) are always reported.

21We obtain essentially identical estimates if we instead use the number of incidents leading to any injuries or
illnesses, rather than the actual count of such injuries and illnesses.

22We calculate the number of full time workers as the number of hours worked divided by 500 (the number of hours
a worker working 40 hours per week would work in a quarter), adding the first non-zero percentile of hours to the
denominator to smooth out effects from small outliers.

23Because traumatic injuries are sustained by a worker due to a discrete event at work, its work-relatedness is
rarely in dispute, such that workers are less likely to under-report them. We follow the rules used in Morantz (2013)
to characterize injuries that are traumatic based on the nature of the injury.
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Columns 3 and 4 of Table 5 reveal a price shock leads to an increase in both of these categories of

injuries, suggesting the relationship between prices and injuries is not purely a function of changes

in workers’ reporting behavior.

Because the MSHA data include rich information about the details of each injury, including

the specific circumstance or incident that caused it, as well as the source of the injury (e.g. the

object, substance, or bodily motion that produced it), we can investigate whether price shocks

affect particular types of injuries. For example, as workers work longer hours, their risk of injury

could increases due to over-work, exhaustion and over-exertion (Halbesleben, 2010). Alternatively,

mine owners may be less willing to replace old equipment or halt production for maintenance of

machinery when prices are high, so that high prices could lead to an increase in injuries involving

contact with machinery. If high prices lead to an increase in overall activity, this could increase the

likelihood that a worker is struck by a moving, falling, or flying object.

Table B.2 investigates how price shocks affects injuries driven by various circumstances or

objects. We consider four of the most frequent circumstances that lead to injuries in the MSHA

data—a) worker over-exertion, b) “struck-by” injuries (i.e. a worker being struck by a moving

object), c) injuries caused by contact with machinery, and d) injuries resulting from a worker

falling. The table reveals that all four of these types of injuries increase following a positive price

shock. One implication of this table’s results is that the injuries that are affected by demand

conditions are not purely due to workers working longer hours, or excess workers leading to over-

crowding of the work space and making injuries more likely. Rather, injuries such as those resulting

from a worker falling, or from contact with machinery, likely arise due to lack of precaution, proper

equipment, proper maintenance, or training that reflect general investments in safety.

In summary, these results indicate that advantageous demand conditions lead to a substantial

increase in workers’ risk of injury, that this relationship reflect a real deterioration in workplace

safety rather than changes in reporting behavior, and that the effects are not confined to a narrow

class or source of injuries.

5.2.1 The Role of Changing Worker Composition

Given the theoretical framework in Section 2, the results above imply that the “opportunity cost”

effect of demand shocks on workplace safety outweigh their “income,” or liquidity, effect of easing
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financial constraints on safety investments. However, there are other reasons outside of our model

that price shocks could affect mines’ injury rates. We assess these alternative explanations in this

section.

One potential channel besides the two our model emphasizes is that price shocks might affect the

composition of a mine’s workers. The likelihood of an occupational injury decreases with worker

tenure and experience (Breslin and Smith, 2006; Bena et al., 2013), and if firms increase hiring

in booms then the average tenure of their workforce would decline as price rises. Thus, a firm

may experience more injuries during advantageous demand conditions purely because it has more

inexperienced workers. An additional channel is that mines may hire independent contractors to

work on a short-term basis during times of high prices. Contractor workers may be more prone to

injury (Buessing and Boden, 2016).24

Table 6 investigates the role of changes in worker composition. We leverage details that mines

must report for each injury that occurs in a quarter, such as the injured worker’s tenure with the

mine, the worker’s experience in the mining industry, as well as whether the incident that led to

the injury involved a contract worker.

Column 1 reproduces the baseline result on log of the number of overall injuries for reference.

Columns 2-4 report the effects on the number of injuries among workers with less than 6 months

experience at the mine, among those with more than 6 months experience, and among those whose

experience is not reported in the MSHA data.25 The results reveal that the number of injuries

among workers with less than 6 months of tenure increase by 15% (p < .01), consistent with the

proportion of such workers increasing following a price shock. However, injuries among workers

with more than 6 months of tenure, or with their tenure not recorded, also increase by roughly

5% each. Columns 5–7 report the effects on injuries by worker experience in the mining industry,

considering injuries among workers with less than 3 years of industry experience (roughly the 25th

percentile among all injuries in our data), more than 3 years, and with reported experience missing.

24Additionally, while injuries involving contractors show up in our injury data, our data on annual mine employment
do not include use of contract labor; if a large portion of injuries involve contractors then our measure of injury rate
would be too high since the denominator is too small.

25We choose 6 months as a cutpoint to differentiate workers immediately hired from those with longer tenure.
Among all injuries that occurred in the mines in our sample, roughly 22 percent of them involved workers with less
than 6 months’ mine tenure. As a point of reference, our analysis of the CPS Job Tenure Supplements (Flood et al.,
2018) for the years 1996–2016 (which comprise roughly two-thirds of our sample period) indicates that the median
worker in the overall mining industry had 4 years of tenure at his or her current mine.
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Again, the coefficient is largest for injuries among workers with the lowest experience in Column

5 (0.135, p < .01), but is also positive and statistically significant for workers with more than 3

years of industry experience (0.056, p = .01) or experience missing (0.049, p < .01). These results

show that the overall increase in injuries is not solely an artifact of injuries among inexperienced

workers.

Columns 8–9 use as the dependent variable the number of incidents that do and do not involve an

independent contractor. Both types of incidents yield similar results, suggesting that any changing

use of contract labor does not fully explain our results.

In short, our results suggest that price shocks have a statistically significant and economically

meaningful effect on the rate of workplace injuries, and that this effect is not purely driven by

changes to the composition of the workforce, or changes in workers’ reporting incentives.

5.3 Robustness Tests

Table 7 reports various tests to assess the robustness of our main results. Column 1 reports our

baseline estimate of the effect of price shocks on the number of injuries experienced in a mine.

In Column 2, we take a more conservative approach to inference and cluster our standard errors

by commodity, rather than two-way clustering by commodity-quarter and mine. Because we have

only 16 commodities, the asymptotic properties of traditional cluster-robust errors are unlikely to

hold. Thus, we use the wild bootstrap procedure from Cameron et al. (2008). We report the 95%

confidence interval in the table, as the wild bootstrap method does not report exact standard errors.

The p-value from this method is essentially identical to our baseline method, consistent with the

idea that price shocks within commodities over time are uncorrelated.

A small fraction of mines in our sample produce more than one commodity; such mines might be

sensitive not only to their primary commodity (which we use in our baseline specification), but also

to their secondary commodity. In Column 3, we drop the 7.6% of mines (and 14% of observations)

pertaining to a mine that produces more than one commodity. The coefficient is slightly larger for

this subsample (0.141, p < .01), but essentially unchanged.26

Columns 4-7 assess the sensitivity of our estimates to our chosen functional form. In Column

26In unreported results, we also estimated our model on the entire sample, but assigned the multi-commodity mines
the price of their secondary commodity. The coefficient attenuated slightly to 0.11 (unsurprising, if the secondary
commodity is less important to a mine’s profitability), but remains highly significant (p < .01).
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4, we include year-by-quarter fixed effects, rather than separate year and quarter fixed effects. In

Column 5, we use the Inverse Hyperbolic Sine (IHS) transformation, rather than log, to transform

our dependent variable. The IHS is increasingly seen as an alternative to the log transformation

in the presence of zero values (Bellemare and Wichman, 2018). In Column 6, we use an OLS

fixed effects specification, akin to Equation 10 instead of first-difference. In Column 7, we use

a conditional fixed effects Poisson regression; because # Injuries is a count variable, a Poisson

regression is in theory a more appropriate specification. In each case, the estimate of the effect of

the price remains essentially unchanged.

While most of our estimates thus far use the commodity price from the most recent quarter

as the key explanatory variable, including the effects of leading prices, as well as more distant

lags, is informative about the reliability of our results. Leading prices (commodity prices in future

quarters) should have zero effect on mines’ decision-making today; if we found an effect of leading

price, we would be worried we are picking up a spurious effect.

Estimating the effects of earlier lags is also informative. Conditional on current price, price

from earlier years should have little effect on injuries today. In theory, we might even expect

past prices to have an opposite-signed effect on today’s injuries, compared to today’s price. For

example, if high prices in the past relaxed financial constraints and led a mine to increase safety

investments, the positive effects of these investments on safety could persist to present day, whereas

the substitution effect (prices affecting the opportunity cost of spending on safety) has passed.

Figure 4 displays coefficients and confidence intervals from an amended version of Equation

11 that includes price lagged 1, 5, and 9 quarters, as well as price leading 1, 5, and 9 quarters.

Encouragingly, all leads are basically zero, as are the early lags. The coefficient on price lagged one

quarter (0.15, p < .01) is very similar to the coefficient obtained without including the leads and

earlier lags.

5.4 Price Shocks and Compliance with Safety and Health Regulations

The results reported in the previous section provide consistent evidence that changes in output

prices affect the number and rate of injuries and illnesses that workers experience. This evidence

suggests that demand shocks affect mines’ opportunity cost of spending resources on worker safety.

One way to measure mines’ investment in and monitoring of safety is their compliance with safety
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and health regulatory standards. In this section, we investigate whether changes in mines’ output

price affects their compliance with MSHA regulations.

To measure compliance with MSHA regulations, we use violations of MSHA safety and health

standards cited in inspections of a mine throughout the quarter. We restrict to violations observed

in “Regular” MSHA inspections, which are routine inspections that MSHA is required to regularly

conduct of all operating mines. Restricting to such inspections ensures that we do not run the risk

of selection bias that can arise from using outcomes observed conditional on an endogenous event

that would trigger other types of inspections. Under MSHA rules, each mine is supposed to get a

routine inspection at least once a year. However, the exact timing of these inspections may vary

year to year. Some years, a mine may be inspected in Q1, other years in Q3, etc. This erratic

timing means that our first-difference specification will lose data, since we do not always observe

violations 4 quarters apart.

To address this issue, we use a “pseudo” first-difference specification, in which the dependent

variable is

Average(V iolst−1, V iolst, V iolst+1)−Average(V iolst−5, V iolst−4, V iolst−3),

where Average(V iolst−1, V iolst, V iolst+1) is the mean number of violations found during inspec-

tions conducted during quarters t− 1, t, and t+ 1. We measure Price analogously.27

Table 8 displays the estimated effect on compliance.28 The estimate in Column (1) implies that

a 1% increase in a mine’s commodity price leads to 0.13% more violations of MSHA regulations

detected during routine MSHA inspections (p < .01). This estimate is consistent with the idea

that higher output prices raise the opportunity cost of inputs into worker safety. However, in

theory compliance with safety regulations can reflect the priorities and decisions of both managers

and workers, as well as various extenuating circumstances. To isolate violations that reflect willful

managerial decisions, Column (2) uses the number of violations the MSHA inspector deems to be

“high negligence.” According to MSHA documentation, “A high degree of negligence is assigned

27We obtain essentially identical point estimates, but with reduced sample size and precision, when we use an
unadjusted first-difference specification.

28Note that the footer of Table 8 indicates that our regressions have 29,359 observations, even though Table 2
indicated that we have 21,480 observations with non-missing values of violations. This discrepancy arises because of
the approach we take to use violations averaged across quarters, described in the preceding paragraph, which expands
the number of observations we have for this analysis.
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when the operator was in a position to be aware of the condition that contributed to a dangerous

situation and there were no mitigating circumstances.”29 The estimate reported in Column (2)

implies that a 1% price increase leads to a 6% increase in High-Negligence Violations, suggesting

that variation in output prices shifts managerial priorities. Overall, these findings further indicate

that mines invest less in safety when experiencing positive demand shocks.

5.5 Heterogeneous Responses at Surface vs Underground Mines

We have noted important differences between surface and underground mines that may differentially

affect their responsiveness to demand shocks. As discussed in section 3.3, surface mines face limits

on their ability to expand output while underground have more flexibility to do so. Moreover,

the marginal unit of production is likely more risky at underground mines than surface mines, for

example due to unstable ground control conditions more salient underground. Thus, we not only

anticipate that underground mines will be more responsive to price shocks than surface mines, but

that these responses will be associated with higher rates of injuries and illnesses. In this section

we test for such heterogeneity, given that it is a direct prediction of our model and features of the

industry.

Table 9 presents results on the effects of price shocks on employment, hours, injuries, and

violations, in which we also include an interaction between the price shock measure and a binary

indicator equal to one if the mine is underground. Thus, we interpret the coefficient on the main

effect of price shock as the impact on surface mines while the coefficient on the interaction term is

the difference in the response between underground and surface mines.

The findings in Table 9 are consistent with the predictions discussed above. As shown in column

(1), in spite of the pit limits, we find that employment in surface mines responds significantly to

demand shocks. However, employment is twice as responsive at underground mines to a shock

of the same magnitude and this difference in the response is statistically significant. We find

that hours worked also are more responsive at underground mines (Column (2)) by roughly the

same magnitude, although the difference is only marginally significant. Also consistent with our

discussion that underground mines face riskier marginal units of production than do surface mines,

in column (3) of Table 9 we find a larger increase in injuries and illnesses at underground mines

29MSHA data dictionary, available at the link in Footnote 12
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relative to surface mines although this differences is marginally significant. As shown in the final

column of the Table, we are unable reject that null hypothesis that safety violations respond the

same across the two types of mines although the point estimates is somewhat larger for underground

mines.

6 Isolating the Effects of Financial Resources on Safety

The framework in Section 2 illustrates how a price change has two offsetting effects on workplace

injuries, on one hand increasing injuries (raising the opportunity cost of safety investments like

training that crowd out production), and on the other hand decreasing injuries (by relaxing fi-

nancial constraints that otherwise limit valuable safety investments). Our results above imply

that the former channel dominates. However, these results do not imply that cash flow and other

financial constraints are unimportant to firms’ safety and health outcomes. Indeed, Cohn and

Wardlaw (2016) find that financially constrained firms have significantly higher injury rates, and

Rose (1990a) and Asfaw et al. (2013) find that firms’ accidents and injuries decrease when they are

more profitable. Positive price shocks could be relaxing these constraints, but this effect may just

be outweighed by the opportunity cost channel. To gauge the extent to which cash flow constraints

limit firms’ safety and health investments, and whether price shocks relax them, we need a situation

in which changes in commodity prices affect mines’ cash flow without affecting their opportunity

cost of safety.

To identify such a situation, we rely on mines’ internal corporate networks. Cash flow shocks

to one establishment in a multi-unit firm often get transferred to other establishments within the

firm via the corporate parent (Williamson, 1975; Giroud and Mueller, 2017); in this spirit, prior

research has shown investment by establishments owned by a corporate parent that also owns an oil

and gas company declined when oil prices decreased dramatically in 1986 (Lamont, 1997). Building

from this logic, Cohn and Wardlaw (2016) find that injury rates in establishments with a corporate

sibling in oil and gas are sensitive to oil prices.

Applying the insight from this prior research, we examine how a mine’s injury rate is affected by

price shocks to commodities produced by other mines owned by its corporate parent (its “corporate

siblings”). For example, consider a gold mine that is owned by a corporate parent that also owns
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a silver mine. If the price of silver increases, this provides the gold mine, via its internal corporate

network, a positive cash flow shock. As illustrated in our model in Section 2, a “pure” cash flow

shock like this has no effect on the mine’s opportunity cost of safety inputs. Thus, holding own

price constant, a mine’s injury rate should unambiguously should go down following a positive price

shock to commodities produced by its corporate siblings.30

To test this hypothesis, we restrict the sample to mines that are part of multi-unit firms. 70%

of the observations (and 60% of the mines) in our sample are in multi-unit firms, and just under

half of these are in firms that own a mine that produces a different commodity for which we have

price data. We estimate the following equation:

∆log(InjuryRate)i,t = β1 ∗∆log(price)k,t−1 +β2
∑
l 6=k

ωj,k,l∆log(price)l,t−1 + ∆θy(t) + ∆λq(t) + ∆εikt

Here, β1 estimates, for mine i that produces commodity k the effect of an own-price shock on a

mine’s log injury rate in quarter t, comparable to the results reported previously. The new term∑
l 6=k ωj,k,l∆log(price)l,t−1 is a weighted average percentage change in prices of other commodities

(l 6= k). The weight ω given to commodity l for mine i that produces commodity k and which is

part of firm j corresponds to the employment-weighted share of a mine i’s corporate siblings that

produce commodity l:

ωj,k,l =
Empj,l∑
mEmpj,m

,

where the denominator is summed over the total employment from all commodities m produced

by firm j’s internal corporate network. Consider a mine that produces commodity k and that is

owned by corporate parent j. If j owns no other mines that produce commodity l, then commodity

l gets zero weight. If its parent j does own at least one other mine that produces l, then l is given

positive weight, and this weight increases when the firm’s total employment in mines producing l is

larger as a share of its total employment.31 Given this structure, β2 estimates the effect of changes

in price of commodities produced by a mine’s corporate siblings, isolating a shock to a mine’s cash

30Note that, following a price shock at one of its establishments, firms could shift safety-relevant resources other than
cash to its corporate siblings. For example, firms might move its environmental health and safety (EHS) managers
from the establishment experiencing the price shock to siblings, reflecting relative changes in the opportunity cost of
safety inputs. This process is fully consistent with the broader appeal to cash-flow outlined in our model.

31This specification is similar to Giroud and Mueller (2017), who study how establishments’ employment is affected
by changes in house prices in zipcodes where its corporate siblings are located during the Great Recession.
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flow that holds constant its opportunity cost of safety inputs.32 Standard errors are clustered by

firm.

We report results in Table 10. Column 1 reproduces the estimates of the own-price elasticity of

a mine’s injuries (the percent change in its injury count following a one percent change in the price

of the commodity it produces) for the set of mines in our main analysis sample.33 In Column 2, we

restrict the sample to mines with at least one corporate sibling that produces a different commodity

for which we have price data: we lose roughly 75% of our observations, but the estimated elasticity

stays qualitatively similar (0.118) and is highly significant (p < .01). In Column 3, we add in the

corporate sibling-weighted average price change. First, the own-price elasticity remains unchanged.

Second, the coefficient on the corporate sibling average price change implies that a one percent

increase in the weighted-average price of commodities produced by a mine’s siblings leads to a

0.021 percent decline in its injury rate (p < .01).

The estimate in Column 3 is consistent with price shocks affecting cash flow constraints on

investments in worker safety, holding constant their effect on opportunity costs. However, this

estimate could in theory be muddied if firms shift workers across mines facing differential demand

shocks. In Column 4, we address this concern by calculating the average price of a mine’s corporate

siblings located in different counties, since firms would be less likely to transfer workers across mines

located further away.34 The estimate is very similar and, if anything, slightly larger in magnitude

(−0.023, p ≤ .01).

Another concern behind the estimates in Columns 3 and 4 is that variation in the prices of

commodities produced by a mine’s corporate siblings could reflect how a mine’s behavior changes

in response to demand for substitutable products, rather than any effect they might have on its

cash flow. To ensure that such confounding effects are not driving the relationship we observe in

Column 3, in Columns 5 and 6 we instead include the log price of a randomly selected commodity

that is not produced by any mine in a mine’s firm. Reassuringly, whether we use our restricted

32While ideally we would have a measure of sibling or corporate cash flow to include in the regression, in its place
we use the sibling weighted average price measure as a proxy variable. Assuming that this sibling price measure is
positively correlated with unobserved sibling cash flow, β2 will have the same sign in this regression as it would if
sibling cash flow were directly included.

33For internal consistency in this table, this specification in Column 1 clusters standard errors by firm, rather than
by mine as done in previous specifications. We note that the standard error is essentially unchanged.

34Of the mines that are in firms that also own a different-commodity mine in the same quarter, roughly 9 percent
have no different-commodity corporate siblings in a different county. These observations thus do not account for any
of the variation in Column 4.
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sample of mines with a corporate sibling that produces a different commodity (Column 5) or the

entire sample (Column 6), the estimate on this term is essentially equal to zero and nowhere near

statistically significant.

Because we hypothesize that changes in a mine’s siblings’ price affects its cash flow, and thus

its ability to make investments, one might expect the resulting effect on safety to take longer

than one quarter to materialize. This lag could arise because investments in capital equipment,

e.g. modernizing kilns, updating machinery, could take several months to materialize. At the

same time, other arguments suggest relaxing financial constraints could have immediate effects on

safety. Some safety-enhancing equipment is straightforward and fast to install; for example, mines

can reduce injury risk by replacing steel cables used for hoisting objects with (more expensive)

synthetic fiber cables by decreasing recoil (Cohn and Wardlaw, 2016); such equipment could likely

be replaced relatively quickly. We examine the effects of more distant lags in siblings’ prices in

Figure B.3, where we report regression results from a variant on Equation 12 that includes four

quarters of lags in the own- and sibling-price changes, rather than just the most recent quarter.

The point estimate on the one-quarter lag remains negative and statistically significant and nearly

identical in magnitude to our estimate from the main specification in Column 3 of Table 10. The

coefficients on the two-, three-, and four-quarter lags are statistically indistinguishable from, and

very close to, zero. In other words, the effect of changes in siblings’ price on a mine’s injuries takes

no more than a few months to materialize.

We conduct one final, indirect test to isolate the relative contribution of the “opportunity

cost” and “liquidity constraint” channel in driving the relationship we observe between mines’

output prices and safety performance. Simply put, the less financially constrained a firm is, the

less important the “liquidity constraint” channel is. That is, our model predicts that the less

financially constrained a firm is, the more an increase in its own price should increase its injury

rates, since the price increase produces no countervailing safety-enhancing easing of liquidity.

While we lack a direct measure of mines’ financial constraints, our results just reported imply

one: whether a mine is part of a multi-unit firm. As described by Giroud and Mueller (2017),

Williamson (1975), and our results just reported, mines that are part of multi-unit firms have a

cash-flow source unavailable to single-unit firms, namely cash flow shocks affecting their corporate

siblings. Because mines part of multi-unit firms would thus tend to be less liquidity constrained
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than single-unit mines, we would expect their own-price increase to lead to a larger increase in

injuries than single-unit mines.35

We examine this hypothesis in Column 7 of Table 10. We report the estimate from a modification

of Equation 11 in which we include an interaction of the mine’s one-quarter lagged price change with

an indicator equal to one if it belongs to a multi-unit firm.36 The main effect on ∆ ln(Pricejt−1)

indicates that a 1% own-price increase leads to a 0.074% increase in the injury rate among mines

that are standalone (not multi-unit) firms (p = 0.077). The interaction term reveals that an

identical own-price increase leads to an additional 0.09% increase (p = 0.058) in the injury rate

among mines part of multi-unit firms (for a combined effect of 0.164%, p < .01). In other words,

while an own-price increase leads to worse safety outcomes for both sets of firms, indicating the

general dominance of the opportunity cost channel, its magnitude is twice as large for those firms

less likely to have the countervailing benefit of the easing of liquidity constraints.

Given this evidence that the own-price safety effect is stronger in multi-unit firms, a natural

question might be how the sibling- price effect differs in big versus small (multi-unit) firms. On one

hand, bigger multi-unit firms (i.e. those with more individual mines in their corporate network)

might have easier access to external capital than smaller multi-unit firms; if true, an individual

mine’s financial condition (and thus worker safety) that is part of a large firm would be less sensitive

to sibling cash flow shocks. However, most evidence does not support this story: except for the

very youngest firms, the relationship between firm size and financial constraints is essentially flat

(Hadlock and Pierce, 2010). Furthermore, other reasoning suggests the opposite relationship could

hold: larger firms tend to have better management practices (Bloom et al., 2019), and thus might

be more likely to adopt consistent internal cash flow networks than smaller firms. Thus, it is not

obvious how firm size would influence the sibling-price effect on safety. In Table B.3, we report

results from a regression that adopts Equation 12, but that includes interactions of log(price)k,t−1

and ∆Average log(price), corporate siblingsjt−1 with a dummy variable equal to one if a mine has

six or more corporate sibling (the number of siblings for the median mine in our sample). Column

1 reports our baseline estimates of the own- and sibling-price effects (corresponding to Column

3 of Table 10). Column 2 reveals weak evidence that the own-price effect is larger for mines in

35By similar logic, an own-price increase would be less of a boon to cash flow for a mine part of a multi-unit firm
than a single-unit mine, since the corporate parent would transfer some of the cash flow to corporate siblings.

36Sixty percent of the observations in our sample pertain to mines that belong to multi-unit firms.
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larger multi-unit firms (the interaction term of log(price)k,t−1 with Has at least 6 corporate siblings

is positive but insignificant) and some evidence that the sibling-price effect is more pronounced

in larger firms (the interaction term of ∆Average log(price), corporate siblingsjt−1 is negative and

marginally significant (p = .062)). Given the theoretical ambiguity of the role of firm size in these

relationships, we interpret these estimates with caution.

These results corroborate the predictions of our model: while a price shock has a theoretically

ambiguous effect on worker safety, positive shocks to cash flow unambiguously lead to improved

safety outcomes. Furthermore, they reconcile our earlier findings with prior literature that has

highlighted how establishments’ safety investments are limited by the financial resources at their

disposal. Changes in the demand for an establishment’s product is an important driver of its

financial resources, and the results in this section illustrate that positive demand shocks do lower

injuries, via their effect on cash flow. However, this effect is clearly dominated by the effect of

demand shocks on the opportunity cost of safety inputs. Financial constraints very likely limit

firms’ investments in safety inputs, but factors that alleviate these constraints may also reduce

firms’ incentives to make these investments. While overlooked in prior literature, this latter effect

can have an economically meaningful effect on workplace injuries and illnesses.

7 Conclusion

We examine how output demand shocks affect employers’ provision of safety. Economic theory

yields an ambiguous prediction regarding this relationship: on the one hand, a positive demand

shock will lower safety due to the opportunity cost regarding increased production while on the

other hand such a shock can loosen credit constraints and generate increased investment in safety.

Focusing on the US metals mining sector and using short-term variation in global commodity

prices as a measure of demand shocks, we find that injuries and illnesses and safety regulation

noncompliance all increase when mines experience positive demand shocks. These results indicate

that, on net, the opportunity cost channel dominates the response of safety provision to demand

shocks. However, leveraging mines’ internal corporate networks, we find that greater financial

resources do improve safety, holding opportunity costs constant.

Ensuring safe and healthy working conditions requires investments by firms in both financial
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resources and time. A growing literature finds that firms face real constraints in making these

investments, i.e. that limited cash flow and other financial frictions increase the prevalence of

workplace injuries and illnesses. Another well-established literature, exemplified by Ruhm (2000),

reveals that workplace injury rates tend to be higher in economic booms—which is precisely the

time when firms’ cash flow constraints are least likely to be binding. Our findings reconcile these

seemingly contradictory literatures. One of the most salient factors that can relieve firms’ cash flow

constraints – increased demand for their product – also increase their opportunity costs of safety

investments. In our setting, we indeed find that cash flow constraints do impair safety investments.

However, the opportunity cost effect dominates, leading individual demand increases to raise injury

rates—just as macro-level economic booms do.

Our findings have several broad implications. First, they inform scholars’ understanding of how

firms respond to demand shocks. A long literature has investigated how firms adjust wages and

employment in response to idiosyncratic- and market-level demand shocks. Our results imply that

any conclusion that researchers draw from this relationship must account for the possibility that

workers’ safety is changing at the same time. Thus, for example, any indication that wages do

adjust to demand shocks, which could be interpreted as profit-sharing, may reflect compensating

differentials for changes in injury risk (Lee and Taylor, 2019). Alternatively, if wages do not adjust

to demand shocks, which could be interpreted as firms insuring workers against wage loss, may

miss the fact that overall compensation is in fact changing.

Our results also have implications for the design of workplace safety and health regulations.

Whereas the frequency of audit inspections and the severity of financial penalties is invariant to

firms’ economic position, it may be optimal for regulators to consider policies that vary the severity

of enforcement with the demand for firms output.
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8 Tables and Figures

Figure 1: Standardized Commodity Prices 1983-2015.
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Notes: The standardized price nets out the commodity-specific mean and is scaled by the commodity-specific
standard deviation. The figure includes 15 of the 16 commodities in our sample (Uranium-Vanadium is not
included).
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Figure 2: Location of Mines in our sample.
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Notes: The figure represents the number of mines in our sample period.
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Figure 3: The Time-Series Relationship Between Commodity Prices and the Number of
Workplace Injuries in Mines that Produce Them
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Notes: The figures plot de-trended time series of commodities’ quarterly price, and the average number of injuries
experienced in a quarter among mines that produce them, over the period 1983-2005 (we omit the years 2006-2014
due to the dramatic boom and bust in prices these years that would render these graphs difficult to interpret).
Price and injuries are de-trended by regressing the corresponding variable on year and quarter fixed effects, and
then keeping the residual. # Injuries is then calculated as the mean number of (de-trended) injuries among all
mines actively producing the commodity that quarter.
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Figure 4: Effects of Leading and Lagged Commodity Prices on Injury Rates
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Notes: The figure plots point estimate and 95% confidence intervals from an OLS regression akin to Equation 11,
but which also includes the specified leads and more distant lags of Price. The dependent variable is the log of the
mine’s quarterly injury rate.
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Table 1: Range of Price Data and Number of Mines for Each Commodity in our Sample

Price Series Range
Number of mines Source

Commodity First year Last year

Alumina 1983q1 2015q1 14 LME
Aluminum Ore-Bauxite 1983q1 2015q1 17 LME
Antimony Ore 2010q1 2015q1 1 Datastream
Cobalt Ore 2011q3 2013q1 1 Datastream
Copper Ore NEC 1983q1 2015q1 132 LME
Gold Ore 1983q3 2015q1 1,753 IMF
Iron Ore 1983q3 2015q1 103 IMF
Lead-Zinc Ore 1993q4 2015q1 31 LME
Molybdenum Ore 1987q1 2015q1 12 LME
Nickel Ore 1984q1 2015q1 3 LME
Platinum Group Ore 1983q1 2015q1 7 Datastream
Silver Ore 1983q1 2015q1 250 Datastream
Tin Ore 1983q1 1998q2 2 LME
Uranium Ore 1983q1 2015q1 167 IMF
Uranium-Vanadium Ore 1983q1 2012q2 49 IMF
Zinc 1983q1 2015q1 9 LME

Notes: Price data are as described in text. Sources: LME = London Metals Exchange;
IMF = IMF Primary Commodity Price Database.
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Table 2: Summary Statistics on Main Dependent Variables

Variable N Mean Std. Dev.

Average employment 37,379 128.13 259.78
Total working hours 37,379 66,737.79 135,898.46
Number of routine inspections this quarter 37,379 0.50 0.53
Total number of injuries this quarter 37,379 1.85 3.83
Injury rate (number of injuries per 100 full-time workers) 37,379 1.92 8.82
Total number of violations this quarter 18,176 7.71 13.79

Notes: All variables are top-coded at the 99th percentile. See text for details on how variables
are constructed.
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Table 4: Price Shocks and Mine Production at the Extensive and Intensive Margin

(1) (2) (3) (4) (5) (6)
Dep Var = ∆ log of:

# Active Mines # Employees Total Working Hours

∆ log(Price)jt−1 0.090*** 0.049* 0.238*** 0.140*** 0.328*** 0.227***
(0.018) (0.026) (0.042) (0.044) (0.071) (0.086)

∆ log(Price)jt−2 0.020 0.063 -0.000
(0.037) (0.047) (0.088)

∆ log(Price)jt−3 0.022 0.080** 0.118
(0.037) (0.039) (0.078)

∆ log(Price)jt−4 0.087*** 0.097** 0.157**
(0.028) (0.040) (0.074)

Sum of Lags 0.177*** 0.380*** 0.502***
Std. Err. (0.024) (0.059) (0.098)

Unit of observation Commodity-
Quarter

Commodity-
Quarter

Mine-
Quarter

Mine-
Quarter

Mine-
Quarter

Mine-
Quarter

Observations 1,508 1,465 37,325 35,662 37,325 35,662
R2 0.340 0.337 0.020 0.023 0.012 0.013
Commodities 16 16 16 16 16 16

Notes: Each column displays results from an OLS regression.The dependent variable in Columns 1-2 is
the 4-quarter log difference in the number of active mines producing a commodity at the end of a given
quarter. In the remaining columns, it is the 4-quarter log difference in the number of employees (or hours
worked) in a mine. In Columns 1-2, observations are weighted by the number of active mines producing a
commodity 4 quarters ago. SEs, clustered by commodity-quarter in Columns 1-2, and clustered two ways
by mine and commodity-quarter in Columns 3-6, in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 5: Price Shocks and Worker Safety

(1) (2) (3) (4)
Dep Var = ∆ log of:

Injury
Count

Injury
Rate

Traumatic
Injuries

Severe
Injuries

∆ log(Price)jt−1 0.137*** 0.153*** 0.103*** 0.046**
(0.027) (0.047) (0.021) (0.022)

Observations 37,325 37,325 37,325 37,325
R2 0.014 0.005 0.009 0.006
Commodities 16 16 16 16

Notes: Each column displays results from an OLS regression.
In Column 1, the dependent variable is ∆ log(# Injuries): the
4-quarter difference in the log of the number of injuries experi-
enced by a mine. The dependent variables in Columns 2–4 are
defined analogously for various alternative measures of safety:
the injury rate (defined as injury count divided by total working
hours), multiplied by 50,000 (the number of hours 100 full-time
workers would work in a quarter) in Column 2; “traumatic” in-
juries, or those caused by a discrete accident sustained during
working hours (Column 3); and “severe” injuries, or the subset
of injuries that are fatal, result in permanent disability, or result
in days away from work (Column 4). SEs, clustered two ways
by mine and commodity-quarter, are in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 8: Price Shocks and Compliance with Safety Regulations

(1) (2)
Dep Var = ∆ log of:

# Violations,
Total

# High Negligence
Violations

∆ log(Price)jt−1 0.131*** 0.051**
(0.044) (0.020)

Observations 29,359 29,359
R2 0.011 0.014
Commodities 16 16

Notes: Each column displays results from an OLS
regression. The unit of observation is a mine-
quarter. ∆ represents a 4-quarter difference (i.e.,
∆ log(Price)jt−1 = log(Price)jt−1 − log(Price)jt−5).
SEs, clustered two ways by mine and commodity-
quarter, in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 9: Heterogeneous Effects of Price Shocks by Mine Type

(1) (2) (3) (4)
Dep Var =

∆ log
Employment

∆ log
Hours

∆ log
Injuries

∆ log
Violations

∆ log(Price)jt−1 0.172*** 0.249*** 0.106*** 0.107*
(0.046) (0.080) (0.029) (0.056)

∆ log(Price)jt−1 × Underground 0.177** 0.211* 0.084* 0.058
(0.073) (0.128) (0.044) (0.074)

Observations 37,325 37,325 37,325 29,359
R2 0.022 0.010 0.014 0.011
Commodities 16 16 16 16

Notes: Each column displays results from an OLS regression in which the unit of
observation is a mine-quarter. SEs, clustered two ways by mine and commodity-
quarter, in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
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A Theoretical Appendix

In the model presented in Section 2, we assumed that the three inputs into firms’ accidents (pro-

duction, training, and safety equipment) were separable. In this appendix, we derive the key

comparative statics of our model relaxing this assumption.

The inputs into the firm’s “accident production function” might interact with each other. For

example, the amount by which increased production raises accidents may be smaller the higher the

level of training, and the higher the level of safety equipment. Additionally, following the intuition

that each input on its own has diminishing returns, the marginal effect of training on accidents

might be smaller when the level of safety equipment is higher (and vice versa). These examples

would imply the following strict inequalities on the various cross derivatives of the production

function:

AqT = ATq =
∂2A

∂q∂T
< 0; AqE = AEq =

∂2A

∂q∂E
< 0; ATE = AET =

∂2A

∂T∂E
> 0.

Our goal is to determine how relaxing this assumption affects dA
dp and dA

dx . Each of the First

Order Conditions in Equation (2) are identical as in the case in which we assume separability in

the main text. We note the Second Order Conditions (SOCs) here:

πqq = −κ
[
Aqq +AqTT

′ +ATT
′′ + (ATq +ATTT

′)T ′
]

(A.1)

πqE = −κ
[
AqE +ATET

′] (A.2)

πEq = −κ
[
AEq +AETT

′] (A.3)

πEE = −κAEE (A.4)

Thus, the Hessian matrix H is:

H =

πqq πqE

πEq πEE

 (A.5)
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π(q, E) has a maximum at (q∗, E∗) if

πqq < 0 (A.6)

πEE < 0 (A.7)

πqqπEE − πqEπEq > 0 (A.8)

Next, we compute the comparative statics in the general case. Turning first to the components

of dA
dp , we have that:

∂q

∂p
= −

κ

(
−AEE −Rp

[
AqE +ATET

′])
det(H)

(A.9)

where det(H) is the determinant of the Hessian matrix of second derivatives. Given our assumptions

about the cross-partial derivatives above, the numerator is negative, just as it is if inputs are

separable. The denominator (The Hessian) must be positive by the second order conditions, making

the entire term positive. Thus, ∂q
∂p > 0.

Employing similar reasoning,

∂E

∂p
= − κ

det(H)︸ ︷︷ ︸
<0


AEq︸︷︷︸

<0

+AETT
′︸ ︷︷ ︸

<0

+ Rp︸︷︷︸
<0

Aqq︸︷︷︸
>0

+AqTT
′︸ ︷︷ ︸

>0

+ATT
′′︸ ︷︷ ︸

>0

+(ATq︸︷︷︸
<0

+ATTT
′︸ ︷︷ ︸

<0

) T ′︸︷︷︸
<0


 > 0

(A.10)

Thus, ∂E
∂p > 0, just as under the assumption of separable inputs.

Comparative Statics of Other Changes in the Firm’s Financial Position

Moving to dA
dx , how x (a shock that only affects the firm’s financial position) affects the firm’s

choice of q and E is given by:

∂q

∂x
=−

−Rx(i)× κ
(
AqE +ATET

′
)

det(H)
> 0 (A.11)

∂E

∂x
= − κ

det(H)︸ ︷︷ ︸
<0

 Rx︸︷︷︸
<0

Aqq︸︷︷︸
>0

+AqTT
′︸ ︷︷ ︸

>0

+ATT
′′︸ ︷︷ ︸

>0

+(ATq︸︷︷︸
<0

+ATTT
′︸ ︷︷ ︸

<0

) T ′︸︷︷︸
<0


 > 0 (A.12)

where, as before, det(H) is the determinant of the Hessian matrix, H, that is the matrix of second
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derivatives with respect to q and E. As it was under the separability assumption in the main text,

∂E
∂x is strictly positive37

Equation A.11 shows that while a pure liquidity shock does not affect the firm’s output demand

conditions, the shock might affect the amount of output q produced depending on how inputs

interact to produce accidents. If inputs are non-separable, then a positive change in x can increase

production, thus raising accidents.38 This contrasts with the case in which inputs are separable, in

which case output is completely unresponsive to the liquidity shock that reduces the costs of E.

In conclusion, if we relax the assumption that inputs into producing accidents are separable,

the only substantive difference is that dA
dx is ambiguous, rather than unambiguously negative. This

difference arises since dq
dx is positive, rather than zero. However, given the evidence from multi-

ple studies that improvements in firms’ financial position leads to fewer injuries (i.e. that dA
dx is

negative), it seems plausible that the assumption of separable inputs holds approximately in the

real-world. All other comparative statics are qualitatively the same.

37Comparing equations (A.12) and (A.10) shows that a shock that eases liquidity causes the firm to increase E by
less than an increase in p induces it to do. This difference arises only if inputs are non-separable; because an increase
in p raises the value of production, this gives the firm an additional reason to increase E by dampening the extent to
which increasing q would otherwise leads to more accidents (AqE). If, on the other hand, AqE = 0, as we assumed in
the main text, then a change in x has an identical effect on E as does a change in p.

38The mechanism behind this result is as follows. A positive change in x makes safety equipment E cheaper for the
firm, inducing it to use more of it. If more equipment dampens the extent to which increasing q increases accidents
A (i.e. if AqE < 0), more E makes it less costly to expand production. Furthermore, if more equipment makes a
marginal increase in training less effective at reducing accidents, (ATE > 0), then having more E makes it profitable
for the firm to shift resources away from training. Both of these forces lead the firm to increase production in response
to a positive liquidity shock.
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B Appendix Tables and Figures

Figure B.1: The Time-Series Relationship Between Commodity Prices and U.S. Production of
Silver and Gold
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Notes: The data on annual production comes from the USGS Annual Minerals Survey.
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Figure B.2: Commodity Prices and Mining Companies’ Exploration Budgets

Source: S&P Global Market Intelligence. Data as of Oct. 29, 2018. S&P Global Market Intelligence obtains the
data used in its Corporate Exploration Strategies (CES) series, which is an annual survey of commercially oriented
nonferrous mining or exploration companies. All historical exploration budget amounts throughout this report
represent dollars of the day and have not been adjusted for inflation.
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Figure B.3: The Effect of Changes in Corporate Siblings’ Commodity Price on Mine’s Injury
Rates: Multiple Lags
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The graph plots coefficients and 95% confidence intervals from a regression that is a variant of Equation 12, that
includes four quarters of lags of own- and siblings’-price changes as explanatory variables (rather than just the
one-quarter lag).
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Table B.1: Summary Statistics on All Other Dependent Variables

Variable N Mean Std. Dev.

# injuries involving workers with ≥ 6 months experience at the mine 37,379 1.42 3.22
# injuries involving workers with < 6 months experience at the mine 37,379 0.28 0.85
# injuries with experience at this mine of worker missing 37,379 0.17 0.68
Number of incidents involving a contractor 37,379 0.26 0.97
Number of incidents that do not involve a contractor 37,379 1.61 3.53
Number of injuries caused by over-exertion 37,379 0.46 1.26
Number of injuries caused by striking object 37,379 0.72 1.66
Number of injuries caused by worker falling 37,379 0.27 0.75

Notes: All variables are top-coded at the 99th percentile. See text for details on how variables are
constructed.

64



Table B.2: Price Shocks and Various Types of Injuries

(1) (2) (3) (4)
Dep Var = ∆ log Injuries Involving:

Over
Exertion

Struck by
Object

Contact with
Machinery

Worker
Fall

∆ log(Price)jt−1 0.037* 0.087*** 0.051*** 0.038**
(0.020) (0.022) (0.017) (0.015)

Observations 37,325 37,325 37,325 37,325
R2 0.006 0.007 0.004 0.004
Specification OLS OLS OLS OLS
Commodities 16 16 16 16

Notes: Each column displays results from an OLS regression in
which the unit of observation is a mine-quarter. SEs, clustered two
ways by mine and commodity-quarter, in parentheses.
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Table B.3: Heterogeneity in Own- and Sibling-Price Effects on Worker Safety, by Firm Size

(1) (2)
Sample =

Mines with Corporate Siblings
that produce different commodity

∆ ln(Pricejt−1) 0.119*** 0.088
(0.031) (0.077)

∆Average log(price), corporate siblingsjt−1 -0.021*** -0.015***

(0.004) (0.004)

At least 6 corporate siblings × ∆ ln(Pricejt−1) 0.040
(0.083)

At least 6 corporate siblings × ∆Average log(price), corporate siblingsjt−1 -0.030*

(0.016)

Observations 8,700 8,700
R2 0.027 0.028
Commodities 14 14
Mines 336 336
Firms 79 79

Notes: the dependent variable is ∆ log(# Injuries): the 4-quarter difference in the log of the number of injuries
experienced by a mine. The unit of observation is a commodity-quarter. SEs, clustered two ways by firm and
commodity-quarter, in parentheses. Note that, among mines in multi-unit firms in our sample, the median
mine is in a firm with six corporate siblings.
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